Weak lensing as a probe of large-scale structure

I. LENS EQUATIONS

Cosmic shear --- Distorsion of distant-galaxy images via weak gravitational lensing by

large-scale structure

—— its statistical correlation is sensitive to
e evolution of matter fluctuations

e cosmic expansion (through the weight function of geometric distances)

a Brightness theorem ~

—
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Is: observed surface brightness of background galaxy

Iirwe: surface brightness of background galaxy at its source redshift
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The relation between 6 and 62 is given by the lens equation. Below, we will derive the lens

equation assuming flat cosmology (i.e., K = 0).

Photon geodesics
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z':  (comoving) position of photon, (xy, Ty, z3) = (Xg, x), with x(z) = J; ICL

A @ affine parameter



Newton gauge : ds? = — {1 +2VU(Z)} dt? + a?(t) {1+ 2P(Z) } 6;; da'da?

We rewrite the geodesic equation (2) in terms of the derivative with respect to x. To do

this, we use
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Then, the transverse component of each term in Eq. (2) (i.e., ¢ = 1, 2) becomes
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where we used the fact that Iy = W ;/a? T}, = Iy = 6;;(H + @), and '}, = Iy =
0ij P i + 0ix P ; — 0P ;. Summing up the above two contributions, the geodesic equation can

be rewritten with
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This is further reduced to a simplified equation:
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Solving Eq. (7) with the boundary condition of " = 0 at x = 0 and 6° = 6% at x = x(> 0):

e Lens equation ~
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II. CONVERGENCE AND SHEAR

The lens equation (8) describes how the image of background galaxy is deformed accodring
to the gravitational potential of foreground large-scale structure. To see this more explicitly,

we define the deformation matrix:
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Here we used - = X% (. 2" = x6!). The above deformation matrix is rewritten in the

following form:

with x and 7; beging defined by

N Xs _ 2 2
convergence : k(0) = —%/ dx (s = X0x ( 0 + 0 ) (- V) (11)
0

shear : (12)

Note that weak lensing implies «, |y| < 1.

For further simplification (but still practically useful treatment), we may write (& — ¥) =

—2 WV in the absence of anisotropic stress. We then note that

0? o? 0? 10 0
U= (V2P | U= V2P ()] . 13
{@:U? i &L‘%} [v 096%} [v X2 0x (X 8x)} (1)
The second term is nothing but the time derivative of the potential. Since the potential is

nearly constant in time, the second term is rather smaller than the first term, and we may

ignore it. Thus, through the Poisson equation, Eq. (11) can be rewritten with
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Based on Eq. (14), a couple of generalizations to be noted is:

e Non-flat space:

Replacing the comoving radial distance y in the kernel of integration with fx(x):
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e Continuous source distrituion:
Eq. (14) is only applied to the case with single-source plane at x = x5, but with a
broad source distribution of w,(), the expression is generalized to
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with the function g(x) given by
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x and 7 in harmonic space

The relation between convergence and shear fields [Eq. (11 ) and (12)] may become trans-
parent when we go to harmonic space. In flat-sky limit, the harmonic expansion is simply

reduced to the Fourier expansion:
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Then, we have

a0 = 2R, (19)
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Note that £2 = (2 + (2. Defining (cos ¢y, singy) = (¢1/¢, l5/l), the above expressions are
written with
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This relation implies that the shear field v = v, +i7, has a spin-2 nature. We thus realize that

the following decomposition is very useful to uniquely pick up the physically non-vanishing

lensing effect:

- E-/B-mode decomposition

~
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With this decomposition, we have
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