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Redshift-space distortions
• Clustering anisotropies induced by line-of-sight velocity fields
• Unavoidable systematics in 3D galaxy clustering 

via spectroscopic measurement
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Effects on clustering amplitude

Redshift-space distortions

Kaiser Effect
large-scale coherent motion
→ enhancement of clustering

Finger-of-God Effect
small-scale random motion 
→ suppression of clustering
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Redshift-space power spectrum

Here, the spectra P!!, P"", and P!" denote the auto power
spectra of density and velocity divergence, and their cross
power spectrum, respectively. The velocity divergence " is
defined by " ! ru ¼ #rv=ðaHfÞ.2

On the other hand, the functional form of the damping
term can be basically modeled from the distribution func-
tion of one-dimensional velocity. Historically, it is charac-
terized by a Gaussian or exponential function (e.g., [51–
54]), which leads to

DFoG½x' ¼
!
expð#x2Þ Gaussian;
1=ð1þ x2Þ Lorentzian:

(11)

Note that there is an analogous expression for the expo-
nential distribution, i.e., DFoG½x' ¼ 1=ð1þ x2=2Þ2 [50],
but the resultant power spectrum is quite similar to the
one adopting the Lorentzian form for the range of our
interest, x & 1. Since the Finger-of-God effect is thought
to be a fully nonlinear effect, which mostly comes from the
virialized random motion of the mass (or galaxy) residing
in a halo, the prediction of #v seems rather difficult. Our
primary purpose is to model the shape and structure of the

acoustic feature in the power spectrum, and the precise
form of the damping is basically irrelevant. We thus regard
#v as a free parameter and determine it by fitting the
predictions to the simulations or observations.
Figure 2 compares the phenomenological models of

redshift distortion with combination of Eqs. (10) and (11)
with N-body simulations. In computing the redshift-space
power spectrum from the phenomenological models, we
adopt the improved PT treatment by Refs. [33,34], and the
analytic results including the corrections up to the second-
order Born approximation are used to obtain the three
different power spectra P!!, P!", and P"". The accuracy
of the improved PT treatment has been checked in detail by
Ref. [34], and it has been shown that the predictions of P!!

reproduce the N-body results quite well within 1% accu-
racy below the wave number k1%, indicated by the vertical
arrows in Fig. 2. This has been calibrated from a proper
comparison between N-body and PT results and is empiri-
cally characterized by solving the following equa-
tion [25,34]:

k21%
6$2

Z k1%

0
dqPlinðq; zÞ ¼ C (12)

with C ¼ 0:7 and Plin being the linear matter spectrum.
Note that the 1% accuracy of the improved PT prediction at

FIG. 2 (color online). Same as in Fig. 1, but here we plot the results of phenomenological model predictions. The three different
predictions depicted as solid, dashed, dot-dashed lines are based on the phenomenological model of redshift distortion (9) with various
choices of Kaiser and Finger-of-God terms [Eqs. (10) and (11)]. The left panel shows the monopole power spectra (‘ ¼ 0), and the
right panel shows the quadrupole spectra (‘ ¼ 2). In all cases, the one-dimensional velocity dispersion #v was determined by fitting
the predictions to the N-body simulations. In each panel, the vertical arrows indicate the maximum wave number k1% for improved PT
prediction including up to the second-order Born approximation [see Eq. (12) for a definition].

2The sign convention of the definition of velocity divergence "
differs from that of Refs. [33,34], but is equivalent to the one in
Refs. [26–28,42].
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N-body and improved PT results, i.e., ½!N-bodyðrÞ $
!PTðrÞ%=!PTðrÞ.

After the correction of finite-mode sampling, the error
bars in N-body simulations are greatly reduced, and the
deviation of the N-body results from linear-theory predic-
tions (depicted as dotted lines) is clearly seen. As decreas-
ing the redshift, the baryon acoustic peaks become smeared
and the position of the peak are slightly shifted to a smaller
scale. These trends can be accurately described by the
leading-order calculation of improved PT, and the agree-
ment between the N-body results and the predictions is
excellent. The fractional error in amplitude is well within a
few percent, except for a large separation beyond the
location of baryon acoustic peak, where the accuracy of
the N-body results tends to worsen due to the limited
simulation boxsize. Note that the corrections coming
from the higher-order Born approximation do not alter
the behaviors at r > 30h$1 Mpc, and their amplitudes
are negligibly small compared to the error bars of the
N-body simulations. Thus, the leading-order prediction
seems robust for describing the baryon acoustic peak.

It has been recently suggested by several authors that the
smearing effect on baryon acoustic peak is mostly attrib-
uted to the random motion of mass distribution [56], and it
is approximately described by the convolution of the

Gaussian smoothing function (e.g., [35,57]). In the lan-
guage of improved PT, this effect corresponds to the dis-
appearance of the memory of the initial condition, which is
encoded in the nonlinear propagator. Strictly speaking, the
asymptotic behavior of the nonlinear propagator is not a
Gaussian form in closure approximation, although the
damping behavior manifestly exhibits in the approximate
solution of nonlinear propagator. Hence, the prediction for
the two-point correlation function seems robust against the
high-k behavior of the nonlinear propagator.
Finally, it should be noted that the standard PT predic-

tion fails to converge the integral in Eq. (4.4), because of
the high-k behavior of the power spectrum. This is true
even when including the higher-order correction of two-
loop order. Thus, the successful results of improved PT
prediction may be regarded as an outcome of nonperturba-
tive property.

C. Results in redshift space

In practical observation with galaxy redshift surveys, the
observed galaxy distribution is inevitably distorted due to
the peculiar velocity of each galaxy. The so-called redshift-
space distortion is known to alter the shape of the power
spectrum in two different ways (e.g., [58]). One is the

FIG. 7 (color online). Comparison between N-body results and improved PT predictions in the case adopting WMAP5 cosmological
parameters. From top to bottom, the results at z ¼ 3, 2, 1, and 0.5 are shown. The improved PT predictions plotted here include the
corrections up to the second-order Born approximation of the mode-coupling term, PMC2. Left: ratio of power spectrum to the
smoothed reference spectra PðkÞ=Pno-wiggleðkÞ. Solid and dotted lines are improved PT and linear-theory predictions, respectively.

Right: difference between N-body and improved PT results normalized by the no-wiggle formula ½PN-bodyðkÞ $ PPTðkÞ%=Pno-wiggleðkÞ.
In each panel, vertical arrows represent the wave number k1% for the leading-order predictions of standard and improved PT (from left
to right).
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the N-body results tends to worsen due to the limited
simulation boxsize. Note that the corrections coming
from the higher-order Born approximation do not alter
the behaviors at r > 30h$1 Mpc, and their amplitudes
are negligibly small compared to the error bars of the
N-body simulations. Thus, the leading-order prediction
seems robust for describing the baryon acoustic peak.

It has been recently suggested by several authors that the
smearing effect on baryon acoustic peak is mostly attrib-
uted to the random motion of mass distribution [56], and it
is approximately described by the convolution of the

Gaussian smoothing function (e.g., [35,57]). In the lan-
guage of improved PT, this effect corresponds to the dis-
appearance of the memory of the initial condition, which is
encoded in the nonlinear propagator. Strictly speaking, the
asymptotic behavior of the nonlinear propagator is not a
Gaussian form in closure approximation, although the
damping behavior manifestly exhibits in the approximate
solution of nonlinear propagator. Hence, the prediction for
the two-point correlation function seems robust against the
high-k behavior of the nonlinear propagator.
Finally, it should be noted that the standard PT predic-

tion fails to converge the integral in Eq. (4.4), because of
the high-k behavior of the power spectrum. This is true
even when including the higher-order correction of two-
loop order. Thus, the successful results of improved PT
prediction may be regarded as an outcome of nonperturba-
tive property.

C. Results in redshift space

In practical observation with galaxy redshift surveys, the
observed galaxy distribution is inevitably distorted due to
the peculiar velocity of each galaxy. The so-called redshift-
space distortion is known to alter the shape of the power
spectrum in two different ways (e.g., [58]). One is the

FIG. 7 (color online). Comparison between N-body results and improved PT predictions in the case adopting WMAP5 cosmological
parameters. From top to bottom, the results at z ¼ 3, 2, 1, and 0.5 are shown. The improved PT predictions plotted here include the
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Right: difference between N-body and improved PT results normalized by the no-wiggle formula ½PN-bodyðkÞ $ PPTðkÞ%=Pno-wiggleðkÞ.
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tions including the small corrections tend to oversmear the
acoustic feature, leading to a small discrepancy shown in
Fig. 5.

Another source for the discrepancies may come from the
effect of finite-mode sampling caused by the finite box size
of the N-body simulations. As advocated by Refs. [25,55],
due to the finite number of Fourier modes, the matter
power spectrum measured from N-body simulations may
not agree well with the predictions of linear theory nor
standard PT even at very large scales, and tends to system-
atically deviate from them.While we follow and extend the
procedure of Ref. [25] to correct this effect in redshift
space, it relies on the leading-order calculations of standard
PT, and the correction for finite-mode sampling has been
restricted to the low-k modes, k & 0:1h Mpc!1 [34].
Hence, the high-k modes of the power spectrum plotted
here may be affected by the effect of finite-mode sampling,
and it would be significant for higher-multipole spectra
because of its small amplitude. This might still be serious
even with the 30 independent N-body simulations.

Perhaps, the best way to remedy these discrepancies at
low-z is both to apply the improved PT treatment to the
corrections A and B, and to consider the higher-order
contributions for correcting the effect of finite-mode sam-
pling over the relevant range of BAOs. The complete
analysis along this line needs some progress and is beyond
the scope of this paper. Nevertheless, it should be stressed
that the model given by Eq. (18) captures several important
aspects of redshift distortion, and even the present treat-
ment with standard PT calculations of the corrections A
and B can provide a better description for power spectra. In
Fig. 7, we plot the fitted values of the velocity dispersion

obtained from the new predictions shown in Fig. 5. The
redshift dependence of the fitted results roughly matches
physical intuition, and is rather consistent with the linear-
theory prediction. This is contrasted to the cases neglecting
the corrections (see Fig. 3).
As another significance, we plot in Fig. 8 the

quadrupole-to-monopole ratios for redshift-space power
spectra. The new model predictions using standard and
improved PT calculations (solid and dashed lines) are
compared with those neglecting the corrections A and B

(dot-dashed lines). The amplitude of the ratio PðSÞ
2 =PðSÞ

0
basically reflects the strength of the clustering anisotropies,
and is proportional to ð4f=3þ 4f2=7Þ=ð1þ 2f=3þ f2=5Þ
in the limit k ! 0 (e.g., [1,3,43]). One noticeable point is
that the N-body results for the quadrupole-to-monopole
ratio do exhibit oscillatory behavior, and the model includ-
ing the corrections (18) reproduces the N-body trends
fairly well. On the other hand, the phenomenological
model neglecting the corrections generally predicts the

smooth scale dependence of the ratio PðSÞ
2 =PðSÞ

0 , and thus
it fails to reproduce the oscillatory feature. Since this
oscillation originates from the acoustic feature in BAOs,

FIG. 7 (color online). Same as in Fig. 3, but here we adopt the
new model of redshift distortion in estimating !v. The filled
triangles and circles are the results obtained from predictions
based on standard PT and improved PT calculations, respectively
(see dashed and solid lines in Fig. 5).

FIG. 8 (color online). Quadrupole-to-monopole ratios for the

redshift-space power spectrum, PðSÞ
2 ðkÞ=PðSÞ

0 ðkÞ, given at z ¼ 3,
2, 1, and 0.5 (from top to bottom). Solid and dashed lines,
respectively, represent the predictions based on the new model
of redshift distortion combining improved PT and standard PT
calculation to estimate the three different power spectra P"",
P"#, and P##. Dot-dashed lines are the results based on the
phenomenological model neglecting the corrections, which cor-
respond to solid lines in Fig. 2 (i.e., nonlinear PKaiser þ
Gaussian, DFoG). The vertical arrows indicate the maximum
wave number k1% for standard PT (left, green) and improved
PT (right, magenta).
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z ¼ 3 is reached at k" 0:47h Mpc#1, outside the plot
range. We basically use this criterion to determine !v,
and fit the predictions of both the monopole and quadru-
pole spectra to the N-body results in the range 0 $ k $
k1%.

Since we allow !v to vary as a free parameter, the
overall behavior of the model predictions reproduces the
N-body results, and the differences between model predic-
tions are basically small compared to the results in the PT
description. However, there still exist small but non-
negligible discrepancies between N-body results and
model predictions, which are statistically significant, and
are comparable to or exceed the expected errors in upcom-
ing BAO measurements [34]. Although the agreement is
somehow improved when we adopt the nonlinear model of
PKaiser, there still remain discrepancies of a few % in
monopole and 5% in quadrupole moments of the power
spectrum amplitudes. These are irrespective of the choice
of damping function DFoG.

Furthermore, the fitted results of !v show a somewhat
peculiar behavior. Figure 3 plots the fitted values of !v as a
function of redshift (symbols), which significantly deviate
from the linear-theory prediction (solid line) at increasing
redshifts. At z ¼ 3, the fitted result eventually approaches
zero in order to minimize the residuals in fitting the pre-
diction to simulations. This could happen when we account
for a slight damping at low k and a small enhancement at
high k in power spectrum amplitudes. The fitted results of
!v are in contrast with naive expectations and indicate that
the model based on the expression (9) misses something
important and needs to be reconsidered.

IV. IMPROVED MODEL PREDICTION

A. Derivation

The comparison in the previous section reveals that even
in the models with a fitting parameter, a small but non-
negligible discrepancy appears at the scales of BAOs,
where the choice of the damping function DFoG½x& does
not sensitively affect the predictions. This implies that
there exist missing terms arising from the nonlinear
mode coupling between density and velocity fields, and
those corrections alter the acoustic feature in the redshift-
space power spectrum. In this section, starting with the
exact expression (4), we derive nonlinear corrections,
which are relevant to explain the modulation of acoustic
features in redshift space.
First recall that the expression (4) is written in the form

PðSÞðk;"Þ ¼
Z

d3xeik)xhej1A1A2A3i; (13)

where the quantities j1, Ai (i ¼ 1, 2, 3) are, respectively,
given by

j1 ¼ #ik"f; A1 ¼ uzðrÞ # uzðr0Þ;
A2 ¼ #ðrÞ þ frzuzðrÞ; A3 ¼ #ðr0Þ þ frzuzðr0Þ:

We shall rewrite the ensemble average hej1A1A2A3i in terms
of cumulants. To do this, we use the relation between the
cumulant and moment generating functions. For the sto-
chastic vector field A ¼ fA1; A2; A3g, we have (e.g.,
[29,42])

hej)Ai ¼ expfhej)Aicg (14)

with j being an arbitrary constant vector, j ¼ fj1; j2; j3g.
Taking the derivative twice with respect to j2 and j3, we
then set j2 ¼ j3 ¼ 0. We obtain [42]

hej1A1A2A3i ¼ expfhej1A1icg½hej1A1A2A3ic
þ hej1A1A2ichej1A1A3ic&: (15)

Substituting this into Eq. (13), we arrive at

PðSÞðk;"Þ ¼
Z

d3xeik)x expfhej1A1icg½hej1A1A2A3ic

þ hej1A1A2ichej1A1A3ic&: (16)

This expression clearly reveals the coupling between den-
sity and velocity fields associated with the Kaiser and
Finger-of-God effects. In addition to the prefactor
expfhej1A1icg, the ensemble averages over the quantities
A2 and A3 responsible for the Kaiser effect all include
the exponential factor ej1A1 , which can produce a non-
negligible correlation between density and velocity.
Comparing Eq. (16) with the expression (9) with (10)

and (11), we deduce that the phenomenological models
discussed in Sec. III B miss something important and are
derived based on several assumptions or treatments:

FIG. 3 (color online). Redshift evolution of velocity dispersion
!v determined by fitting the predictions of monopole and
quadrupole power spectra to the N-body results. The solid line
represents the linear-theory prediction, while the symbols indi-
cate the results obtained by fitting the models of redshift dis-
tortion with various choices of Kaiser and damping terms (see
Fig. 2).
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This expression clearly reveals the coupling between den-
sity and velocity fields associated with the Kaiser and
Finger-of-God effects. In addition to the prefactor
expfhej1A1icg, the ensemble averages over the quantities
A2 and A3 responsible for the Kaiser effect all include
the exponential factor ej1A1 , which can produce a non-
negligible correlation between density and velocity.
Comparing Eq. (16) with the expression (9) with (10)

and (11), we deduce that the phenomenological models
discussed in Sec. III B miss something important and are
derived based on several assumptions or treatments:

FIG. 3 (color online). Redshift evolution of velocity dispersion
!v determined by fitting the predictions of monopole and
quadrupole power spectra to the N-body results. The solid line
represents the linear-theory prediction, while the symbols indi-
cate the results obtained by fitting the models of redshift dis-
tortion with various choices of Kaiser and damping terms (see
Fig. 2).
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z ¼ 3 is reached at k" 0:47h Mpc#1, outside the plot
range. We basically use this criterion to determine !v,
and fit the predictions of both the monopole and quadru-
pole spectra to the N-body results in the range 0 $ k $
k1%.

Since we allow !v to vary as a free parameter, the
overall behavior of the model predictions reproduces the
N-body results, and the differences between model predic-
tions are basically small compared to the results in the PT
description. However, there still exist small but non-
negligible discrepancies between N-body results and
model predictions, which are statistically significant, and
are comparable to or exceed the expected errors in upcom-
ing BAO measurements [34]. Although the agreement is
somehow improved when we adopt the nonlinear model of
PKaiser, there still remain discrepancies of a few % in
monopole and 5% in quadrupole moments of the power
spectrum amplitudes. These are irrespective of the choice
of damping function DFoG.

Furthermore, the fitted results of !v show a somewhat
peculiar behavior. Figure 3 plots the fitted values of !v as a
function of redshift (symbols), which significantly deviate
from the linear-theory prediction (solid line) at increasing
redshifts. At z ¼ 3, the fitted result eventually approaches
zero in order to minimize the residuals in fitting the pre-
diction to simulations. This could happen when we account
for a slight damping at low k and a small enhancement at
high k in power spectrum amplitudes. The fitted results of
!v are in contrast with naive expectations and indicate that
the model based on the expression (9) misses something
important and needs to be reconsidered.

IV. IMPROVED MODEL PREDICTION

A. Derivation

The comparison in the previous section reveals that even
in the models with a fitting parameter, a small but non-
negligible discrepancy appears at the scales of BAOs,
where the choice of the damping function DFoG½x& does
not sensitively affect the predictions. This implies that
there exist missing terms arising from the nonlinear
mode coupling between density and velocity fields, and
those corrections alter the acoustic feature in the redshift-
space power spectrum. In this section, starting with the
exact expression (4), we derive nonlinear corrections,
which are relevant to explain the modulation of acoustic
features in redshift space.
First recall that the expression (4) is written in the form

PðSÞðk;"Þ ¼
Z

d3xeik)xhej1A1A2A3i; (13)

where the quantities j1, Ai (i ¼ 1, 2, 3) are, respectively,
given by

j1 ¼ #ik"f; A1 ¼ uzðrÞ # uzðr0Þ;
A2 ¼ #ðrÞ þ frzuzðrÞ; A3 ¼ #ðr0Þ þ frzuzðr0Þ:

We shall rewrite the ensemble average hej1A1A2A3i in terms
of cumulants. To do this, we use the relation between the
cumulant and moment generating functions. For the sto-
chastic vector field A ¼ fA1; A2; A3g, we have (e.g.,
[29,42])

hej)Ai ¼ expfhej)Aicg (14)

with j being an arbitrary constant vector, j ¼ fj1; j2; j3g.
Taking the derivative twice with respect to j2 and j3, we
then set j2 ¼ j3 ¼ 0. We obtain [42]

hej1A1A2A3i ¼ expfhej1A1icg½hej1A1A2A3ic
þ hej1A1A2ichej1A1A3ic&: (15)

Substituting this into Eq. (13), we arrive at

PðSÞðk;"Þ ¼
Z

d3xeik)x expfhej1A1icg½hej1A1A2A3ic

þ hej1A1A2ichej1A1A3ic&: (16)

This expression clearly reveals the coupling between den-
sity and velocity fields associated with the Kaiser and
Finger-of-God effects. In addition to the prefactor
expfhej1A1icg, the ensemble averages over the quantities
A2 and A3 responsible for the Kaiser effect all include
the exponential factor ej1A1 , which can produce a non-
negligible correlation between density and velocity.
Comparing Eq. (16) with the expression (9) with (10)

and (11), we deduce that the phenomenological models
discussed in Sec. III B miss something important and are
derived based on several assumptions or treatments:

FIG. 3 (color online). Redshift evolution of velocity dispersion
!v determined by fitting the predictions of monopole and
quadrupole power spectra to the N-body results. The solid line
represents the linear-theory prediction, while the symbols indi-
cate the results obtained by fitting the models of redshift dis-
tortion with various choices of Kaiser and damping terms (see
Fig. 2).
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z ¼ 3 is reached at k" 0:47h Mpc#1, outside the plot
range. We basically use this criterion to determine !v,
and fit the predictions of both the monopole and quadru-
pole spectra to the N-body results in the range 0 $ k $
k1%.

Since we allow !v to vary as a free parameter, the
overall behavior of the model predictions reproduces the
N-body results, and the differences between model predic-
tions are basically small compared to the results in the PT
description. However, there still exist small but non-
negligible discrepancies between N-body results and
model predictions, which are statistically significant, and
are comparable to or exceed the expected errors in upcom-
ing BAO measurements [34]. Although the agreement is
somehow improved when we adopt the nonlinear model of
PKaiser, there still remain discrepancies of a few % in
monopole and 5% in quadrupole moments of the power
spectrum amplitudes. These are irrespective of the choice
of damping function DFoG.

Furthermore, the fitted results of !v show a somewhat
peculiar behavior. Figure 3 plots the fitted values of !v as a
function of redshift (symbols), which significantly deviate
from the linear-theory prediction (solid line) at increasing
redshifts. At z ¼ 3, the fitted result eventually approaches
zero in order to minimize the residuals in fitting the pre-
diction to simulations. This could happen when we account
for a slight damping at low k and a small enhancement at
high k in power spectrum amplitudes. The fitted results of
!v are in contrast with naive expectations and indicate that
the model based on the expression (9) misses something
important and needs to be reconsidered.
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where the choice of the damping function DFoG½x& does
not sensitively affect the predictions. This implies that
there exist missing terms arising from the nonlinear
mode coupling between density and velocity fields, and
those corrections alter the acoustic feature in the redshift-
space power spectrum. In this section, starting with the
exact expression (4), we derive nonlinear corrections,
which are relevant to explain the modulation of acoustic
features in redshift space.
First recall that the expression (4) is written in the form
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where the quantities j1, Ai (i ¼ 1, 2, 3) are, respectively,
given by
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We shall rewrite the ensemble average hej1A1A2A3i in terms
of cumulants. To do this, we use the relation between the
cumulant and moment generating functions. For the sto-
chastic vector field A ¼ fA1; A2; A3g, we have (e.g.,
[29,42])

hej)Ai ¼ expfhej)Aicg (14)

with j being an arbitrary constant vector, j ¼ fj1; j2; j3g.
Taking the derivative twice with respect to j2 and j3, we
then set j2 ¼ j3 ¼ 0. We obtain [42]
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This expression clearly reveals the coupling between den-
sity and velocity fields associated with the Kaiser and
Finger-of-God effects. In addition to the prefactor
expfhej1A1icg, the ensemble averages over the quantities
A2 and A3 responsible for the Kaiser effect all include
the exponential factor ej1A1 , which can produce a non-
negligible correlation between density and velocity.
Comparing Eq. (16) with the expression (9) with (10)

and (11), we deduce that the phenomenological models
discussed in Sec. III B miss something important and are
derived based on several assumptions or treatments:

FIG. 3 (color online). Redshift evolution of velocity dispersion
!v determined by fitting the predictions of monopole and
quadrupole power spectra to the N-body results. The solid line
represents the linear-theory prediction, while the symbols indi-
cate the results obtained by fitting the models of redshift dis-
tortion with various choices of Kaiser and damping terms (see
Fig. 2).
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z ¼ 3 is reached at k" 0:47h Mpc#1, outside the plot
range. We basically use this criterion to determine !v,
and fit the predictions of both the monopole and quadru-
pole spectra to the N-body results in the range 0 $ k $
k1%.

Since we allow !v to vary as a free parameter, the
overall behavior of the model predictions reproduces the
N-body results, and the differences between model predic-
tions are basically small compared to the results in the PT
description. However, there still exist small but non-
negligible discrepancies between N-body results and
model predictions, which are statistically significant, and
are comparable to or exceed the expected errors in upcom-
ing BAO measurements [34]. Although the agreement is
somehow improved when we adopt the nonlinear model of
PKaiser, there still remain discrepancies of a few % in
monopole and 5% in quadrupole moments of the power
spectrum amplitudes. These are irrespective of the choice
of damping function DFoG.

Furthermore, the fitted results of !v show a somewhat
peculiar behavior. Figure 3 plots the fitted values of !v as a
function of redshift (symbols), which significantly deviate
from the linear-theory prediction (solid line) at increasing
redshifts. At z ¼ 3, the fitted result eventually approaches
zero in order to minimize the residuals in fitting the pre-
diction to simulations. This could happen when we account
for a slight damping at low k and a small enhancement at
high k in power spectrum amplitudes. The fitted results of
!v are in contrast with naive expectations and indicate that
the model based on the expression (9) misses something
important and needs to be reconsidered.

IV. IMPROVED MODEL PREDICTION

A. Derivation

The comparison in the previous section reveals that even
in the models with a fitting parameter, a small but non-
negligible discrepancy appears at the scales of BAOs,
where the choice of the damping function DFoG½x& does
not sensitively affect the predictions. This implies that
there exist missing terms arising from the nonlinear
mode coupling between density and velocity fields, and
those corrections alter the acoustic feature in the redshift-
space power spectrum. In this section, starting with the
exact expression (4), we derive nonlinear corrections,
which are relevant to explain the modulation of acoustic
features in redshift space.
First recall that the expression (4) is written in the form
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where the quantities j1, Ai (i ¼ 1, 2, 3) are, respectively,
given by

j1 ¼ #ik"f; A1 ¼ uzðrÞ # uzðr0Þ;
A2 ¼ #ðrÞ þ frzuzðrÞ; A3 ¼ #ðr0Þ þ frzuzðr0Þ:

We shall rewrite the ensemble average hej1A1A2A3i in terms
of cumulants. To do this, we use the relation between the
cumulant and moment generating functions. For the sto-
chastic vector field A ¼ fA1; A2; A3g, we have (e.g.,
[29,42])

hej)Ai ¼ expfhej)Aicg (14)

with j being an arbitrary constant vector, j ¼ fj1; j2; j3g.
Taking the derivative twice with respect to j2 and j3, we
then set j2 ¼ j3 ¼ 0. We obtain [42]

hej1A1A2A3i ¼ expfhej1A1icg½hej1A1A2A3ic
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Substituting this into Eq. (13), we arrive at
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þ hej1A1A2ichej1A1A3ic&: (16)

This expression clearly reveals the coupling between den-
sity and velocity fields associated with the Kaiser and
Finger-of-God effects. In addition to the prefactor
expfhej1A1icg, the ensemble averages over the quantities
A2 and A3 responsible for the Kaiser effect all include
the exponential factor ej1A1 , which can produce a non-
negligible correlation between density and velocity.
Comparing Eq. (16) with the expression (9) with (10)

and (11), we deduce that the phenomenological models
discussed in Sec. III B miss something important and are
derived based on several assumptions or treatments:

FIG. 3 (color online). Redshift evolution of velocity dispersion
!v determined by fitting the predictions of monopole and
quadrupole power spectra to the N-body results. The solid line
represents the linear-theory prediction, while the symbols indi-
cate the results obtained by fitting the models of redshift dis-
tortion with various choices of Kaiser and damping terms (see
Fig. 2).
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z ¼ 3 is reached at k" 0:47h Mpc#1, outside the plot
range. We basically use this criterion to determine !v,
and fit the predictions of both the monopole and quadru-
pole spectra to the N-body results in the range 0 $ k $
k1%.

Since we allow !v to vary as a free parameter, the
overall behavior of the model predictions reproduces the
N-body results, and the differences between model predic-
tions are basically small compared to the results in the PT
description. However, there still exist small but non-
negligible discrepancies between N-body results and
model predictions, which are statistically significant, and
are comparable to or exceed the expected errors in upcom-
ing BAO measurements [34]. Although the agreement is
somehow improved when we adopt the nonlinear model of
PKaiser, there still remain discrepancies of a few % in
monopole and 5% in quadrupole moments of the power
spectrum amplitudes. These are irrespective of the choice
of damping function DFoG.

Furthermore, the fitted results of !v show a somewhat
peculiar behavior. Figure 3 plots the fitted values of !v as a
function of redshift (symbols), which significantly deviate
from the linear-theory prediction (solid line) at increasing
redshifts. At z ¼ 3, the fitted result eventually approaches
zero in order to minimize the residuals in fitting the pre-
diction to simulations. This could happen when we account
for a slight damping at low k and a small enhancement at
high k in power spectrum amplitudes. The fitted results of
!v are in contrast with naive expectations and indicate that
the model based on the expression (9) misses something
important and needs to be reconsidered.

IV. IMPROVED MODEL PREDICTION

A. Derivation

The comparison in the previous section reveals that even
in the models with a fitting parameter, a small but non-
negligible discrepancy appears at the scales of BAOs,
where the choice of the damping function DFoG½x& does
not sensitively affect the predictions. This implies that
there exist missing terms arising from the nonlinear
mode coupling between density and velocity fields, and
those corrections alter the acoustic feature in the redshift-
space power spectrum. In this section, starting with the
exact expression (4), we derive nonlinear corrections,
which are relevant to explain the modulation of acoustic
features in redshift space.
First recall that the expression (4) is written in the form

PðSÞðk;"Þ ¼
Z

d3xeik)xhej1A1A2A3i; (13)

where the quantities j1, Ai (i ¼ 1, 2, 3) are, respectively,
given by

j1 ¼ #ik"f; A1 ¼ uzðrÞ # uzðr0Þ;
A2 ¼ #ðrÞ þ frzuzðrÞ; A3 ¼ #ðr0Þ þ frzuzðr0Þ:

We shall rewrite the ensemble average hej1A1A2A3i in terms
of cumulants. To do this, we use the relation between the
cumulant and moment generating functions. For the sto-
chastic vector field A ¼ fA1; A2; A3g, we have (e.g.,
[29,42])

hej)Ai ¼ expfhej)Aicg (14)

with j being an arbitrary constant vector, j ¼ fj1; j2; j3g.
Taking the derivative twice with respect to j2 and j3, we
then set j2 ¼ j3 ¼ 0. We obtain [42]

hej1A1A2A3i ¼ expfhej1A1icg½hej1A1A2A3ic
þ hej1A1A2ichej1A1A3ic&: (15)

Substituting this into Eq. (13), we arrive at

PðSÞðk;"Þ ¼
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d3xeik)x expfhej1A1icg½hej1A1A2A3ic

þ hej1A1A2ichej1A1A3ic&: (16)

This expression clearly reveals the coupling between den-
sity and velocity fields associated with the Kaiser and
Finger-of-God effects. In addition to the prefactor
expfhej1A1icg, the ensemble averages over the quantities
A2 and A3 responsible for the Kaiser effect all include
the exponential factor ej1A1 , which can produce a non-
negligible correlation between density and velocity.
Comparing Eq. (16) with the expression (9) with (10)

and (11), we deduce that the phenomenological models
discussed in Sec. III B miss something important and are
derived based on several assumptions or treatments:

FIG. 3 (color online). Redshift evolution of velocity dispersion
!v determined by fitting the predictions of monopole and
quadrupole power spectra to the N-body results. The solid line
represents the linear-theory prediction, while the symbols indi-
cate the results obtained by fitting the models of redshift dis-
tortion with various choices of Kaiser and damping terms (see
Fig. 2).
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In terms of cumulants,

z ¼ 3 is reached at k" 0:47h Mpc#1, outside the plot
range. We basically use this criterion to determine !v,
and fit the predictions of both the monopole and quadru-
pole spectra to the N-body results in the range 0 $ k $
k1%.

Since we allow !v to vary as a free parameter, the
overall behavior of the model predictions reproduces the
N-body results, and the differences between model predic-
tions are basically small compared to the results in the PT
description. However, there still exist small but non-
negligible discrepancies between N-body results and
model predictions, which are statistically significant, and
are comparable to or exceed the expected errors in upcom-
ing BAO measurements [34]. Although the agreement is
somehow improved when we adopt the nonlinear model of
PKaiser, there still remain discrepancies of a few % in
monopole and 5% in quadrupole moments of the power
spectrum amplitudes. These are irrespective of the choice
of damping function DFoG.

Furthermore, the fitted results of !v show a somewhat
peculiar behavior. Figure 3 plots the fitted values of !v as a
function of redshift (symbols), which significantly deviate
from the linear-theory prediction (solid line) at increasing
redshifts. At z ¼ 3, the fitted result eventually approaches
zero in order to minimize the residuals in fitting the pre-
diction to simulations. This could happen when we account
for a slight damping at low k and a small enhancement at
high k in power spectrum amplitudes. The fitted results of
!v are in contrast with naive expectations and indicate that
the model based on the expression (9) misses something
important and needs to be reconsidered.
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The comparison in the previous section reveals that even
in the models with a fitting parameter, a small but non-
negligible discrepancy appears at the scales of BAOs,
where the choice of the damping function DFoG½x& does
not sensitively affect the predictions. This implies that
there exist missing terms arising from the nonlinear
mode coupling between density and velocity fields, and
those corrections alter the acoustic feature in the redshift-
space power spectrum. In this section, starting with the
exact expression (4), we derive nonlinear corrections,
which are relevant to explain the modulation of acoustic
features in redshift space.
First recall that the expression (4) is written in the form

PðSÞðk;"Þ ¼
Z

d3xeik)xhej1A1A2A3i; (13)

where the quantities j1, Ai (i ¼ 1, 2, 3) are, respectively,
given by

j1 ¼ #ik"f; A1 ¼ uzðrÞ # uzðr0Þ;
A2 ¼ #ðrÞ þ frzuzðrÞ; A3 ¼ #ðr0Þ þ frzuzðr0Þ:

We shall rewrite the ensemble average hej1A1A2A3i in terms
of cumulants. To do this, we use the relation between the
cumulant and moment generating functions. For the sto-
chastic vector field A ¼ fA1; A2; A3g, we have (e.g.,
[29,42])

hej)Ai ¼ expfhej)Aicg (14)

with j being an arbitrary constant vector, j ¼ fj1; j2; j3g.
Taking the derivative twice with respect to j2 and j3, we
then set j2 ¼ j3 ¼ 0. We obtain [42]

hej1A1A2A3i ¼ expfhej1A1icg½hej1A1A2A3ic
þ hej1A1A2ichej1A1A3ic&: (15)

Substituting this into Eq. (13), we arrive at

PðSÞðk;"Þ ¼
Z

d3xeik)x expfhej1A1icg½hej1A1A2A3ic

þ hej1A1A2ichej1A1A3ic&: (16)

This expression clearly reveals the coupling between den-
sity and velocity fields associated with the Kaiser and
Finger-of-God effects. In addition to the prefactor
expfhej1A1icg, the ensemble averages over the quantities
A2 and A3 responsible for the Kaiser effect all include
the exponential factor ej1A1 , which can produce a non-
negligible correlation between density and velocity.
Comparing Eq. (16) with the expression (9) with (10)

and (11), we deduce that the phenomenological models
discussed in Sec. III B miss something important and are
derived based on several assumptions or treatments:

FIG. 3 (color online). Redshift evolution of velocity dispersion
!v determined by fitting the predictions of monopole and
quadrupole power spectra to the N-body results. The solid line
represents the linear-theory prediction, while the symbols indi-
cate the results obtained by fitting the models of redshift dis-
tortion with various choices of Kaiser and damping terms (see
Fig. 2).
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Factorized model

z ¼ 3 is reached at k" 0:47h Mpc#1, outside the plot
range. We basically use this criterion to determine !v,
and fit the predictions of both the monopole and quadru-
pole spectra to the N-body results in the range 0 $ k $
k1%.

Since we allow !v to vary as a free parameter, the
overall behavior of the model predictions reproduces the
N-body results, and the differences between model predic-
tions are basically small compared to the results in the PT
description. However, there still exist small but non-
negligible discrepancies between N-body results and
model predictions, which are statistically significant, and
are comparable to or exceed the expected errors in upcom-
ing BAO measurements [34]. Although the agreement is
somehow improved when we adopt the nonlinear model of
PKaiser, there still remain discrepancies of a few % in
monopole and 5% in quadrupole moments of the power
spectrum amplitudes. These are irrespective of the choice
of damping function DFoG.

Furthermore, the fitted results of !v show a somewhat
peculiar behavior. Figure 3 plots the fitted values of !v as a
function of redshift (symbols), which significantly deviate
from the linear-theory prediction (solid line) at increasing
redshifts. At z ¼ 3, the fitted result eventually approaches
zero in order to minimize the residuals in fitting the pre-
diction to simulations. This could happen when we account
for a slight damping at low k and a small enhancement at
high k in power spectrum amplitudes. The fitted results of
!v are in contrast with naive expectations and indicate that
the model based on the expression (9) misses something
important and needs to be reconsidered.

IV. IMPROVED MODEL PREDICTION

A. Derivation

The comparison in the previous section reveals that even
in the models with a fitting parameter, a small but non-
negligible discrepancy appears at the scales of BAOs,
where the choice of the damping function DFoG½x& does
not sensitively affect the predictions. This implies that
there exist missing terms arising from the nonlinear
mode coupling between density and velocity fields, and
those corrections alter the acoustic feature in the redshift-
space power spectrum. In this section, starting with the
exact expression (4), we derive nonlinear corrections,
which are relevant to explain the modulation of acoustic
features in redshift space.
First recall that the expression (4) is written in the form
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Z

d3xeik)xhej1A1A2A3i; (13)

where the quantities j1, Ai (i ¼ 1, 2, 3) are, respectively,
given by
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A2 ¼ #ðrÞ þ frzuzðrÞ; A3 ¼ #ðr0Þ þ frzuzðr0Þ:

We shall rewrite the ensemble average hej1A1A2A3i in terms
of cumulants. To do this, we use the relation between the
cumulant and moment generating functions. For the sto-
chastic vector field A ¼ fA1; A2; A3g, we have (e.g.,
[29,42])

hej)Ai ¼ expfhej)Aicg (14)

with j being an arbitrary constant vector, j ¼ fj1; j2; j3g.
Taking the derivative twice with respect to j2 and j3, we
then set j2 ¼ j3 ¼ 0. We obtain [42]

hej1A1A2A3i ¼ expfhej1A1icg½hej1A1A2A3ic
þ hej1A1A2ichej1A1A3ic&: (15)
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This expression clearly reveals the coupling between den-
sity and velocity fields associated with the Kaiser and
Finger-of-God effects. In addition to the prefactor
expfhej1A1icg, the ensemble averages over the quantities
A2 and A3 responsible for the Kaiser effect all include
the exponential factor ej1A1 , which can produce a non-
negligible correlation between density and velocity.
Comparing Eq. (16) with the expression (9) with (10)

and (11), we deduce that the phenomenological models
discussed in Sec. III B miss something important and are
derived based on several assumptions or treatments:

FIG. 3 (color online). Redshift evolution of velocity dispersion
!v determined by fitting the predictions of monopole and
quadrupole power spectra to the N-body results. The solid line
represents the linear-theory prediction, while the symbols indi-
cate the results obtained by fitting the models of redshift dis-
tortion with various choices of Kaiser and damping terms (see
Fig. 2).
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z ¼ 3 is reached at k" 0:47h Mpc#1, outside the plot
range. We basically use this criterion to determine !v,
and fit the predictions of both the monopole and quadru-
pole spectra to the N-body results in the range 0 $ k $
k1%.

Since we allow !v to vary as a free parameter, the
overall behavior of the model predictions reproduces the
N-body results, and the differences between model predic-
tions are basically small compared to the results in the PT
description. However, there still exist small but non-
negligible discrepancies between N-body results and
model predictions, which are statistically significant, and
are comparable to or exceed the expected errors in upcom-
ing BAO measurements [34]. Although the agreement is
somehow improved when we adopt the nonlinear model of
PKaiser, there still remain discrepancies of a few % in
monopole and 5% in quadrupole moments of the power
spectrum amplitudes. These are irrespective of the choice
of damping function DFoG.

Furthermore, the fitted results of !v show a somewhat
peculiar behavior. Figure 3 plots the fitted values of !v as a
function of redshift (symbols), which significantly deviate
from the linear-theory prediction (solid line) at increasing
redshifts. At z ¼ 3, the fitted result eventually approaches
zero in order to minimize the residuals in fitting the pre-
diction to simulations. This could happen when we account
for a slight damping at low k and a small enhancement at
high k in power spectrum amplitudes. The fitted results of
!v are in contrast with naive expectations and indicate that
the model based on the expression (9) misses something
important and needs to be reconsidered.

IV. IMPROVED MODEL PREDICTION

A. Derivation

The comparison in the previous section reveals that even
in the models with a fitting parameter, a small but non-
negligible discrepancy appears at the scales of BAOs,
where the choice of the damping function DFoG½x& does
not sensitively affect the predictions. This implies that
there exist missing terms arising from the nonlinear
mode coupling between density and velocity fields, and
those corrections alter the acoustic feature in the redshift-
space power spectrum. In this section, starting with the
exact expression (4), we derive nonlinear corrections,
which are relevant to explain the modulation of acoustic
features in redshift space.
First recall that the expression (4) is written in the form

PðSÞðk;"Þ ¼
Z

d3xeik)xhej1A1A2A3i; (13)

where the quantities j1, Ai (i ¼ 1, 2, 3) are, respectively,
given by

j1 ¼ #ik"f; A1 ¼ uzðrÞ # uzðr0Þ;
A2 ¼ #ðrÞ þ frzuzðrÞ; A3 ¼ #ðr0Þ þ frzuzðr0Þ:

We shall rewrite the ensemble average hej1A1A2A3i in terms
of cumulants. To do this, we use the relation between the
cumulant and moment generating functions. For the sto-
chastic vector field A ¼ fA1; A2; A3g, we have (e.g.,
[29,42])

hej)Ai ¼ expfhej)Aicg (14)

with j being an arbitrary constant vector, j ¼ fj1; j2; j3g.
Taking the derivative twice with respect to j2 and j3, we
then set j2 ¼ j3 ¼ 0. We obtain [42]

hej1A1A2A3i ¼ expfhej1A1icg½hej1A1A2A3ic
þ hej1A1A2ichej1A1A3ic&: (15)

Substituting this into Eq. (13), we arrive at

PðSÞðk;"Þ ¼
Z

d3xeik)x expfhej1A1icg½hej1A1A2A3ic

þ hej1A1A2ichej1A1A3ic&: (16)

This expression clearly reveals the coupling between den-
sity and velocity fields associated with the Kaiser and
Finger-of-God effects. In addition to the prefactor
expfhej1A1icg, the ensemble averages over the quantities
A2 and A3 responsible for the Kaiser effect all include
the exponential factor ej1A1 , which can produce a non-
negligible correlation between density and velocity.
Comparing Eq. (16) with the expression (9) with (10)

and (11), we deduce that the phenomenological models
discussed in Sec. III B miss something important and are
derived based on several assumptions or treatments:

FIG. 3 (color online). Redshift evolution of velocity dispersion
!v determined by fitting the predictions of monopole and
quadrupole power spectra to the N-body results. The solid line
represents the linear-theory prediction, while the symbols indi-
cate the results obtained by fitting the models of redshift dis-
tortion with various choices of Kaiser and damping terms (see
Fig. 2).
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z ¼ 3 is reached at k" 0:47h Mpc#1, outside the plot
range. We basically use this criterion to determine !v,
and fit the predictions of both the monopole and quadru-
pole spectra to the N-body results in the range 0 $ k $
k1%.

Since we allow !v to vary as a free parameter, the
overall behavior of the model predictions reproduces the
N-body results, and the differences between model predic-
tions are basically small compared to the results in the PT
description. However, there still exist small but non-
negligible discrepancies between N-body results and
model predictions, which are statistically significant, and
are comparable to or exceed the expected errors in upcom-
ing BAO measurements [34]. Although the agreement is
somehow improved when we adopt the nonlinear model of
PKaiser, there still remain discrepancies of a few % in
monopole and 5% in quadrupole moments of the power
spectrum amplitudes. These are irrespective of the choice
of damping function DFoG.

Furthermore, the fitted results of !v show a somewhat
peculiar behavior. Figure 3 plots the fitted values of !v as a
function of redshift (symbols), which significantly deviate
from the linear-theory prediction (solid line) at increasing
redshifts. At z ¼ 3, the fitted result eventually approaches
zero in order to minimize the residuals in fitting the pre-
diction to simulations. This could happen when we account
for a slight damping at low k and a small enhancement at
high k in power spectrum amplitudes. The fitted results of
!v are in contrast with naive expectations and indicate that
the model based on the expression (9) misses something
important and needs to be reconsidered.

IV. IMPROVED MODEL PREDICTION

A. Derivation

The comparison in the previous section reveals that even
in the models with a fitting parameter, a small but non-
negligible discrepancy appears at the scales of BAOs,
where the choice of the damping function DFoG½x& does
not sensitively affect the predictions. This implies that
there exist missing terms arising from the nonlinear
mode coupling between density and velocity fields, and
those corrections alter the acoustic feature in the redshift-
space power spectrum. In this section, starting with the
exact expression (4), we derive nonlinear corrections,
which are relevant to explain the modulation of acoustic
features in redshift space.
First recall that the expression (4) is written in the form

PðSÞðk;"Þ ¼
Z

d3xeik)xhej1A1A2A3i; (13)

where the quantities j1, Ai (i ¼ 1, 2, 3) are, respectively,
given by

j1 ¼ #ik"f; A1 ¼ uzðrÞ # uzðr0Þ;
A2 ¼ #ðrÞ þ frzuzðrÞ; A3 ¼ #ðr0Þ þ frzuzðr0Þ:

We shall rewrite the ensemble average hej1A1A2A3i in terms
of cumulants. To do this, we use the relation between the
cumulant and moment generating functions. For the sto-
chastic vector field A ¼ fA1; A2; A3g, we have (e.g.,
[29,42])

hej)Ai ¼ expfhej)Aicg (14)

with j being an arbitrary constant vector, j ¼ fj1; j2; j3g.
Taking the derivative twice with respect to j2 and j3, we
then set j2 ¼ j3 ¼ 0. We obtain [42]

hej1A1A2A3i ¼ expfhej1A1icg½hej1A1A2A3ic
þ hej1A1A2ichej1A1A3ic&: (15)

Substituting this into Eq. (13), we arrive at

PðSÞðk;"Þ ¼
Z

d3xeik)x expfhej1A1icg½hej1A1A2A3ic

þ hej1A1A2ichej1A1A3ic&: (16)

This expression clearly reveals the coupling between den-
sity and velocity fields associated with the Kaiser and
Finger-of-God effects. In addition to the prefactor
expfhej1A1icg, the ensemble averages over the quantities
A2 and A3 responsible for the Kaiser effect all include
the exponential factor ej1A1 , which can produce a non-
negligible correlation between density and velocity.
Comparing Eq. (16) with the expression (9) with (10)

and (11), we deduce that the phenomenological models
discussed in Sec. III B miss something important and are
derived based on several assumptions or treatments:

FIG. 3 (color online). Redshift evolution of velocity dispersion
!v determined by fitting the predictions of monopole and
quadrupole power spectra to the N-body results. The solid line
represents the linear-theory prediction, while the symbols indi-
cate the results obtained by fitting the models of redshift dis-
tortion with various choices of Kaiser and damping terms (see
Fig. 2).
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z ¼ 3 is reached at k" 0:47h Mpc#1, outside the plot
range. We basically use this criterion to determine !v,
and fit the predictions of both the monopole and quadru-
pole spectra to the N-body results in the range 0 $ k $
k1%.

Since we allow !v to vary as a free parameter, the
overall behavior of the model predictions reproduces the
N-body results, and the differences between model predic-
tions are basically small compared to the results in the PT
description. However, there still exist small but non-
negligible discrepancies between N-body results and
model predictions, which are statistically significant, and
are comparable to or exceed the expected errors in upcom-
ing BAO measurements [34]. Although the agreement is
somehow improved when we adopt the nonlinear model of
PKaiser, there still remain discrepancies of a few % in
monopole and 5% in quadrupole moments of the power
spectrum amplitudes. These are irrespective of the choice
of damping function DFoG.

Furthermore, the fitted results of !v show a somewhat
peculiar behavior. Figure 3 plots the fitted values of !v as a
function of redshift (symbols), which significantly deviate
from the linear-theory prediction (solid line) at increasing
redshifts. At z ¼ 3, the fitted result eventually approaches
zero in order to minimize the residuals in fitting the pre-
diction to simulations. This could happen when we account
for a slight damping at low k and a small enhancement at
high k in power spectrum amplitudes. The fitted results of
!v are in contrast with naive expectations and indicate that
the model based on the expression (9) misses something
important and needs to be reconsidered.

IV. IMPROVED MODEL PREDICTION

A. Derivation

The comparison in the previous section reveals that even
in the models with a fitting parameter, a small but non-
negligible discrepancy appears at the scales of BAOs,
where the choice of the damping function DFoG½x& does
not sensitively affect the predictions. This implies that
there exist missing terms arising from the nonlinear
mode coupling between density and velocity fields, and
those corrections alter the acoustic feature in the redshift-
space power spectrum. In this section, starting with the
exact expression (4), we derive nonlinear corrections,
which are relevant to explain the modulation of acoustic
features in redshift space.
First recall that the expression (4) is written in the form

PðSÞðk;"Þ ¼
Z

d3xeik)xhej1A1A2A3i; (13)

where the quantities j1, Ai (i ¼ 1, 2, 3) are, respectively,
given by

j1 ¼ #ik"f; A1 ¼ uzðrÞ # uzðr0Þ;
A2 ¼ #ðrÞ þ frzuzðrÞ; A3 ¼ #ðr0Þ þ frzuzðr0Þ:

We shall rewrite the ensemble average hej1A1A2A3i in terms
of cumulants. To do this, we use the relation between the
cumulant and moment generating functions. For the sto-
chastic vector field A ¼ fA1; A2; A3g, we have (e.g.,
[29,42])

hej)Ai ¼ expfhej)Aicg (14)

with j being an arbitrary constant vector, j ¼ fj1; j2; j3g.
Taking the derivative twice with respect to j2 and j3, we
then set j2 ¼ j3 ¼ 0. We obtain [42]

hej1A1A2A3i ¼ expfhej1A1icg½hej1A1A2A3ic
þ hej1A1A2ichej1A1A3ic&: (15)

Substituting this into Eq. (13), we arrive at

PðSÞðk;"Þ ¼
Z

d3xeik)x expfhej1A1icg½hej1A1A2A3ic

þ hej1A1A2ichej1A1A3ic&: (16)

This expression clearly reveals the coupling between den-
sity and velocity fields associated with the Kaiser and
Finger-of-God effects. In addition to the prefactor
expfhej1A1icg, the ensemble averages over the quantities
A2 and A3 responsible for the Kaiser effect all include
the exponential factor ej1A1 , which can produce a non-
negligible correlation between density and velocity.
Comparing Eq. (16) with the expression (9) with (10)

and (11), we deduce that the phenomenological models
discussed in Sec. III B miss something important and are
derived based on several assumptions or treatments:

FIG. 3 (color online). Redshift evolution of velocity dispersion
!v determined by fitting the predictions of monopole and
quadrupole power spectra to the N-body results. The solid line
represents the linear-theory prediction, while the symbols indi-
cate the results obtained by fitting the models of redshift dis-
tortion with various choices of Kaiser and damping terms (see
Fig. 2).
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z ¼ 3 is reached at k" 0:47h Mpc#1, outside the plot
range. We basically use this criterion to determine !v,
and fit the predictions of both the monopole and quadru-
pole spectra to the N-body results in the range 0 $ k $
k1%.

Since we allow !v to vary as a free parameter, the
overall behavior of the model predictions reproduces the
N-body results, and the differences between model predic-
tions are basically small compared to the results in the PT
description. However, there still exist small but non-
negligible discrepancies between N-body results and
model predictions, which are statistically significant, and
are comparable to or exceed the expected errors in upcom-
ing BAO measurements [34]. Although the agreement is
somehow improved when we adopt the nonlinear model of
PKaiser, there still remain discrepancies of a few % in
monopole and 5% in quadrupole moments of the power
spectrum amplitudes. These are irrespective of the choice
of damping function DFoG.

Furthermore, the fitted results of !v show a somewhat
peculiar behavior. Figure 3 plots the fitted values of !v as a
function of redshift (symbols), which significantly deviate
from the linear-theory prediction (solid line) at increasing
redshifts. At z ¼ 3, the fitted result eventually approaches
zero in order to minimize the residuals in fitting the pre-
diction to simulations. This could happen when we account
for a slight damping at low k and a small enhancement at
high k in power spectrum amplitudes. The fitted results of
!v are in contrast with naive expectations and indicate that
the model based on the expression (9) misses something
important and needs to be reconsidered.

IV. IMPROVED MODEL PREDICTION

A. Derivation

The comparison in the previous section reveals that even
in the models with a fitting parameter, a small but non-
negligible discrepancy appears at the scales of BAOs,
where the choice of the damping function DFoG½x& does
not sensitively affect the predictions. This implies that
there exist missing terms arising from the nonlinear
mode coupling between density and velocity fields, and
those corrections alter the acoustic feature in the redshift-
space power spectrum. In this section, starting with the
exact expression (4), we derive nonlinear corrections,
which are relevant to explain the modulation of acoustic
features in redshift space.
First recall that the expression (4) is written in the form

PðSÞðk;"Þ ¼
Z

d3xeik)xhej1A1A2A3i; (13)

where the quantities j1, Ai (i ¼ 1, 2, 3) are, respectively,
given by

j1 ¼ #ik"f; A1 ¼ uzðrÞ # uzðr0Þ;
A2 ¼ #ðrÞ þ frzuzðrÞ; A3 ¼ #ðr0Þ þ frzuzðr0Þ:

We shall rewrite the ensemble average hej1A1A2A3i in terms
of cumulants. To do this, we use the relation between the
cumulant and moment generating functions. For the sto-
chastic vector field A ¼ fA1; A2; A3g, we have (e.g.,
[29,42])

hej)Ai ¼ expfhej)Aicg (14)

with j being an arbitrary constant vector, j ¼ fj1; j2; j3g.
Taking the derivative twice with respect to j2 and j3, we
then set j2 ¼ j3 ¼ 0. We obtain [42]

hej1A1A2A3i ¼ expfhej1A1icg½hej1A1A2A3ic
þ hej1A1A2ichej1A1A3ic&: (15)

Substituting this into Eq. (13), we arrive at

PðSÞðk;"Þ ¼
Z

d3xeik)x expfhej1A1icg½hej1A1A2A3ic

þ hej1A1A2ichej1A1A3ic&: (16)

This expression clearly reveals the coupling between den-
sity and velocity fields associated with the Kaiser and
Finger-of-God effects. In addition to the prefactor
expfhej1A1icg, the ensemble averages over the quantities
A2 and A3 responsible for the Kaiser effect all include
the exponential factor ej1A1 , which can produce a non-
negligible correlation between density and velocity.
Comparing Eq. (16) with the expression (9) with (10)

and (11), we deduce that the phenomenological models
discussed in Sec. III B miss something important and are
derived based on several assumptions or treatments:

FIG. 3 (color online). Redshift evolution of velocity dispersion
!v determined by fitting the predictions of monopole and
quadrupole power spectra to the N-body results. The solid line
represents the linear-theory prediction, while the symbols indi-
cate the results obtained by fitting the models of redshift dis-
tortion with various choices of Kaiser and damping terms (see
Fig. 2).
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z ¼ 3 is reached at k" 0:47h Mpc#1, outside the plot
range. We basically use this criterion to determine !v,
and fit the predictions of both the monopole and quadru-
pole spectra to the N-body results in the range 0 $ k $
k1%.

Since we allow !v to vary as a free parameter, the
overall behavior of the model predictions reproduces the
N-body results, and the differences between model predic-
tions are basically small compared to the results in the PT
description. However, there still exist small but non-
negligible discrepancies between N-body results and
model predictions, which are statistically significant, and
are comparable to or exceed the expected errors in upcom-
ing BAO measurements [34]. Although the agreement is
somehow improved when we adopt the nonlinear model of
PKaiser, there still remain discrepancies of a few % in
monopole and 5% in quadrupole moments of the power
spectrum amplitudes. These are irrespective of the choice
of damping function DFoG.

Furthermore, the fitted results of !v show a somewhat
peculiar behavior. Figure 3 plots the fitted values of !v as a
function of redshift (symbols), which significantly deviate
from the linear-theory prediction (solid line) at increasing
redshifts. At z ¼ 3, the fitted result eventually approaches
zero in order to minimize the residuals in fitting the pre-
diction to simulations. This could happen when we account
for a slight damping at low k and a small enhancement at
high k in power spectrum amplitudes. The fitted results of
!v are in contrast with naive expectations and indicate that
the model based on the expression (9) misses something
important and needs to be reconsidered.

IV. IMPROVED MODEL PREDICTION

A. Derivation

The comparison in the previous section reveals that even
in the models with a fitting parameter, a small but non-
negligible discrepancy appears at the scales of BAOs,
where the choice of the damping function DFoG½x& does
not sensitively affect the predictions. This implies that
there exist missing terms arising from the nonlinear
mode coupling between density and velocity fields, and
those corrections alter the acoustic feature in the redshift-
space power spectrum. In this section, starting with the
exact expression (4), we derive nonlinear corrections,
which are relevant to explain the modulation of acoustic
features in redshift space.
First recall that the expression (4) is written in the form

PðSÞðk;"Þ ¼
Z

d3xeik)xhej1A1A2A3i; (13)

where the quantities j1, Ai (i ¼ 1, 2, 3) are, respectively,
given by

j1 ¼ #ik"f; A1 ¼ uzðrÞ # uzðr0Þ;
A2 ¼ #ðrÞ þ frzuzðrÞ; A3 ¼ #ðr0Þ þ frzuzðr0Þ:

We shall rewrite the ensemble average hej1A1A2A3i in terms
of cumulants. To do this, we use the relation between the
cumulant and moment generating functions. For the sto-
chastic vector field A ¼ fA1; A2; A3g, we have (e.g.,
[29,42])

hej)Ai ¼ expfhej)Aicg (14)

with j being an arbitrary constant vector, j ¼ fj1; j2; j3g.
Taking the derivative twice with respect to j2 and j3, we
then set j2 ¼ j3 ¼ 0. We obtain [42]

hej1A1A2A3i ¼ expfhej1A1icg½hej1A1A2A3ic
þ hej1A1A2ichej1A1A3ic&: (15)

Substituting this into Eq. (13), we arrive at

PðSÞðk;"Þ ¼
Z

d3xeik)x expfhej1A1icg½hej1A1A2A3ic

þ hej1A1A2ichej1A1A3ic&: (16)

This expression clearly reveals the coupling between den-
sity and velocity fields associated with the Kaiser and
Finger-of-God effects. In addition to the prefactor
expfhej1A1icg, the ensemble averages over the quantities
A2 and A3 responsible for the Kaiser effect all include
the exponential factor ej1A1 , which can produce a non-
negligible correlation between density and velocity.
Comparing Eq. (16) with the expression (9) with (10)

and (11), we deduce that the phenomenological models
discussed in Sec. III B miss something important and are
derived based on several assumptions or treatments:

FIG. 3 (color online). Redshift evolution of velocity dispersion
!v determined by fitting the predictions of monopole and
quadrupole power spectra to the N-body results. The solid line
represents the linear-theory prediction, while the symbols indi-
cate the results obtained by fitting the models of redshift dis-
tortion with various choices of Kaiser and damping terms (see
Fig. 2).
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ignoring 
spatial correlation

P (S)(k, µ) = e�(kµ ⌅v)2
�
P��(k)� 2 µ2 P�⇥(k) + µ4 P⇥⇥(k)

⇥
D[kµ f �v]

e.g., Scoccimarro (’04)

+

�v : 1D velocity dispersion (fitting parameter)

Similar forms have been frequently used in the last two decades
(Fisher et al. ’93, Peacock & Dodds ’94, Cole et al. ’95,  ...)



Comparison with simulations

Here, the spectra P!!, P"", and P!" denote the auto power
spectra of density and velocity divergence, and their cross
power spectrum, respectively. The velocity divergence " is
defined by " ! ru ¼ #rv=ðaHfÞ.2

On the other hand, the functional form of the damping
term can be basically modeled from the distribution func-
tion of one-dimensional velocity. Historically, it is charac-
terized by a Gaussian or exponential function (e.g., [51–
54]), which leads to

DFoG½x' ¼
!
expð#x2Þ Gaussian;
1=ð1þ x2Þ Lorentzian:

(11)

Note that there is an analogous expression for the expo-
nential distribution, i.e., DFoG½x' ¼ 1=ð1þ x2=2Þ2 [50],
but the resultant power spectrum is quite similar to the
one adopting the Lorentzian form for the range of our
interest, x & 1. Since the Finger-of-God effect is thought
to be a fully nonlinear effect, which mostly comes from the
virialized random motion of the mass (or galaxy) residing
in a halo, the prediction of #v seems rather difficult. Our
primary purpose is to model the shape and structure of the

acoustic feature in the power spectrum, and the precise
form of the damping is basically irrelevant. We thus regard
#v as a free parameter and determine it by fitting the
predictions to the simulations or observations.
Figure 2 compares the phenomenological models of

redshift distortion with combination of Eqs. (10) and (11)
with N-body simulations. In computing the redshift-space
power spectrum from the phenomenological models, we
adopt the improved PT treatment by Refs. [33,34], and the
analytic results including the corrections up to the second-
order Born approximation are used to obtain the three
different power spectra P!!, P!", and P"". The accuracy
of the improved PT treatment has been checked in detail by
Ref. [34], and it has been shown that the predictions of P!!

reproduce the N-body results quite well within 1% accu-
racy below the wave number k1%, indicated by the vertical
arrows in Fig. 2. This has been calibrated from a proper
comparison between N-body and PT results and is empiri-
cally characterized by solving the following equa-
tion [25,34]:

k21%
6$2

Z k1%

0
dqPlinðq; zÞ ¼ C (12)

with C ¼ 0:7 and Plin being the linear matter spectrum.
Note that the 1% accuracy of the improved PT prediction at

FIG. 2 (color online). Same as in Fig. 1, but here we plot the results of phenomenological model predictions. The three different
predictions depicted as solid, dashed, dot-dashed lines are based on the phenomenological model of redshift distortion (9) with various
choices of Kaiser and Finger-of-God terms [Eqs. (10) and (11)]. The left panel shows the monopole power spectra (‘ ¼ 0), and the
right panel shows the quadrupole spectra (‘ ¼ 2). In all cases, the one-dimensional velocity dispersion #v was determined by fitting
the predictions to the N-body simulations. In each panel, the vertical arrows indicate the maximum wave number k1% for improved PT
prediction including up to the second-order Born approximation [see Eq. (12) for a definition].

2The sign convention of the definition of velocity divergence "
differs from that of Refs. [33,34], but is equivalent to the one in
Refs. [26–28,42].
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Fitted results of sigma_v

z ¼ 3 is reached at k" 0:47h Mpc#1, outside the plot
range. We basically use this criterion to determine !v,
and fit the predictions of both the monopole and quadru-
pole spectra to the N-body results in the range 0 $ k $
k1%.

Since we allow !v to vary as a free parameter, the
overall behavior of the model predictions reproduces the
N-body results, and the differences between model predic-
tions are basically small compared to the results in the PT
description. However, there still exist small but non-
negligible discrepancies between N-body results and
model predictions, which are statistically significant, and
are comparable to or exceed the expected errors in upcom-
ing BAO measurements [34]. Although the agreement is
somehow improved when we adopt the nonlinear model of
PKaiser, there still remain discrepancies of a few % in
monopole and 5% in quadrupole moments of the power
spectrum amplitudes. These are irrespective of the choice
of damping function DFoG.

Furthermore, the fitted results of !v show a somewhat
peculiar behavior. Figure 3 plots the fitted values of !v as a
function of redshift (symbols), which significantly deviate
from the linear-theory prediction (solid line) at increasing
redshifts. At z ¼ 3, the fitted result eventually approaches
zero in order to minimize the residuals in fitting the pre-
diction to simulations. This could happen when we account
for a slight damping at low k and a small enhancement at
high k in power spectrum amplitudes. The fitted results of
!v are in contrast with naive expectations and indicate that
the model based on the expression (9) misses something
important and needs to be reconsidered.

IV. IMPROVED MODEL PREDICTION

A. Derivation

The comparison in the previous section reveals that even
in the models with a fitting parameter, a small but non-
negligible discrepancy appears at the scales of BAOs,
where the choice of the damping function DFoG½x& does
not sensitively affect the predictions. This implies that
there exist missing terms arising from the nonlinear
mode coupling between density and velocity fields, and
those corrections alter the acoustic feature in the redshift-
space power spectrum. In this section, starting with the
exact expression (4), we derive nonlinear corrections,
which are relevant to explain the modulation of acoustic
features in redshift space.
First recall that the expression (4) is written in the form

PðSÞðk;"Þ ¼
Z

d3xeik)xhej1A1A2A3i; (13)

where the quantities j1, Ai (i ¼ 1, 2, 3) are, respectively,
given by

j1 ¼ #ik"f; A1 ¼ uzðrÞ # uzðr0Þ;
A2 ¼ #ðrÞ þ frzuzðrÞ; A3 ¼ #ðr0Þ þ frzuzðr0Þ:

We shall rewrite the ensemble average hej1A1A2A3i in terms
of cumulants. To do this, we use the relation between the
cumulant and moment generating functions. For the sto-
chastic vector field A ¼ fA1; A2; A3g, we have (e.g.,
[29,42])

hej)Ai ¼ expfhej)Aicg (14)

with j being an arbitrary constant vector, j ¼ fj1; j2; j3g.
Taking the derivative twice with respect to j2 and j3, we
then set j2 ¼ j3 ¼ 0. We obtain [42]

hej1A1A2A3i ¼ expfhej1A1icg½hej1A1A2A3ic
þ hej1A1A2ichej1A1A3ic&: (15)

Substituting this into Eq. (13), we arrive at

PðSÞðk;"Þ ¼
Z

d3xeik)x expfhej1A1icg½hej1A1A2A3ic

þ hej1A1A2ichej1A1A3ic&: (16)

This expression clearly reveals the coupling between den-
sity and velocity fields associated with the Kaiser and
Finger-of-God effects. In addition to the prefactor
expfhej1A1icg, the ensemble averages over the quantities
A2 and A3 responsible for the Kaiser effect all include
the exponential factor ej1A1 , which can produce a non-
negligible correlation between density and velocity.
Comparing Eq. (16) with the expression (9) with (10)

and (11), we deduce that the phenomenological models
discussed in Sec. III B miss something important and are
derived based on several assumptions or treatments:

FIG. 3 (color online). Redshift evolution of velocity dispersion
!v determined by fitting the predictions of monopole and
quadrupole power spectra to the N-body results. The solid line
represents the linear-theory prediction, while the symbols indi-
cate the results obtained by fitting the models of redshift dis-
tortion with various choices of Kaiser and damping terms (see
Fig. 2).
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overall behavior of the model predictions reproduces the
N-body results, and the differences between model predic-
tions are basically small compared to the results in the PT
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PKaiser, there still remain discrepancies of a few % in
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spectrum amplitudes. These are irrespective of the choice
of damping function DFoG.

Furthermore, the fitted results of !v show a somewhat
peculiar behavior. Figure 3 plots the fitted values of !v as a
function of redshift (symbols), which significantly deviate
from the linear-theory prediction (solid line) at increasing
redshifts. At z ¼ 3, the fitted result eventually approaches
zero in order to minimize the residuals in fitting the pre-
diction to simulations. This could happen when we account
for a slight damping at low k and a small enhancement at
high k in power spectrum amplitudes. The fitted results of
!v are in contrast with naive expectations and indicate that
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spectrum amplitudes. These are irrespective of the choice
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there exist missing terms arising from the nonlinear
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which are relevant to explain the modulation of acoustic
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We shall rewrite the ensemble average hej1A1A2A3i in terms
of cumulants. To do this, we use the relation between the
cumulant and moment generating functions. For the sto-
chastic vector field A ¼ fA1; A2; A3g, we have (e.g.,
[29,42])
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with j being an arbitrary constant vector, j ¼ fj1; j2; j3g.
Taking the derivative twice with respect to j2 and j3, we
then set j2 ¼ j3 ¼ 0. We obtain [42]
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Substituting this into Eq. (13), we arrive at
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þ hej1A1A2ichej1A1A3ic&: (16)

This expression clearly reveals the coupling between den-
sity and velocity fields associated with the Kaiser and
Finger-of-God effects. In addition to the prefactor
expfhej1A1icg, the ensemble averages over the quantities
A2 and A3 responsible for the Kaiser effect all include
the exponential factor ej1A1 , which can produce a non-
negligible correlation between density and velocity.
Comparing Eq. (16) with the expression (9) with (10)

and (11), we deduce that the phenomenological models
discussed in Sec. III B miss something important and are
derived based on several assumptions or treatments:

FIG. 3 (color online). Redshift evolution of velocity dispersion
!v determined by fitting the predictions of monopole and
quadrupole power spectra to the N-body results. The solid line
represents the linear-theory prediction, while the symbols indi-
cate the results obtained by fitting the models of redshift dis-
tortion with various choices of Kaiser and damping terms (see
Fig. 2).
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(i) In the integrand of Eq. (16), while taking the limit
j1 ! 0 in the bracket, we keep j1 ! 0 in the expo-
nent of the prefactor.

(ii) For cumulants hAn
1ic ¼ h½uzðrÞ % uzðr0Þ&nic of any

integer value n, the spatial correlations between
different positions are ignored, and the nonvanish-
ing cumulants are assumed to be expressed as
hAn

1ic ’ 2hunz ic ¼ 2cn!
n
v for even n, with cn being

constants.
(iii) To further obtain the Gaussian or Lorentzian forms

of the damping function DFoG½x&, we assume that
the conditions, cn ¼ 0 except for c2 ¼ 1, or, c2n ¼
ð2n% 1Þ! and c2n%1 ¼ 0, are fulfilled.

In the above, the last two conditions play a role for
specifying the damping function, and they mainly affect
the broadband shape of the power spectrum. On the other
hand, the first condition leads to the expression of
PKaiserðkÞ, which can add the most dominant contribution
to the acoustic feature in the power spectrum. Since the
choice of the damping function (11) is presumably a minor
source for discrepancies between the model predictions
and simulations, taking the limit j1 ! 0 in the bracket
would be the main reason for discrepancy. In this respect,
the terms involving the exponential factor can produce
additional contributions to the spectrum PKaiserðkÞ, which
are responsible for explaining the modulated acoustic peak
and trough structure in redshift space.

Let us now derive the corrections to PKaiserðkÞ. To do
this, we keep the last two conditions, and perturbatively
treat the terms inside the bracket of Eq. (16). This treat-
ment is reasonable, because the modification of acoustic
features should be small for relevant scales of BAOs. On
the other hand, the factor expfhej1A1icg is most likely
affected by the virialized random motion of the mass
around halos, and seems difficult to treat perturbatively.
Here, regarding the quantity j1 as a small expansion pa-
rameter, we perturbatively expand the terms in the bracket
of the integrand. Up to the second order in j1, we have

hej1A1A2A3ic þ hej1A1A2ichej1A1A3ic
’ hA2A3iþ j1hA1A2A3ic

þ j21f12hA2
1A2A3ic þ hA1A2ichA1A3icgþOðj31Þ: (17)

In the above, the term hA2
1A2A3ic turns out to be higher

order when we explicitly compute it employing the pertur-
bation theory calculation, and is roughly proportional to
OðP3

linÞ. We thus drop the higher-order contribution, and
collect the leading and next-to-leading order contributions.
Then, Eq. (16) can be recast as

PðSÞðk;"Þ ¼ DFoG½k"f!v&fP##ðkÞ þ 2f"2P#$ðkÞ
þ f2"4P$$ðkÞ þ Aðk;"Þ þ Bðk;"Þg: (18)

Here, we replaced the exponential prefactor expfhej1A1icg
with the damping function DFoG. The corrections A and B

are, respectively, given by

Aðk;"Þ ¼ j1
Z

d3xeik(xhA1A2A3ic;

Bðk;"Þ ¼ j21
Z

d3xeik(xhA1A2ichA1A3ic:

In terms of the basic quantities of density # and velocity
divergence $ ¼ %rv=ðaHfÞ, they are rewritten as

Aðk;"Þ ¼ ðk"fÞ
Z d3p

ð2%Þ3
pz

p2 fB!ðp; k% p;%kÞ

% B!ðp; k;%k% pÞg; (19)

Bðk;"Þ ¼ ðk"fÞ2
Z d3p

ð2%Þ3 FðpÞFðk% pÞ; (20)

FðpÞ ¼ pz

p2

!
P#$ðpÞ þ f

p2
z

p2 P$$ðpÞ
"
;

where the function B! is the cross bispectra defined by

#
$ðk1Þ

!
#ðk2Þ þ f

k22z
k22

$ðk2Þ
"!
#ðk3Þ þ f

k23z
k23

$ðk3Þ
"$

¼ ð2%Þ3#Dðk1 þ k2 þ k3ÞB!ðk1; k2;k3Þ: (21)

In deriving the expression (18), while we employed the
low-k expansion, we do not assume that the terms Ai

themselves are entirely small. In this sense, the expressions
(18)–(20) still have some nonperturbative properties,
although the new corrections A and B neglected in the
previous phenomenological models are expected to be
small, and can be treated perturbatively. In Appendix A,
based on the standard PT treatment, we summarize the
perturbative expressions for the corrections (19) and (20),
in which the three-dimensional integrals are reduced to the
sum of one- and two-dimensional integrals.
To see the significance of the newly derived terms A and

B, we evaluate the monopole and quadrupole contributions
to the functions defined by

PðSÞ
‘;corrðkÞ )

2‘þ 1

2

Z 1

%1
d"DFoGðk"f!vÞf

Aðk;"Þ
Bðk;"Þ g:

(22)

The results are then plotted in Fig. 4, divided by the

smoothed reference spectrum, PðSÞ
‘;no-wiggleðkÞ. In plotting

the results, we specifically assume the Gaussian form
of DFoG, and adopt the linear theory to estimate !v [see
Eq. (7)].
The corrections coming from the A term show oscilla-

tory behavior and tend to have a larger amplitude than
those from the B term. While the corrections from the B
term are basically smooth and small, they still yield a non-
negligible contribution, especially for the quadrupole
power spectrum. Although the actual contributions of these
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nent of the prefactor.
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1ic ¼ h½uzðrÞ % uzðr0Þ&nic of any

integer value n, the spatial correlations between
different positions are ignored, and the nonvanish-
ing cumulants are assumed to be expressed as
hAn

1ic ’ 2hunz ic ¼ 2cn!
n
v for even n, with cn being

constants.
(iii) To further obtain the Gaussian or Lorentzian forms

of the damping function DFoG½x&, we assume that
the conditions, cn ¼ 0 except for c2 ¼ 1, or, c2n ¼
ð2n% 1Þ! and c2n%1 ¼ 0, are fulfilled.

In the above, the last two conditions play a role for
specifying the damping function, and they mainly affect
the broadband shape of the power spectrum. On the other
hand, the first condition leads to the expression of
PKaiserðkÞ, which can add the most dominant contribution
to the acoustic feature in the power spectrum. Since the
choice of the damping function (11) is presumably a minor
source for discrepancies between the model predictions
and simulations, taking the limit j1 ! 0 in the bracket
would be the main reason for discrepancy. In this respect,
the terms involving the exponential factor can produce
additional contributions to the spectrum PKaiserðkÞ, which
are responsible for explaining the modulated acoustic peak
and trough structure in redshift space.

Let us now derive the corrections to PKaiserðkÞ. To do
this, we keep the last two conditions, and perturbatively
treat the terms inside the bracket of Eq. (16). This treat-
ment is reasonable, because the modification of acoustic
features should be small for relevant scales of BAOs. On
the other hand, the factor expfhej1A1icg is most likely
affected by the virialized random motion of the mass
around halos, and seems difficult to treat perturbatively.
Here, regarding the quantity j1 as a small expansion pa-
rameter, we perturbatively expand the terms in the bracket
of the integrand. Up to the second order in j1, we have
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order when we explicitly compute it employing the pertur-
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linÞ. We thus drop the higher-order contribution, and
collect the leading and next-to-leading order contributions.
Then, Eq. (16) can be recast as
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Here, we replaced the exponential prefactor expfhej1A1icg
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are, respectively, given by
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In deriving the expression (18), while we employed the
low-k expansion, we do not assume that the terms Ai

themselves are entirely small. In this sense, the expressions
(18)–(20) still have some nonperturbative properties,
although the new corrections A and B neglected in the
previous phenomenological models are expected to be
small, and can be treated perturbatively. In Appendix A,
based on the standard PT treatment, we summarize the
perturbative expressions for the corrections (19) and (20),
in which the three-dimensional integrals are reduced to the
sum of one- and two-dimensional integrals.
To see the significance of the newly derived terms A and
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tory behavior and tend to have a larger amplitude than
those from the B term. While the corrections from the B
term are basically smooth and small, they still yield a non-
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to the acoustic feature in the power spectrum. Since the
choice of the damping function (11) is presumably a minor
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and simulations, taking the limit j1 ! 0 in the bracket
would be the main reason for discrepancy. In this respect,
the terms involving the exponential factor can produce
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ment is reasonable, because the modification of acoustic
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in which the three-dimensional integrals are reduced to the
sum of one- and two-dimensional integrals.
To see the significance of the newly derived terms A and

B, we evaluate the monopole and quadrupole contributions
to the functions defined by

PðSÞ
‘;corrðkÞ )

2‘þ 1

2

Z 1

%1
d"DFoGðk"f!vÞf

Aðk;"Þ
Bðk;"Þ g:

(22)

The results are then plotted in Fig. 4, divided by the

smoothed reference spectrum, PðSÞ
‘;no-wiggleðkÞ. In plotting

the results, we specifically assume the Gaussian form
of DFoG, and adopt the linear theory to estimate !v [see
Eq. (7)].
The corrections coming from the A term show oscilla-

tory behavior and tend to have a larger amplitude than
those from the B term. While the corrections from the B
term are basically smooth and small, they still yield a non-
negligible contribution, especially for the quadrupole
power spectrum. Although the actual contributions of these
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FIG. 7: The ratio of power spectra obtained from N -body simulations to those from the theoretical model.
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FIG. 6: Left: Same as in Fig. 1, but the scale-dependent coefficient of the D term at z = 1 is plotted (D2: magenta, D4: cyan,
D6: green, D8: yellow). For reference, the power spectra Pδδ, Pδθ, and Pθθ computed from RegPT are also shown. Right:

Ratio of power spectra to smoothed reference spectra in redshift space, P (S)
ℓ (k)/P (S)

ℓ,no-wiggle(k) for the various prescriptions.
The results at z = 1 are specifically shown.

In order to elucidate the potential systematics, we measure the redshift-space power spectrum in (k, µ) space, and
divide it by the PT prediction in the following way:

PN-body(k, µ)
PKaiser(k, µ) + A(k, µ) + B(k, µ) + D(k, µ)

(37)

In Fig. 7, the results at z = 1 are then plotted as the function of the single variable, kµ. The color scales represent
the contributions from the different wavenumbers. The plotted results are the residual contributions of the RSD that
is not described by the PT treatment. Compared to the case ignoring the correction terms (left panel), the residuals
shown in the middle and right panels are mostly characterized by the single-valued function of kµ, and within the
plotted range, they are well described by the Gaussian damping function, e−(kµ)2f2σ2

v (solid lines). This is indeed
what we expect from the previous section. A closer look at these residuals, however, exhibits a systematic trend.
That is, the residual at low-k part appears above the mean Gaussian damping function, whie the high-k contribution
mostly lies at the lower part of the damping function. These trends might be related to the inaccuracy of the model
prediction or inconsistency of the model assumption.

VI. CONCLUSION
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and the simulation output (z = 0.35). Taking into this
difference, we effectively constrain the combination

αv =
(fσ8)(z = 0.3)

(fσ8)fid(z = 0.35)
, (6)

through the MCMC analysis. Here and hereafter, vari-
ables with a subscript “fid” refer to those assumed in the
simulations or used in the redshift-distance relation when
the power spectrum is measured. Strictly speaking, what
we measure through αv is not the amplitude of the linear
velocity perturbations but is contaminated by nonlinear-
ity of the velocity field: not only the Kaiser enhance-
ment effect whose amplitude we wish to constrain, but
also the Fingers-of-God effect is amplified/suppressed by
a change in the parameter αv. We address this issue
in what follows by adopting several different maximum
wavenumbers taken into the analysis.
By contrast, the AP distortion induced to the simula-

tions with our procedure is exact within the validity of
the distant observer approximation. With a help of the
BAO feature clearly visible in the observed spectrum, we
can conduct a geometrical test. The parameter α∥ is re-
lated to the comoving distance along the line of sight,
and thus reflects the ratio of the Hubble parameter be-
tween the true unknown cosmology and the one assumed
when we convert the redshifts into comoving distances.
In addition, the parameter α∥ depends on the acoustic
horizon scale at the baryon drag epoch [109], since the
true acoustic scale might be different from the one re-
alized in the simulations. We denote the acoustic scale
at the drag epoch by rs, and compute it with the CAMB

code. Indeed, this quantity computed for our fiducial cos-
mological model is larger than that for the PLANCK cos-
mology by about 5% when measured in units of h−1Mpc
(this difference mainly comes from the difference in h; see
Table I). Taking this difference into account, we have

α∥ =
H(z)rs

Hfid(z)rs,fid
, (7)

at the effective redshift of the measured power spectrum,
z = 0.3. Similarly, the angular diameter distance, DA,
can be constrained through the parameter α⊥:

α⊥ =
DA,fid(z)rs
DA(z)rs,fid

, (8)

at z = 0.3.
We simultaneously vary αv, α∥ and α⊥ as well as

Mhost,min and Msub,min to find the best-fit parameter set
for Model 5. We discuss the robustness of the constraints
on the parameters for the mock LRGs when the cosmo-
logical assumptions are relaxed by comparing the results
of Model 2 and 5. Also, we show the derived cosmological
constraints and compare them with those in the litera-
ture to demonstrate the prospect of analyzing observa-
tional data with theoretical predictions from simulations
instead of analytical models.

IV. RESULTS

Now we are in position to show the results of the
MCMC analysis explained so far. We first discuss the
importance of the satellite population to model the
anisotropic clustering of LRGs by showing the results
of the fit with Models 1 and 2 in Sec. IVA. We then
compare the satellite fraction derived with Model 2 and
that with Models 3 and 4 where centrals and satellites
host mock LRGs with different criteria in Sec. IVB. We
further discuss the robustness of the results against cos-
mological uncertainties in Sec. IVC. Some cosmological
implications are given in Sec. IVD. We finally compare
the multiplicity function of our best-fit models with ob-
servation in Sec. IVE. The best-fit model parameters as
well as the goodness of fit are summarized in Table II.

A. Importance of satellites

Model 1

P0

P2

P4
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−200
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k [h Mpc−1]

k1.
5  P

l(k
)

FIG. 1: Best-fit power spectra against observation assuming
one-to-one correspondence between LRGs and halos (Model
1). Symbols show the observed multipoles of the power spec-
trum (open triangles: monopole, filled circles: quadrupole
and open diamonds: hexadecapole). The solid (dashed)
curves depict the result of Model 1a (b). Note that symbols
for the quadrupole (hexadecapole) moment are horizontally
offset by +0.0015 (−0.0015) to avoid overlap.

We start this section by showing the result of Model 1.
The best-fit multipoles of the power spectrum are shown
in Fig. 1 together with the observation. The results of
Model 1a and 1b are respectively plotted in solid and
dashed lines. It is clear from the figure that we cannot
simultaneously fit the three multipoles with the central
population alone. There exists a mismatch between the
observed and the model quadrupole at k >

∼ 0.1 hMpc−1.

セントラルのみ
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Next, the best-fit power spectrum of Model 4 is shown
in Fig. 6. Judging from the χ2

red listed in Table II, this
model gives a better fit than Model 2 and 3 (χ2

red = 0.865
and 0.830 for Model 4a and 4b, respectively). Although
the values themselves should be used with caution be-
cause we ignored the off-diagonal components of the co-
variance matrix, these values suggest a slight overfit to
the observational data. This might be explained as fol-
lows. In Model 4, central subhalos are randomly selected
with a probability pcen to host LRGs. Because of this
random process, the resultant multipole moments can be
different from one time to another even one employs ex-
actly the same model parameters. In other words, the
increased shot noise in the model spectrum, which is not
taken into account in the MCMC analysis, can sometimes
mimic the observed noise pattern by chance and reduce
the chi-squared statistics. Indeed, the best-fit multipoles
are less smooth than in previous figures because of this
effect.
The constraints on the model parameters are shown

in Fig. 7. Interestingly, the constraints in the Mhost,min-
Msub,min plane shown in the top-left panel is significantly
different from that in Model 2 (Figure 3): the minimum
host halo mass is smaller, and the minimum subhalo mass
is larger in Model 4. Because of the smaller host halo
mass, the number of centrals that pass the mass criterion
increases, but it is then reduced by random sampling.
The number of satellites is smaller because of a larger
Msub,min, and as a result, the mean number density of the
final mock LRGs are much smaller than in Model 2 (see
Table II). These differences might suggest two possible
different nature of LRGs inferred with Model 2 and with
Model 4. Nevertheless, looking at the bottom-right panel
of Fig. 7, the fraction of satellites is still high and is in
the range of 20 to 30%. This is broadly consistent with
the result of Model 2 shown in the right panel of Fig. 3.
Thus the anisotropic clustering on large scales serves as
a good probe of the fraction of satellites robustly against
different assumptions in the model.

C. Robustness of the parameters against
cosmological uncertainties

So far we have seen that the fraction of satellites is
an important ingredient to understand the anisotropic
clustering of LRGs in redshift space. The discussion so
far is, however, done keeping the underlying cosmological
model fixed to the one adopted in the simulations. We
relax the cosmological assumptions in this section, and
discuss the possibility of a simultaneous determination
with cosmological parameters. Here we focus on the con-
straints on the parameters that describe the connection
between LRGs and subhalos, and leave the cosmological
implications to the next section.
We first show in Fig. 8 the best-fit power spectrum of

Models 5a and 5b. Compared to the results of Model
2, the goodness of fit is improved (χ2

red = 1.18 → 0.93

Model 4
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FIG. 6: Same as in Fig. 1, but for Model 4.
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FIG. 7: Same as in Fig. 3, but for Model 4.

for Model a and 1.03 → 0.95 for Model b). Looking at
each of the three multipoles, we can see that most of
the improvement comes from the monopole moment (see
Table II). We discuss in more detail on this improvement
in the subsequent subsection.
The constraints on the parameters, Mhost,min and

Msub,min are shown in the left panel of Fig. 9. We also
show the result of Model 2 in dotted contour lines. Com-
pared to Model 2, the results are greatly altered in two
ways: first, the best-fit minimum masses are shifted to-
wards larger values and secondly the statistical uncer-
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FIG. 2: Ratio of power spectra to the smoothed reference spectra in redshift space, P (S)
ℓ (k)/P (S)

ℓ,no-wiggle(k). Left, middle,
and right panels respectively show the monopole (ℓ = 0), quadrupole (ℓ = 2) and hexadecapole (ℓ = 4) contributions to the
redshift-space power spectrum. N-body results are taken from the wmap5 simulations of Ref. [31]. The reference spectrum

P (S)
ℓ,no-wiggle is computed with the no-wiggle approximation of the linear transfer function, taking account of the linear theory

of the Kaiser effect. Long-dashed and solid lines respectively indicate the results based on the RegPT calculations at one-
and two-loop orders. Open and filled squares in middle and right panels are also obtained from the same calculation at one-
and two-loop orders, but taking account of the effect of discretization mimicking the power spectrum measurement in N -body
simulations (see text in detail).

and 1, 0243 particles. The cosmological parameters adopted in these N -body simulations are basically the same as in
the previous one, and are determined by the five-year WMAP observations [33] (see Table I). The initial conditions
were generated by the 2LPT code [34] with the initial redshift zinit = 15, and the results of 60 independent realizations
are stored at redshifts z = 3, 2, 1, and 0.35. The total volume of each output is 515h−3Gpc3.

We measure both the matter power spectrum and correlation function in redshift space, applying the distant-
observor approximation. For the power spectrum, we adopt the Cloud-in-Cells interpolation, and construct the
Fourier transform of the density field assigned on the 1, 0243 grids. As for the estimation of two-point correlation
function, we adopt the grid-based calculation using the Fast Fourier Transformation [35]. Similar to the power
spectrum analysis, we first compute the square of the density field on each grid of Fourier space. Then, applying
the inverse Fourier transformation, we take the average over realization, and finally obtain the two-point correlation
function. The implementation of this method, together with the convergence test, is presented in more detail in
Ref .[35].

B. Power spectrum

Before comparing the theoretical prediction with N -body simulations, we first look at each contribution of the terms
appeared in the model of RSD. In Fig. 1, for specific redshift z = 1, we plot the results for A and B terms. From
the expressions given in Eqs. (30) and (31), The A and B term can be expanded as A(k, µ) =

∑3
n A2n(k)µ2n and

B(k, µ) =
∑4

n B2n(k)µ2n, and we here plot the scale-dependent coefficients A2n and B2n multiplied by k3/2 (A2, B2:
magenta, A4, B4: cyan, A6, B6: green, B8: yellow). Dashed and solid lines respectively indicate the one- and two-
loop contributions to the redshift-space power spectrum. For A and B terms, we also plot the previous calculations
with standard PT in dotted lines. Compared with standard PT results, the amplitude of each power spectrum
corrections at two-loop order are slightly enhanced, and oscillatory feature originating from the BAOs is somewhat
smeared. This is indeed similar to what we saw in the real-space power spectrum. Fig. 1 apparently indicates that the
two-loop results of A term seem to eventually dominate the total power spectrum at small scales. However, this is not
indeed true. Because of the exponential cutoff generically appeared in the multi-point propagators, the amplitudes
of the A term as well as the B terms are suppressed at small scales, as similarly seen in the power spectra of density
and velocity fields. With this regularized UV property, a consistent prediction for correlation function is now made
possible, although, as a trade-off, the prediction of redshift-space power spectrum eventually becomes inappropriate
at some small scales.

Now, let us show the results of power spectrum. Fig. 2 plots the ratio of power spectra to the smooth reference

z=2

z=1

z=0.35
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FIG. 2: Ratio of power spectra to the smoothed reference spectra in redshift space, P (S)
ℓ (k)/P (S)

ℓ,no-wiggle(k). Left, middle,
and right panels respectively show the monopole (ℓ = 0), quadrupole (ℓ = 2) and hexadecapole (ℓ = 4) contributions to the
redshift-space power spectrum. N-body results are taken from the wmap5 simulations of Ref. [31]. The reference spectrum

P (S)
ℓ,no-wiggle is computed with the no-wiggle approximation of the linear transfer function, taking account of the linear theory

of the Kaiser effect. Long-dashed and solid lines respectively indicate the results based on the RegPT calculations at one-
and two-loop orders. Open and filled squares in middle and right panels are also obtained from the same calculation at one-
and two-loop orders, but taking account of the effect of discretization mimicking the power spectrum measurement in N -body
simulations (see text in detail).

and 1, 0243 particles. The cosmological parameters adopted in these N -body simulations are basically the same as in
the previous one, and are determined by the five-year WMAP observations [33] (see Table I). The initial conditions
were generated by the 2LPT code [34] with the initial redshift zinit = 15, and the results of 60 independent realizations
are stored at redshifts z = 3, 2, 1, and 0.35. The total volume of each output is 515h−3Gpc3.

We measure both the matter power spectrum and correlation function in redshift space, applying the distant-
observor approximation. For the power spectrum, we adopt the Cloud-in-Cells interpolation, and construct the
Fourier transform of the density field assigned on the 1, 0243 grids. As for the estimation of two-point correlation
function, we adopt the grid-based calculation using the Fast Fourier Transformation [35]. Similar to the power
spectrum analysis, we first compute the square of the density field on each grid of Fourier space. Then, applying
the inverse Fourier transformation, we take the average over realization, and finally obtain the two-point correlation
function. The implementation of this method, together with the convergence test, is presented in more detail in
Ref .[35].

B. Power spectrum

Before comparing the theoretical prediction with N -body simulations, we first look at each contribution of the terms
appeared in the model of RSD. In Fig. 1, for specific redshift z = 1, we plot the results for A and B terms. From
the expressions given in Eqs. (30) and (31), The A and B term can be expanded as A(k, µ) =

∑3
n A2n(k)µ2n and

B(k, µ) =
∑4

n B2n(k)µ2n, and we here plot the scale-dependent coefficients A2n and B2n multiplied by k3/2 (A2, B2:
magenta, A4, B4: cyan, A6, B6: green, B8: yellow). Dashed and solid lines respectively indicate the one- and two-
loop contributions to the redshift-space power spectrum. For A and B terms, we also plot the previous calculations
with standard PT in dotted lines. Compared with standard PT results, the amplitude of each power spectrum
corrections at two-loop order are slightly enhanced, and oscillatory feature originating from the BAOs is somewhat
smeared. This is indeed similar to what we saw in the real-space power spectrum. Fig. 1 apparently indicates that the
two-loop results of A term seem to eventually dominate the total power spectrum at small scales. However, this is not
indeed true. Because of the exponential cutoff generically appeared in the multi-point propagators, the amplitudes
of the A term as well as the B terms are suppressed at small scales, as similarly seen in the power spectra of density
and velocity fields. With this regularized UV property, a consistent prediction for correlation function is now made
possible, although, as a trade-off, the prediction of redshift-space power spectrum eventually becomes inappropriate
at some small scales.

Now, let us show the results of power spectrum. Fig. 2 plots the ratio of power spectra to the smooth reference
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Prediction of higher-multipoles is still challenging 
in the presence of one-halo contributions
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FIG. 1: Dimensionless power spectrum ∆2
ℓ(k) ≡ k3 P (S)

ℓ (k)/(2π2) at z = 0.35. The PT predictions based on the TNS model
and RegPT are plotted in magenta lines, adopting the Lorentzian damping function specifically. Note that the plotted results of
PT prediction are multiplied by the filter function F2H(k) shown in Fig. 2. Left: Blue lines represent the one-halo contribution
computed with analytic halo model, while cyan lines are the numerically estimated one-halo contribution based on the N-body
simulations. Note that the dashed lines indicate the negative values. Right: Sensitivity of the prediction to the different
prescription of analytic halo model. Blue lines are the same as in right panel, while the green lines are the results adopting

the concentration parameter c = 11
“

M
2×1012h−1 M⊙

”−0.1
(1 + z)−1.5. On the other hand, yellow and red lines are the results

adopting the pairwise velodity distribution of the forms ef1D(k∥|m) = 1/(1+k2
∥σ

2
1D,pair/2) and 1/(1+k2

∥σ
2
1D,pair/4)2, respectively.

II. RESULTS

We adopt the cosmological parameters determined by WMAP5, and use the linear power spectrum computed with
the CMB Boltzmann code, camb. Here, we specifically consider the redshift z = 0.35 and compute the redshift-space
power spectra.

Left panel of Fig. 1 show the dimensionless power spectrum of the monopole (top), quadrupole (center), and
hexadecapole (bottom) moments, ∆2

ℓ(k) ≡ k3 P (S)
ℓ (k)/(2π2). The blue lines are the results of one-halo power spectra

analytically computed with the NFW profile and mass function. Here, for comparison, we also show the results of N -
body simulations and PT predictions adopting the Lorentzian damping function (magenta lines), which are taken from
Ref. [4]. Note that the PT prediction has been made with the RegPT treatment at two-loop order adopting the model
of redshift-space distortions proposed by Ref. [4], and the results are then multiplied by the filter function F2H(k),
according to the prescription by Ref. [1]. The functional form of the filter function is shown in Fig. 2. Overall,
the contribution of the one-halo term becomes dominant at higher multipoles, and at high-k, the N -body results
asymptotically follow the halo model prediction. This analytic results are indeed consistent with the numerically
estimated one-halo contributions shown in cyan lines, which have been obtained from the N -body simulations by
directly counting the dark matter particles inside each halo. Nevertheless, the analytic predictions slightly deviate
from the numerical results at low-k. This small discrepancies may come from the uncertainty or assumption for the
analytic model. In right panel, we show the sensitivity of the analytic predictions to the prescripion changing the
concentration parameter cvir (green) and velocity distribution function f̃1D (yellow and red).

Next, let us focus on the behaviors at the scales of BAOs. In Fig. 3, we plot the power spectra multiplied by the
factor k2/3. Blue solid lines are the analytically computed one-halo term, while the magenta solid lines are the PT
predictions at two-loop order multiplied by the filter function, F2H(k) (see Fig. 2). Also, we plot the predictions with
different prescriptions shown in right panel of Fig. 1. Although the analytical one-halo term still seems insufficient to
explain the discrepancies between N -body result and PT prediction, we can roughly infer the size of the impact of

negative

TNS + RegPT 2-loop
1-halo (N-body)
1-halo (analytic)
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quadrupole (l=2)

Hexadecapole (l=4)

halo model prediction



Summary
• RSD measurement is renewed with great interest in 
test of gravity on cosmological scales

• Growth rate parameter ‘f(z)’ can be measured 
through linear Kaiser effect in both spec/photo-z obs.

• Complication: non-linearity of RSD/gravity

improved RSD model based on perturbation theory (PT)

Still, PT-based model has limitation:
- galaxy bias (impact of satellites)

- impact of 1-halo contributions

Hybrid modeling

Okumura et al. (’15)
 arXiv:1506.05814
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Motivation
Origin of late-time cosmic acceleration

If this is not the case, 
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Figure 1. Summary of different tests of General Relativity (GR) as a function of distance scale (bottom axis) and densities (top axis).
The standard model of cosmology seems to run into problems (dark matter, dark energy) at large scales. Because these problems could
indicate a breakdown of GR we need to test GR on large scales. Two probes which can do this are redshift space distortions (RSD)
and lensing. While RSD measures the Newtonian potential Ψ, lensing measures the sum of the metric potentials Φ + Ψ. However, any
modification of gravity needs to pass the very precise tests on smaller scales (Pound & Rebka experiment Pound & Rebka 1960, Gravity
Probe A, Vessot et al. 1980, Hulse-Taylor binary pulsar Hulse & Taylor 1975, see Will 2006 for a complete list). Note that the error bars
for Gravity Probe A and the Hulse-Taylor binary pulsar are smaller than the data points in this plot. In this analysis we perform a
ΛCDM consistency test (blue data point), where we use the CMASS-DR11 power spectrum multipoles together with Planck (Ade et al.
2013a) to tests GR on scales of ∼ 30Mpc (see section 9.1).

(2006). The popular power spectrum estimator suggested
by Feldman, Kaiser & Peacock (1993) (from here on FKP
estimator) cannot be used to make angle-dependent mea-
surements in BOSS because of the plane parallel approxi-
mation that this estimator implicitly makes (see section 3
for details).

Since the power spectrum quadrupole is more sensitive
to window function effects than the more commonly used
monopole, we suggest a new way of including the window
function into the power spectrum analysis. In order to ro-
bustly constrain the RSD and AP-test parameters, we model
the anisotropic galaxy power spectrum using perturbation
theory (PT) which fairly reflects a series of recent theoretical
progresses. Our PT model accurately describes non-linear is-
sues such as gravitational evolution, mapping from real to
redshift space, and local and non-local galaxy bias. We also
perform a detailed study of possible systematic uncertain-
ties and quantify a systematic error for our parameter con-
straints. Our analysis has been done “blind”, meaning that

all model tests and the set-up of the fitting conditions are in-
vestigated using mock data and only at the final stage do we
fit the actual CMASS-DR11 measurements. The CMASS-
DR11 constraints on DV (z)/rs(zd), FAP(z) and f(z)σ8(z)
are the most precise constraints to date using this technique.

This paper is organised as follows. In section 2 we de-
scribe the BOSS CMASS-DR11 dataset. In section 3 we de-
scribe the power spectrum estimator used in our analysis
and in section 4 we describe the mock catalogues together
with the derivation of the covariance matrix. We then dis-
cuss the measurement of window function effects including
the integral constraint in section 5. In section 6 we discuss
our model for the power spectrum multipoles, together with
the modelling of the Alcock-Paczynski effect. We perform
a detailed study of possible systematic uncertainties in sec-
tion 7, followed by the data analyses in section 8. We use our
data constraints for cosmological tests in section 9 and con-
clude in section 10. The appendix gives detailed derivations
of equations used in our analysis.

c⃝ 2013 RAS, MNRAS 000, 1–30

Gravity test

Beutler, Saito et al. (’14)

Cosmological scales



Cosmological probe of gravity
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Suppose metric theory of gravity is still valid:
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(Schmidt et al.’09;  Terukina et al. ’14)



Modified gravity effect on LSS
Linear theory (on sub-horizin scales)
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Nonlinearity in modified gravity
Beyond linear theory, should has non-trivial dependence on 

k and t

Ge�

(should be  non-linear func. of     )   �m

Screening effect (e.g., Vainshtein/Chameleon mechanism)

For consistent modified gravity models that can pass solar-
system tests, nonlinearity plays a crucial role to recover GR on 
small scales

Taking account of nonlinearity is essential for cosmological test 
of gravity beyond linear scales

‘Fifth force’ mediated by new degree of freedom (scalar field)

Indeed,
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redshift-space clustering in f (R) modified gravity models have
been presented. The resolution of our simulations allows us to
accurately resolve the non-linear matter and velocity fields and
quantify the deviations from a model of GR. Here, we re-
strict our study to the clustering of the dark matter. We ex-
amine the difference between the velocity power spectra in
each cosmology and its importance in modelling the redshift-
space clustering signal in both the standard and modified
gravity model. We test how well quasi-linear models for the
redshift-space distortions describe the amplitude and shape of the
measured power spectrum. A follow-up paper will examine the
redshift-space distortions in the clustering of haloes as well as test-
ing non-linear models for redshift-space distortions (see also e.g.
Marulli et al. 2012, for a recent study of redshift-space distortions
in interacting dark energy models).

This paper is organized as follows. In Section 2.1 we discuss the
f (R) modified gravity cosmological model and describe the N-body
simulations used in this paper. In Section 3 we review the theory
of redshift-space distortions and present the models which will be
tested. The main results of the paper are presented in Section 4.
Measurements of the redshift-space power spectra for both GR and
f (R) models are presented in Section 4.1. In Section 4.2 we present
the velocity power spectrum measured from the simulations. Using
a quasi-linear model for the redshift-space power spectrum we at-
tempt to extract both the matter and velocity power spectra from
the 2D redshift-space power spectrum in Section 4.3. In Section 4.4
we examine how well the moments of the redshift-space power
spectrum can be recovered using this quasi-linear model. Our con-
clusions are presented in Section 5. Throughout the paper we shall
use the unit c = 1 and metric convention ( +, −, −, −). Greek
letters µ, ν, . . . run over 0, 1, 2, 3 and Latin letters i, j, k, . . . run
over 1, 2, 3.

2 f (R) COSMOLOGIES

This section gives the theoretical background for the modified grav-
ity model considered in this paper. We outline f (R) cosmologies in
Section 2.1, explain the chameleon mechanism in Section 2.2 and
describe the N-body code and simulations in Section 2.3.

2.1 The f (R) gravity model

The f (R) gravity model is a straightforward generalization of GR:
the Ricci scalar, R, in the Einstein–Hilbert action, S, is replaced with
an algebraic function, f (R) (see e.g. De Felice & Tsujikawa 2010;
Sotiriou & Faraoni 2010, for recent reviews):

S =
∫

d4x
√

−g

{
M2

Pl

2
[R + f (R)] + Lm

}
, (1)

where MPl is the Planck mass, M−2
Pl = 8πG, with G being Newton’s

constant, g is the determinant of the metric gµν and Lm is the
Lagrangian density for matter fields (photons, neutrinos, baryons
and CDM). By specifying the functional form of f (R), one specifies
the f (R) gravity model.

Varying the action defined in equation (1) with respect to the
metric gµν yields the modified Einstein equation

Gµν + fRRµν −
(

1
2
f − !fR

)
gµν − ∇µ∇νfR = 8πGT m

µν, (2)

where Gµν ≡ Rµν − 1
2 gµνR is the Einstein tensor, f R ≡ df /dR, ∇µ is

the covariant derivative compatible with the metric gµν , ! ≡ ∇α∇α

and T m
µν is the energy momentum tensor for matter. One can consider

equation (2) as a fourth-order differential equation, or alternatively
the standard second-order equation of GR with a new dynamical
degree of freedom, f R, the equation of motion of which can be
obtained by taking the trace of equation (2):

!fR = 1
3

(R − fRR + 2f + 8πGρm) , (3)

where ρm is the matter density. The new degree of freedom f R is
sometimes dubbed the scalaron in the literature.

Assuming that the background Universe is described by the flat
Friedmann–Robertson–Walker metric, the line element in the per-
turbed Universe is written as

ds2 = a2(η)
[
(1 + 2%) dη2 − (1 − 2&) dxi dxi

]
, (4)

where η and xi are, respectively, the conformal time and comoving
coordinates, %(η, x) and &(η, x) are the Newtonian potential and
perturbation to the spatial curvature, and are functions of both time
(η) and space (x); a denotes the scale factor of the Universe where
a = 1 today.

As we are mainly interested in the large-scale structures much
smaller than the Hubble scale, and since the time variation of f R is
very small in the models considered below, we shall work in the
quasi-static limit by neglecting the time derivatives of f R. In this
limit, the scalaron equation, equation (2), reduces to

∇2fR = −1
3
a2 [

R(fR) − R̄ + 8πG (ρm − ρ̄m)
]
, (5)

where ∇ is the 3D gradient operator (to be distinguished from the ∇
introduced above) and the overbar represents the background value
of a quantity. Note that R can be expressed as a function of f R.

Similarly, the Poisson equation which governs the Newtonian
potential, %, can be simplified to

∇2% = 16πG

3
a2 (ρm − ρ̄m) + 1

6
a2 [

R (fR) − R̄
]

(6)

by neglecting terms involving time derivatives and using equa-
tion (5) to eliminate ∇2f R.

According to the above equations, there are two potential effects
of the scalaron on cosmology: (i) the background expansion of the
Universe may be modified by the new terms in equation (2) and
(ii) the relationship between gravity and the matter density field
is modified, which can change the matter clustering and growth
of density perturbations. Clearly, when |f R| ≪ 1, we have R ≈
−8πGρm from equation (5), and so equation (6) reduces to the
normal Poisson equation in GR; when |f R| is large, we instead
have |R − R̄| ≪ 8πG|ρm − ρ̄m|, and so equation (6) reduces to
the normal Poisson equation with G rescaled by 4/3. Note that
this factor of 4/3 is the maximum enhancement of gravity in f (R)
models, independent of the specific functional form of f (R). The
choice of f (R), however, is important because it governs when and
on which scale the enhancement factor changes from unity to 4/3:
scales much larger than the range of the modification to Newtonian
gravity mediated by the scalaron are unaffected and gravity is not
enhanced there, while on much smaller scales the 4/3 enhancement
is fully realized – this results in a scale-dependent modification of
gravity and therefore a scale-dependent growth rate of structure (see
Fig. 1).

The relationship between % and & is also changed in f (R) mod-
els, with the remaining components of the modified Einstein equa-
tion giving

∇2(& − %) = ∇2fR, (7)

where we have assumed that |f̄R| ≪ 1. This implies that

∇2(% + &) = 8πG (ρm − ρ̄m) a2. (8)

C⃝ 2012 The Authors, MNRAS 425, 2128–2143
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RAS
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redshift-space clustering in f (R) modified gravity models have
been presented. The resolution of our simulations allows us to
accurately resolve the non-linear matter and velocity fields and
quantify the deviations from a model of GR. Here, we re-
strict our study to the clustering of the dark matter. We ex-
amine the difference between the velocity power spectra in
each cosmology and its importance in modelling the redshift-
space clustering signal in both the standard and modified
gravity model. We test how well quasi-linear models for the
redshift-space distortions describe the amplitude and shape of the
measured power spectrum. A follow-up paper will examine the
redshift-space distortions in the clustering of haloes as well as test-
ing non-linear models for redshift-space distortions (see also e.g.
Marulli et al. 2012, for a recent study of redshift-space distortions
in interacting dark energy models).

This paper is organized as follows. In Section 2.1 we discuss the
f (R) modified gravity cosmological model and describe the N-body
simulations used in this paper. In Section 3 we review the theory
of redshift-space distortions and present the models which will be
tested. The main results of the paper are presented in Section 4.
Measurements of the redshift-space power spectra for both GR and
f (R) models are presented in Section 4.1. In Section 4.2 we present
the velocity power spectrum measured from the simulations. Using
a quasi-linear model for the redshift-space power spectrum we at-
tempt to extract both the matter and velocity power spectra from
the 2D redshift-space power spectrum in Section 4.3. In Section 4.4
we examine how well the moments of the redshift-space power
spectrum can be recovered using this quasi-linear model. Our con-
clusions are presented in Section 5. Throughout the paper we shall
use the unit c = 1 and metric convention ( +, −, −, −). Greek
letters µ, ν, . . . run over 0, 1, 2, 3 and Latin letters i, j, k, . . . run
over 1, 2, 3.

2 f (R) COSMOLOGIES

This section gives the theoretical background for the modified grav-
ity model considered in this paper. We outline f (R) cosmologies in
Section 2.1, explain the chameleon mechanism in Section 2.2 and
describe the N-body code and simulations in Section 2.3.

2.1 The f (R) gravity model

The f (R) gravity model is a straightforward generalization of GR:
the Ricci scalar, R, in the Einstein–Hilbert action, S, is replaced with
an algebraic function, f (R) (see e.g. De Felice & Tsujikawa 2010;
Sotiriou & Faraoni 2010, for recent reviews):

S =
∫

d4x
√

−g

{
M2

Pl

2
[R + f (R)] + Lm

}
, (1)

where MPl is the Planck mass, M−2
Pl = 8πG, with G being Newton’s

constant, g is the determinant of the metric gµν and Lm is the
Lagrangian density for matter fields (photons, neutrinos, baryons
and CDM). By specifying the functional form of f (R), one specifies
the f (R) gravity model.

Varying the action defined in equation (1) with respect to the
metric gµν yields the modified Einstein equation

Gµν + fRRµν −
(

1
2
f − !fR

)
gµν − ∇µ∇νfR = 8πGT m

µν, (2)

where Gµν ≡ Rµν − 1
2 gµνR is the Einstein tensor, f R ≡ df /dR, ∇µ is

the covariant derivative compatible with the metric gµν , ! ≡ ∇α∇α

and T m
µν is the energy momentum tensor for matter. One can consider

equation (2) as a fourth-order differential equation, or alternatively
the standard second-order equation of GR with a new dynamical
degree of freedom, f R, the equation of motion of which can be
obtained by taking the trace of equation (2):

!fR = 1
3

(R − fRR + 2f + 8πGρm) , (3)

where ρm is the matter density. The new degree of freedom f R is
sometimes dubbed the scalaron in the literature.

Assuming that the background Universe is described by the flat
Friedmann–Robertson–Walker metric, the line element in the per-
turbed Universe is written as

ds2 = a2(η)
[
(1 + 2%) dη2 − (1 − 2&) dxi dxi

]
, (4)

where η and xi are, respectively, the conformal time and comoving
coordinates, %(η, x) and &(η, x) are the Newtonian potential and
perturbation to the spatial curvature, and are functions of both time
(η) and space (x); a denotes the scale factor of the Universe where
a = 1 today.

As we are mainly interested in the large-scale structures much
smaller than the Hubble scale, and since the time variation of f R is
very small in the models considered below, we shall work in the
quasi-static limit by neglecting the time derivatives of f R. In this
limit, the scalaron equation, equation (2), reduces to

∇2fR = −1
3
a2 [

R(fR) − R̄ + 8πG (ρm − ρ̄m)
]
, (5)

where ∇ is the 3D gradient operator (to be distinguished from the ∇
introduced above) and the overbar represents the background value
of a quantity. Note that R can be expressed as a function of f R.

Similarly, the Poisson equation which governs the Newtonian
potential, %, can be simplified to

∇2% = 16πG

3
a2 (ρm − ρ̄m) + 1

6
a2 [

R (fR) − R̄
]

(6)

by neglecting terms involving time derivatives and using equa-
tion (5) to eliminate ∇2f R.

According to the above equations, there are two potential effects
of the scalaron on cosmology: (i) the background expansion of the
Universe may be modified by the new terms in equation (2) and
(ii) the relationship between gravity and the matter density field
is modified, which can change the matter clustering and growth
of density perturbations. Clearly, when |f R| ≪ 1, we have R ≈
−8πGρm from equation (5), and so equation (6) reduces to the
normal Poisson equation in GR; when |f R| is large, we instead
have |R − R̄| ≪ 8πG|ρm − ρ̄m|, and so equation (6) reduces to
the normal Poisson equation with G rescaled by 4/3. Note that
this factor of 4/3 is the maximum enhancement of gravity in f (R)
models, independent of the specific functional form of f (R). The
choice of f (R), however, is important because it governs when and
on which scale the enhancement factor changes from unity to 4/3:
scales much larger than the range of the modification to Newtonian
gravity mediated by the scalaron are unaffected and gravity is not
enhanced there, while on much smaller scales the 4/3 enhancement
is fully realized – this results in a scale-dependent modification of
gravity and therefore a scale-dependent growth rate of structure (see
Fig. 1).

The relationship between % and & is also changed in f (R) mod-
els, with the remaining components of the modified Einstein equa-
tion giving

∇2(& − %) = ∇2fR, (7)

where we have assumed that |f̄R| ≪ 1. This implies that

∇2(% + &) = 8πG (ρm − ρ̄m) a2. (8)
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redshift-space clustering in f (R) modified gravity models have
been presented. The resolution of our simulations allows us to
accurately resolve the non-linear matter and velocity fields and
quantify the deviations from a model of GR. Here, we re-
strict our study to the clustering of the dark matter. We ex-
amine the difference between the velocity power spectra in
each cosmology and its importance in modelling the redshift-
space clustering signal in both the standard and modified
gravity model. We test how well quasi-linear models for the
redshift-space distortions describe the amplitude and shape of the
measured power spectrum. A follow-up paper will examine the
redshift-space distortions in the clustering of haloes as well as test-
ing non-linear models for redshift-space distortions (see also e.g.
Marulli et al. 2012, for a recent study of redshift-space distortions
in interacting dark energy models).

This paper is organized as follows. In Section 2.1 we discuss the
f (R) modified gravity cosmological model and describe the N-body
simulations used in this paper. In Section 3 we review the theory
of redshift-space distortions and present the models which will be
tested. The main results of the paper are presented in Section 4.
Measurements of the redshift-space power spectra for both GR and
f (R) models are presented in Section 4.1. In Section 4.2 we present
the velocity power spectrum measured from the simulations. Using
a quasi-linear model for the redshift-space power spectrum we at-
tempt to extract both the matter and velocity power spectra from
the 2D redshift-space power spectrum in Section 4.3. In Section 4.4
we examine how well the moments of the redshift-space power
spectrum can be recovered using this quasi-linear model. Our con-
clusions are presented in Section 5. Throughout the paper we shall
use the unit c = 1 and metric convention ( +, −, −, −). Greek
letters µ, ν, . . . run over 0, 1, 2, 3 and Latin letters i, j, k, . . . run
over 1, 2, 3.

2 f (R) COSMOLOGIES

This section gives the theoretical background for the modified grav-
ity model considered in this paper. We outline f (R) cosmologies in
Section 2.1, explain the chameleon mechanism in Section 2.2 and
describe the N-body code and simulations in Section 2.3.

2.1 The f (R) gravity model

The f (R) gravity model is a straightforward generalization of GR:
the Ricci scalar, R, in the Einstein–Hilbert action, S, is replaced with
an algebraic function, f (R) (see e.g. De Felice & Tsujikawa 2010;
Sotiriou & Faraoni 2010, for recent reviews):

S =
∫

d4x
√

−g

{
M2

Pl

2
[R + f (R)] + Lm

}
, (1)

where MPl is the Planck mass, M−2
Pl = 8πG, with G being Newton’s

constant, g is the determinant of the metric gµν and Lm is the
Lagrangian density for matter fields (photons, neutrinos, baryons
and CDM). By specifying the functional form of f (R), one specifies
the f (R) gravity model.

Varying the action defined in equation (1) with respect to the
metric gµν yields the modified Einstein equation

Gµν + fRRµν −
(

1
2
f − !fR

)
gµν − ∇µ∇νfR = 8πGT m

µν, (2)

where Gµν ≡ Rµν − 1
2 gµνR is the Einstein tensor, f R ≡ df /dR, ∇µ is

the covariant derivative compatible with the metric gµν , ! ≡ ∇α∇α

and T m
µν is the energy momentum tensor for matter. One can consider

equation (2) as a fourth-order differential equation, or alternatively
the standard second-order equation of GR with a new dynamical
degree of freedom, f R, the equation of motion of which can be
obtained by taking the trace of equation (2):

!fR = 1
3

(R − fRR + 2f + 8πGρm) , (3)

where ρm is the matter density. The new degree of freedom f R is
sometimes dubbed the scalaron in the literature.

Assuming that the background Universe is described by the flat
Friedmann–Robertson–Walker metric, the line element in the per-
turbed Universe is written as

ds2 = a2(η)
[
(1 + 2%) dη2 − (1 − 2&) dxi dxi

]
, (4)

where η and xi are, respectively, the conformal time and comoving
coordinates, %(η, x) and &(η, x) are the Newtonian potential and
perturbation to the spatial curvature, and are functions of both time
(η) and space (x); a denotes the scale factor of the Universe where
a = 1 today.

As we are mainly interested in the large-scale structures much
smaller than the Hubble scale, and since the time variation of f R is
very small in the models considered below, we shall work in the
quasi-static limit by neglecting the time derivatives of f R. In this
limit, the scalaron equation, equation (2), reduces to

∇2fR = −1
3
a2 [

R(fR) − R̄ + 8πG (ρm − ρ̄m)
]
, (5)

where ∇ is the 3D gradient operator (to be distinguished from the ∇
introduced above) and the overbar represents the background value
of a quantity. Note that R can be expressed as a function of f R.

Similarly, the Poisson equation which governs the Newtonian
potential, %, can be simplified to

∇2% = 16πG

3
a2 (ρm − ρ̄m) + 1

6
a2 [

R (fR) − R̄
]

(6)

by neglecting terms involving time derivatives and using equa-
tion (5) to eliminate ∇2f R.

According to the above equations, there are two potential effects
of the scalaron on cosmology: (i) the background expansion of the
Universe may be modified by the new terms in equation (2) and
(ii) the relationship between gravity and the matter density field
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of density perturbations. Clearly, when |f R| ≪ 1, we have R ≈
−8πGρm from equation (5), and so equation (6) reduces to the
normal Poisson equation in GR; when |f R| is large, we instead
have |R − R̄| ≪ 8πG|ρm − ρ̄m|, and so equation (6) reduces to
the normal Poisson equation with G rescaled by 4/3. Note that
this factor of 4/3 is the maximum enhancement of gravity in f (R)
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on which scale the enhancement factor changes from unity to 4/3:
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gravity mediated by the scalaron are unaffected and gravity is not
enhanced there, while on much smaller scales the 4/3 enhancement
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gravity and therefore a scale-dependent growth rate of structure (see
Fig. 1).

The relationship between % and & is also changed in f (R) mod-
els, with the remaining components of the modified Einstein equa-
tion giving

∇2(& − %) = ∇2fR, (7)

where we have assumed that |f̄R| ≪ 1. This implies that

∇2(% + &) = 8πG (ρm − ρ̄m) a2. (8)
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perturbations (3.8) perturbatively

!a ¼ !ð1Þ
a þ!ð2Þ

a þ!ð3Þ
a þ . . . (5.7)

The power spectrum is also expanded accordingly

Pabðk; tÞ ¼ Pð11Þ
ab ðk; tÞ þ Pð22Þ

ab ðk; tÞ þ Pð13Þ
ab ðk; tÞ þ . . .

(5.8)

The detailed calculations are summarized in Appendix B.
In Fig. 1, we compare the results obtained by solving the
closure equations numerically with those from the analytic
solutions. In order to derive the analytic solutions, we
employed the Einstein–de Sitter (EdS) approximation. In
the EdS approximation, all the nonlinear growth rates
appearing in the higher-order solutions are approximately
determined by the linear growth rate D1ðtÞ. It is also
possible to apply the EdS approximation in the numerical
calculations [53] and we have checked that the EdS ap-
proximation changes the result only at subpercent level.
The fact that the two results agree very well confirms the
validity of our numerical code.

B. fðRÞ gravity models

In this subsection, we derive the quasi-nonlinear power
spectrum in fðRÞ gravity model (see [27,28] for reviews).
In this model, N-body simulations have been performed
[24–26] and we will check our numerical solutions against
the full N-body simulations.

1. fðRÞ gravity models

We consider another class of modified theory of gravity
that generalizes the Einstein-Hilbert action to include an
arbitrary function of the scalar curvature R:

S ¼
Z

d4x
ffiffiffiffiffiffiffi%g

p "
Rþ fðRÞ

2!2 þ Lm

#
; (5.9)

where !2 ¼ 8"G and Lm is the Lagrangian of the ordinary
matter. This theory is equivalent to the BD theory with
!BD ¼ 0 but there is a nontrivial potential [63,64]. This
can be seen from the trace of modified Einstein equations:

3hfR % Rþ fRR% 2f ¼ %!2#; (5.10)

where fR ¼ df=dR and h is a Laplacian operator and we
assumed a matter-dominated universe. We can identify fR
as the BD scalar field and its perturbations are defined as

’ ¼ $fR & fR % "fR; (5.11)

where the bar indicates that the quantity is evaluated on the
cosmological background. In this paper, we assume
j "fRj ' 1 and j "f= "Rj ' 1. These conditions are necessary
to have the background close to #CDM cosmology. Then
the BD scalar perturbations satisfy

3
1

a2
r2’ ¼ %!2#m$þ $R; $R & RðfRÞ % Rð "fRÞ:

(5.12)

This is nothing but the equation for the BD scalar pertur-
bations with!BD ¼ 0 and the potential gives the nonlinear
interaction term

I ð’Þ ¼ $Rð’Þ: (5.13)

Then we find

M1 ¼ "Rfð%Þ &
d "RðfRÞ
dfR

; M2 ¼ "Rffð%Þ &
d2 "RðfRÞ
df2R

;

M3 ¼ "Rfffð%Þ &
d3 "RðfRÞ
df3R

; $ðk; %Þ ¼
$
k

a

%
2
þ

"Rfð%Þ
3

:

We should note that in this model, the linear growth rate
depends on the wave number. Because of this, the vertex
functions are not the separable functions in terms of k and
%. This prevents us deriving the solutions analytically
unlike the DGP case and we need to solve the closure
equation directly.
In this paper, we consider the function fðRÞ of the form

fðRÞ / R

ARþ 1
; (5.14)

where A is a constant with dimensions of length squared
[33]. In the limit R ! 0, fðRÞ ! 0 and there is no cosmo-
logical constant. For high curvature AR ( 1, fðRÞ can be
expanded as

fðRÞ ’ %2!2## % fR0
"R2
0

R
; (5.15)

where ## is determined by A, "R0 is the background curva-
ture today and we defined fR0 as fR0 ¼ "fRðR0Þ. As we
mentioned before, we take jfR0j ' 1 and assume that the
background expansion follows the #CDM history with the
same ##. TheM1 term determines the mass of the BD field
mBD ¼ ðM1=3Þ1=2 as

mBDð%Þ &
ffiffiffiffiffiffi
"Rf

3

s
¼

$
R0

6j "fRj

ffiffiffiffiffiffiffiffi
fR0
"fR

s %
1=2

: (5.16)

Above the Compton length m%1
BD, the BD scalar interaction

decays exponentially and we recover GR. On small scales,
we recover the BD theory with !BD ¼ 0 if we neglect the
higher order terms Mi, (i > 1). From Eq. (3.11), the
Newton constant is 4=3 times large than GR. Thus the
linear power spectrum acquires a scale-dependent en-
hancement on small scales. Of course, this model is ex-
cluded from local gravity constraints. The higher order
termsMiði > 1Þ are responsible for suppressing this modi-
fication of gravity on small scales via the chameleon
mechanism and it makes it possible to pass local gravity
constraints. Thus we expect that the nonlinear interaction
terms I will suppress the nonlinear power spectrum. In the
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decays exponentially and we recover GR. On small scales,
we recover the BD theory with !BD ¼ 0 if we neglect the
higher order terms Mi, (i > 1). From Eq. (3.11), the
Newton constant is 4=3 times large than GR. Thus the
linear power spectrum acquires a scale-dependent en-
hancement on small scales. Of course, this model is ex-
cluded from local gravity constraints. The higher order
termsMiði > 1Þ are responsible for suppressing this modi-
fication of gravity on small scales via the chameleon
mechanism and it makes it possible to pass local gravity
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Viable models
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Starobinsky (’07)
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Formulation
Assumptions

•  (Standard) fluid treatment of matter fluctuations

Modification of gravity sector only appears in Poisson eq.

(CDM+Baryon)

•  Theory effectively looks like Brans-Dicke gravity 
on sub-horizon scales

Poisson eq. :

E.O.M for scalar field (under quasi-static approx.):

1
a2
⇥2⌅ = 4⇥ G ⇤m � � 1

2a2
⇥2⇧

(3 + 2⌅BD)
1
a2
⇤2⇧ = 8⇥ G ⇤m � � I(⇧)

new d.o.f for gravity
Brans-Dicke scalar

Vainshtein/Chamelon 
mechanism

perturbative expansion (see next slide)

Koyama, AT & Hiramatsu (’09)

Newton potential

m

m
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Formulation
Expansion of I(�)

M1 =
dR(fR)

dfR
, M2 =

d2R(fR)
df2

R

, M3 =
d3R(fR)

df3
R

M2 = 2
r2
c

a4
{(k1k2)2 � (k1 · k2)2},M1 = 0, M3 = 0

f(R) :

DGP :

Examples

 Solving the scalar-field equation perturbatively, 
new scalar field is expressed in terms of density fluctuation

 Non-linear Poisson eq. + Fluid eqs.  Euler eq.
Continuity eq.

Total 
system

Most of Horndeski theory is also described by this formalism 

(�BD = 0)



Standard PT 1-loop
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Standard perturbation theory (PT)
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Koyama, AT & Hiramatsu (’09)
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Impact of screening effect is small (~1%), but is not entirely negligible



Effective Newton constant
Linearized equation:

Continuity eq.
Euler eq.

Scalar-field eq.
Poisson eq.

�k2

a2
� = 4� Ge�(k, t) �m

�̈m + 2H �̇m +
k2

a2
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(3 + 2�BD)(k/a)2 + M1(k)
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3(k/a)2 + dR/dfR

�
�� 4

3
G

k ��

Linear growth factor becomes scale-dependent in f(R) gravity
→ Scale- & time-dependence is no longer separable in PT calculation



A novel PT scheme

Standard PT kernels

2

form of these are obtained from the Poisson equation and field equation for Brans-Dicke scalar [Eqs. (3)-(5)], and the
expressions relevant for perturbations up to the third oder are respectively given by [1, 2]:

Π(k) =
1
3

{
(3 + 2ωBD)

k2

a2
+ M1(k)

}
,

S(k) = − 1
6Π(k)

(
κ2 ρm

3

)2 ∫
d3k1d3k2

(2π)3
δD(k − k12) M2(k1,k2)

δ(k1)δ(k2)
Π(k1)Π(k2)

− 1
18Π(k)

(
κ2 ρm

3

)3 ∫
d3k1d3k2d3k3

(2π)6
δD(k − k123)

{
M3(k1, k2, k3) −

M2(k12, k3)M2(k1,k2)
Π(k12)

}
δ(k1)δ(k2)δ(k3)
Π(k1)Π(k2)Π(k3)

(8)

Here, in deriving the last expression, we perturbatively solve the scalaron field ϕ in terms of δ using Eqs. (4) and (5)
(see Appendix B of Ref. [2] for derivation).

II. SOLVING STANDARD PT KERNELS NUMERICALLY

In this section, we present the evolution equations for PT kernels. Since we are interested in the late-time evolution
dominated by the growing mode, the solution for perturbed quantities δ and θ are expressed as

δ(n)(k; t) =
∫

d3k1 · · · d3kn

(2π)3(n−1)
δD(k − k12···n)Fn(k1, · · · , kn; t) δ0(k1) · · · δ0(kn),

θ(n)(k; t) =
∫

d3k1 · · · d3kn

(2π)3(n−1)
δD(k − k12···n)Gn(k1, · · · ,kn; t) δ0(k1) · · · δ0(kn), (9)

where δ0 is the random initial density field. Then, defining the operator of the matrix form (here a is the scale factor
of the Universe)

L̂(k) ≡

⎛

⎜⎜⎜⎜⎝

a
d

da
1

3
2

(
H0

H(a)

)2 Ωm,0

a3

{
1 +

1
3

(k/a)2

Π(k)

}
a

d

da
+

(
2 +

Ḣ

H2

)

⎞

⎟⎟⎟⎟⎠
, (10)

the evolution equations for the kernels Fn and Gn are written as

L̂(k1···n)

⎛

⎝
Fn(k1, · · · ,kn; a)

Gn(k1, · · · , kn; a)

⎞

⎠ =

⎛

⎝
Sn(k1, · · · , kn; a)

Tn(k1, · · · ,kn; a)

⎞

⎠ . (11)

The source functions Sn and Tn represent the nonlinear mode coupling, and are written in terms of the lower-oder
perturbed quantities. The explicit form of these functions is derived from the basic equations (6) and (6), and we will
summarize below the source functions up to the third order.

A. Sounce functions

Linear order

S1(k; a) = 0,

T1(k; a) = 0 (12)

Second order

S2(k1, k2; a) = −1
2

{
α(k1, k2)G1(k1)F1(k2) + α(k2, k1)G1(k2)F1(k1)

}
,

T2(k1, k2; a) = −1
2
β(k1,k2) G1(k1)G1(k2) +

1
12

(
k12

aH(a)

)2 H4
0

Π(k12)

(
Ωm,0

a3

)2

M2(k1, k2)
F1(k1)F1(k2)
Π(k1)Π(k2)

(13)

� = �(1) + �(2) + · · ·
� = �(1) + �(2) + · · · � � � · v

aH

In GR, kernels (Fn, Gn) are analytically constructed from 
recursion relation (e.g., Goroff et al. ’86)

But this is not possible in non-separable case like f(R) gravity

Numerical reconstruction of standard PT kernels



A novel PT scheme
Solving evolution eqs. for PT kernels numerically:

scale factor as 
time variable
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The source functions Sn and Tn represent the nonlinear mode coupling, and are written in terms of the lower-oder
perturbed quantities. The explicit form of these functions is derived from the basic equations (6) and (6), and we will
summarize below the source functions up to the third order.
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form of these are obtained from the Poisson equation and field equation for Brans-Dicke scalar [Eqs. (3)-(5)], and the
expressions relevant for perturbations up to the third oder are respectively given by [1, 2]:
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S(k) = − 1
6Π(k)

(
κ2 ρm
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(8)

Here, in deriving the last expression, we perturbatively solve the scalaron field ϕ in terms of δ using Eqs. (4) and (5)
(see Appendix B of Ref. [2] for derivation).
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source term
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�(k1···j ,kj+1···n) Gj(k1, · · · ,kj) Gn�j(kj+1, · · · ,kn)

��(k1···j ,kj+1···n) Gj(k1, · · · ,kj) Fn�j(kj+1, · · · ,kn)
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II. SOLVING PERTURBATION THEORY KERNELS NUMERICALLY
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The source functions Sn and Tn represent the nonlinear mode coupling, and are written in terms of the lower-oder
perturbed quantities. The explicit form of these functions is derived from the basic equations (6) and (7), and we will
summarize below up to the third order:

A. Source functions

Linear order

S1(k; a) = 0,

T1(k; a) = 0 (12)

Second order

S2(k1, k2; a) = −1
2

{
α(k1, k2)G1(k1)F1(k2) + α(k2, k1)G1(k2)F1(k1)
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,

T2(k1, k2; a) = −1
2
β(k1, k2) G1(k1)G1(k2) (13)

The source functions given above are symmetric with respect to the exchange of arguments, i.e., S2(k1, k2) =
S2(k2, k1), T2(k1, k2) = T2(k2, k1). Thus, numerically solving Eq. (11), we obtain the symmetrized PT kernel
for F2 and G2.

2 In the presence of effective stress tensor, the late-time evolution may not necessarily be dominated by the growing mode, however, we
here consider the case that the EFTofLSS corrections are small.
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II.SOLVINGPERTURBATIONTHEORYKERNELSNUMERICALLY
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ThesourcefunctionsSnandTnrepresentthenonlinearmodecoupling,andarewrittenintermsofthelower-oder
perturbedquantities.Theexplicitformofthesefunctionsisderivedfromthebasicequations(6)and(7),andwewill
summarizebelowuptothethirdorder:

A.Sourcefunctions
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A novel PT scheme

1. Solve these equations with initial conditions at ai <<1:

2. Symmetrized :

F1 = ai, G1 = �ai ,   otherwise zero

F (sym)
n (k1, · · · ,kn) =

1
n!

�

{n}

{Fn(k1, · · · ,kn) + perm}

3.  Store the output in multi-dim arrays

For power spectrum at 1-loop order,

Recipes

what we need is just the 3D arrays of kernels up to 3rd order 
(typical size ~100x100x10)

special technique is unnecessary

it can be parallelized

resmmed PT and/or RSD calculations
application tokernels up to 

3rd order



Application: f(R) gravity
All predictions are made from standard PT 
kernels up to 3rd order (i.e., F2, F3)
N-body data: Baojiu Li
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FIG. 4: The measured constraints on fR0

, and their robustness to various tests, are presented. The measured likelihood function
appears in the top panels and the measured di↵erence of �2 is in the bottom panels. (Left panel) Results marginalizing over
the scale independent growth rate G

⇥

are shown by the black solid curve, while the constraints fixing G
⇥

= 0.46, given by
the Planck concordance ⇤CDM model, are blue dashed curves. The results for fR0

do not depend appreciably on the scale
independent behavior. (Right panel) The results also do not depend significantly on whether the initial power spectrum P (k)
used matches the Planck (black solid) or WMAP9 (black dashed) model. The blue dotted curve represents the results from
analyzing galaxy clustering from ⇤ CDM mock catalogues, verifying that |fR0

| ! 0 is recovered in this case.

The redshift-space two-dimensional correlation func-
tion ⇠(�,⇡) of the BOSS DR11 galaxies was computed
using the standard Landy-Szalay estimator [39]. In the
computation of this estimator we used a random point
catalogue that constitutes an unclustered but observa-
tionally representative sample of the BOSS CMASS sur-
vey and contains ⇠ 50 times as many randoms as we have
galaxies.

The covariance matrix was obtained from 600 mock
catalogues based on second-order Lagrangian perturba-
tion theory (2LPT) [40, 41]. The mocks reproduce
the same survey geometry and number density as the
CMASS galaxy sample. We obtain the covariance ma-
trix using the same treatment presented in our previous
works [10, 11].

We calculate the correlation function in 225 bins
spaced by 10h�1 Mpc in the range 0 < �,⇡ <
150h�1 Mpc. However, at small scales, if the non–
perturbative e↵ect of FoG is underestimated, then the
residual squeezing can be misinterpreted as a variation
in G

✓

or indeed f
R0

. We expect the FoG e↵ect to be in-
creasingly important at smaller scales, and so these mea-
surements may be at risk of misestimation. We therefore
impose a conservative cut on the measurements, exclud-
ing �

cut

< 40h�1 Mpc and s
cut

< 50h�1 Mpc [10]. In-
deed, [10] showed that cosmological parameter bias be-

gan to occur at smaller scales. This reduces the number
of measurement bins in � and ⇡ to N

bins

= 163.

B. Tests of theoretical templates

When the conservative cut–o↵ scales of �
cut

=
40h�1 Mpc and s

cut

= 50h�1 Mpc are used for the anal-
ysis, the e↵ective range of scale in Fourier space becomes
k < 0.1Mpc�1. The power spectra of ⇤CDM and f(R)
gravity models are presented in this range of scale in
Fig. 1. There are no observable deviations from ⇤CDM
for log |f

R0

| <⇠ �6. This implies that f(R) gravity models
with log |f

R0

| <⇠ �6 are e↵ectively equivalent to ⇤CDM
in this analysis. We take a uniform prior on log |f

R0

|
between �7 and �3.
We first test our pipeline of analysis by checking

whether it is possible to recover the ⇤CDM limit
log |f

R0

| <⇠ �6 using the mock catalogues based on
⇤CDM. We use the 611 CMASS mock catalogues to
measure central values of ⇠(�,⇡) and fit our theoretical
f(R) templates to the observed correlation function. The
measured likelifood function of log |f

R0

| is presented as
a blue dotted curve in the right panel of Fig. 4. The
best fit log f

R0

indeed lies within the ⇤CDM limit of
log |f

R0

| <⇠ �6. There are no mock galaxy catalogues
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the correlation function ⇠(�,⇡) using a ⇤CDM template
and replace the growth function D�

+

or growth rate D⇥

+

by that in f(R) gravity with |f
R0

| = 3.2 ⇥ 10�5 and
|f

R0

| = 3.0⇥ 10�4.
For the scale dependent growth function D�

+

, the vari-
ation of ⇠(�,⇡) with a small |f

R0

| = 3.2⇥ 10�5 is similar
to the case of a scale independent enhancement of the
growth function studied in [9]. Peak points on the BAO
ring represented by a thick black solid curve in Fig. 2
move coherently along the circle in an anti–clockwise di-
rection. The blue dashed contours in the left panel of
Fig.2 represent this variation. However, ⇠(�,⇡) with a
larger |f

R0

| = 3.0⇥ 10�4 varies di↵erently from the scale
independent case. Peak points on the BAO ring remain
the same, while minima of BAO are deepened, shown as
blue dotted contours in the same panel.

Next, we consider the variation of ⇠(�,⇡) due to the
scale dependent growth rate D✓

+

. In the case of the scale
independent growth rate, if G

⇥

increases or decreases,
the anisotropic e↵ects from higher order moments are
visible in the plot of ⇠(�,⇡) with the BAO peak points
moving clockwise or anti-clockwise along the circle de-
pending on the location of the peaks. The blue dashed
contours in the right panel of Fig. 2 represent the vari-
ation of ⇠(�,⇡) with �D⇥

+

for |f
R0

| = 3.2 ⇥ 10�5 and
|f

R0

| = 3.0 ⇥ 10�4. For |f
R0

| = 3.0 ⇥ 10�4, we can see
that the peak positions are ‘squeezed’ along the BAO
ring.

Having shown the individual e↵ects of a scale depen-
dent growth function and growth rate on the correlation
function, we now present the correlation function ⇠(�,⇡)
in f(R) gravity models. In Fig. 3, the correlation function
with |f

R0

| = 3.2⇥10�5 and |f
R0

| = 3.0⇥10�4 are plotted
as black dashed and black dotted contours, respectively.
There is no variation of ⇠(�,⇡) up to |f

R0

| <⇠ 10�6, and
the correlation function is e↵ectively equivalent to that
of ⇤CDM. When |f

R0

| increases to |f
R0

| ⇠ 10�4, we
observe the deviation of ⇠(�,⇡) from ⇤CDM and this de-
viation can be understood as the combined e↵ect of the
scale dependent growth function and growth rate shown
in Fig. 2.

III. METHODOLOGY AND RESULTS

The observed clustering of galaxies in redshift space
not only probes the density and velocity fields, i.e. the
growth and gravity as discussed in the previous section,
but also provides a useful tool to determine both the
transverse and radial distances by exploiting the Alcock–
Paczyński e↵ect and the BAO scale. In galaxy redshift
surveys, each galaxy is located by its angular coordinates
and redshift. However, the correlation function, ⇠(�,⇡),
is measured in comoving distances. Therefore a fiducial
cosmological model is required for conversion into comov-
ing space. We use the best fit ⇤CDM universe to Planck
2013 data. The conversion depends on the transverse
and radial distances involving D

A

and H�1. Instead of

FIG. 3: The best fit correlation function ⇠(�,⇡) of ⇤CDM
(black solid unfilled contours) and the correlation function of
f(R) gravity models with |fR0

| = 3.2 ⇥ 10�5 (black dashed
unfilled contours) and 3.0 ⇥ 10�4 (dotted unfilled contours).
The blue filled contours represent the measured ⇠(�,⇡) from
the DR11 CMASS data. The levels of contours are given
by (�0.001, 0.002, 0.005, 0.016, 0.05) from the outer to inner
contours.

recreating the measured correlation function in comoving
distances for each di↵erent model, we create the fiducial
maps from the theoretical correlation function by rescal-
ing the transverse and radial distances usingD

A

andH�1

and fit them to the observed correlation function. There-
fore, when we fit the measured ⇠(�,⇡), the two distance
parameters of (D

A

, H�1) are added to the structure for-
mation parameter set of {G

�

, G
⇥

,�
p

, |f
R0

|,�
p

} discussed
in Sec. II B.

A. Measured ⇠(�,⇡) using DR11

Our measurements are based on those previously pre-
sented in [11] which follows a similar procedure to [10].
Briefly, in our analysis we utilise data release DR11 of

the Baryon Oscillation Spectroscopic Survey [BOSS; 32–
34] which is part of the larger Sloan Digital Sky Survey
[SDSS; 35, 36] program. From DR11 we focus our anal-
ysis on the Constant Stellar Mass Sample (CMASS) [37],
which contains 690,826 galaxies and covers the redshift
range z = 0.43 � 0.7 over a sky area of ⇠8,500 square
degrees with an e↵ective volume of V

e↵

⇠ 6.0Gpc3. The
CMASS galaxy sample is composed primarily of bright,
central galaxies, resulting in a highly biased (b ⇠ 2) se-
lection of mass tracers [38].

ΛCDM
|fR,0| = 3.2� 10�5

|fR,0| = 3.0� 10�4

BOSS DR11 CMASS

arXiv:1507.01592Combining TNS model of RSD,
anisotropic correlation function is consistently computed 

in f(R) gravity → BOSS DR11 CMASS

Alcock-Paczynski effect marginalized

Likelihood

f(R) � �16� G �� + |fR,0| R2
0

R
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Linearized Boltzmann equation

Ṅ + i
kµ

a

�
p�

p2 + m2
N +

�
p2 + m2

p
�

�
+ �̇ = 0

For massive neutrinos,

Eq.  H

gijp
ipj + g00(p0)2 = m2

p2 �E2

Ṅ0 +
k

a

p�
p2 + m2

N1 + �̇ = 0

Ṅ1 +
k

3a

�
p�

p2 + m2
(2N2 �N0)�

�
p2 + m2

p
�

�
= 0

Ṅ2 +
k

5a

p�
p2 + m2

(3N3 � 2N1) = 0

Ṅ� +
k

(2� + 1)a
p�

p2 + m2
{(� + 1)N�+1 � �,N��1} = 0 ; (� � 2)

N (k, µ, p) =
�

�

(�i)�(2� + 1)N�(k, p)P�(µ)Legendre expansion:

Note— ‘p’ is physical 
momentum
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Relation to fluid quantities

��(k) =
1
��

�
d3p

(2�)3
�

p2 + m2 �f�(k, µ, p)

v�(k) =
1

�� + P�

�
d3p

(2�)3
pµ �f�(k, µ, p)

��f (0)
� (p)

� ln p
N (k, µ, p)

=

It is thus difficult to analytically treat Linearized Boltzmann eq. 

To describe the perturbed distribution function for neutrinos, we 
need 3 variables  (i,e., k, p, and mu)

(also bit difficult for numerical computation)



Characteristic scales

They have large velocity dispersion

Masses of (each) neutrino are known to be very light, and their 
distribution is close to thermal distribution (i.e., Fermi-Dirac)

�E� �
�

d3q q f�(q)�
d3q f�(q)

=
7�4

180�(3)
T�

Transition redshift :
(relativistic → non-relativistic)

E � m

� 3.15 T�(z)

1 + znr � 1890
� m

1 eV

�

non-relativistic scale :
knr = anrH(anr)

knr � 0.018 �1/2
m

� m

1 eV

�1/2
h Mpc�1

Neutrinos were relativistic until recently

Two important characteristic scales: knr kFS,

1. Non-relativistic scale Fermi-Dirac



Characteristic scales

�2
�(z) �

�
d3q (q/m)2 f�(q)�

d3q f�(q)
=

15 �(5)
�(3)

�
4
11

�2/3 T 2
cmb(1 + z)2

m2

density perturbation �� does not grow (rather suppressed)

Characteristic scale:

=
0.677

(1 + z)2
m

1 eV
�

�m(1 + z)3 + �� [h Mpc�1]

� 3
2H2

c2
s

�1/2

� kJ

a

Jeans 
scale

Free-streaming scale

kFS �
�

3
2

aH

��

2. free-streaming scale

�� � 181 (1 + z)
� m

1 eV

��1
km s�1

In analogy with Jeans instability,



Qualitative behaviors

tion of a neutrino, and once the neutrino becomes non-
relativistic, the free-streaming scale decreases as kFSðaÞ /
a1=2. Let us examine the evolution of the neutrino density
fluctuations at three length scales:

(1) At the large-scale, where k # kFSðaÞ for all a $ a0
(a0 is the present-day scale factor), the neutrino
density fluctuation starts to grow soon after the
mode enters the horizon, and its time evolution is
identical to that of CDM, !"ðk; aÞ ¼ !cðk; aÞ.

(2) At the small-scale, where k & kFSðaÞ for all a $ a0,
the neutrino density fluctuation oscillates around its
initial value due to the free-streaming effect,
!"ðk; aÞ ' !"ðk; aiÞ ’ 0.

(3) At the intermediate scale, the mode first experiences
the free-streaming phase, and thus does not grow.
Once k < kFSðaÞ is satisfied, the mode starts to grow,
rapidly catching up with the gravitational potential
set up by CDM.

III. THE BOLTZMANN HIERARCHYAND FLUID
APPROXIMATION

In this section, we provide all the relevant equations and
definitions needed for our theoretical flame work, follow-
ing [45] in the conformal-Newtonian gauge.

For fermions and bosons, we have the phase-space dis-
tribution (in natural units) given by

f0ðq; #Þ ¼
gs

ð2$Þ3
1

e%ðq;#Þ=T0 ( 1
; (12)

where the sign of ‘‘þ’’ is for fermions and ‘‘*’’ is for

bosons, q and %ðq; #Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ a2ð#Þm2

p
are the comoving

momentum (i.e., q ¼ að#Þp) and the comoving energy of a
particle, respectively. Here, # is a conformal time, which is
related to the proper time by d# ¼ dt=aðtÞ, and gs is a

number of degrees of freedom. The linear order perturba-
tion to the distribution function,!ðk; n̂; q; #Þ, is defined as

fðk; n̂; q; #Þ ¼ f0ðq; #Þ½1þ!ðk; n̂; q; #Þ-; (13)

where q + jqj and n̂ + q=q.
Since neutrinos decoupled while they were highly rela-

tivistic, the unperturbed distribution function after the
neutrino decoupling continues to be given by its relativistic
form:

f0ðqÞ ¼
gs

ð2$Þ3
1

eq=T0 ( 1
; (14)

even after neutrinos become nonrelativistic. The tempera-
ture of such collisionless particles decreases as TðaÞ ¼
T0ða0=aÞ, even when they are nonrelativistic.
The evolution of the linearized phase-space distribution

for collisionless particles such as CDM and neutrinos is
governed by the linearized collisionless Boltzmann equa-
tion,

@!ðk; n̂; q; #Þ
@#

þ i
q

%ðq; #Þ ðk . n̂Þ!ðk; n̂; q; #Þ

þ d lnf0ðqÞ
d lnq

"
_&ðk; #Þ * i

%ðq; #Þ
q

ðk . n̂Þc ðk; #Þ
#
¼ 0;

(15)

where c and& are a Newtonian gravitational potential and
a curvature perturbation, respectively.2

To simplify the equation, we define ~!ðk; n̂; q; #Þ +
!ðk; n̂; q; #Þðd lnf0ðqÞd lnq Þ*1, and replace the time derivative

from # to x + k#, and rewrite Eq. (15) as

@ ~!ðk; n̂; q; xÞ
@x

þ i
q

%ðq; xÞ'
~!ðk; n̂; q; xÞ

þ @&ðk; xÞ
@x

* i
%ðq; xÞ

q
'c ðk; xÞ ¼ 0;

(16)

where ' is a cosine between the wave number and mo-
mentum, i.e., k . n̂ + k'. Finally, we expand the
Boltzmann equation [Eq. (16)] by Legendre polynomials,
using

~!ðk; n̂; q; xÞ ¼
X1

l¼0

ð*iÞlð2lþ 1Þ ~!lðk; q; xÞPlð'Þ; (17)

and obtain a set of infinite series of differential equations
(also known as Boltzmann hierarchy) as follows:

~! 0
0ðk; q; xÞ ¼ * q

%ðq; xÞ
~!1ðk; q; xÞ *&0ðk; xÞ; (18)

FIG. 1. Free-streaming scale of a massive neutrino, kFS;i,
(black line), comoving horizon scale, aHðaÞ, (thick black lines)
and an approximation to the free-streaming scale in the non-
relativistic limit given by Eq. (11), (dotted line) as functions of
the scale factor, a. We use m";i ¼ 0:13 eV. The horizontal lines
show (1) large, (2) small, and (3) intermediate scale modes as
described in Sec. II.

2In the original work of [45], c and & are defined as scalar
perturbations in the metric in the conformal Newtonian gauge:
ds2 ¼ a2ð#Þ½*ð1þ 2c Þd#2 þ ð1* 2&Þdxidxi-. They are re-
lated to the gauge invariant variables "A and "H of [46] and
! and " of [47] by c ¼ "A ¼ ! and & ¼ *"H ¼ *".
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Fig. 13. Ratio of the matter power spectrum including three degenerate massive neutrinos with density fraction f! to that with three massless
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Fig. 14. CMB temperature anisotropy spectrum CT
l and matter power spectrum P(k) for three models: the neutrinoless $CDM model of section

4.4.6, a more realistic $CDM model with three massless neutrinos (f! ≃ 0), and finally a $MDM model with three massive degenerate neutrinos
and a total density fraction f! = 0.1. In all models, the values of ("b, "m, #$, As, n, %) have been kept fixed.

is found to be in excellent agreement with the analytical prediction of Eq. (141). For simplicity, the growth factor
g(a0) ≃ 0.8 can even be replaced by one in Eq. (141) without changing the result significantly. The well-known
formula P(k)f!/P (k)f!=0 ≃ −8f! is a reasonable first-order approximation for 0 < f! < 0.07.

4.6. Summary of the neutrino mass effects

4.6.1. Effects on CMB and LSS power spectra for fixed ("m, #$) and degenerate masses
In Fig. 14, we show CT

l and P(k) for two models: $CDM with f! = 0 and $MDM with N! = 3 massive neutrinos
and a total density fraction f! = 0.1. We also display for comparison the neutrinoless model of Section 4.4.6. In all
models, the values of ("b, "m, #$, As, n, %) have been kept fixed, with the increase in "! being compensated by a
decrease in "cdm. There is a clear difference between the neutrinoless and massless neutrino cases, caused by a large

Lesgourgues & Pastor (’06)
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Fig. 12. Ratio of the matter power spectrum including N! = 1 or 3 degenerate massive neutrinos to that with three massless neutrinos, computed at
the scale k∗ = 5h Mpc−1 for fixed parameters ("m,#$) = (0.147, 0.70), and plotted as a function of the density fraction f!. The numerical result
is compared with the semi-analytical approximation of Eq. (141) and with the linear approximation −8f!.

equal to (1 − 3
5f!), but then it will increase progressively until unity, so that %f!=0

cdm becomes a linear function of a
or [ag(a)]. In a crude approximation, we can write

%f!=0
cdm [a0] ≃

(
a0g(a0)

(1 − f!)anr

)
%f!=0

cdm [(1 − f!)anr], (137)

but this tends to overestimate the growth of perturbations in the massless case: it assumes that right after a = anr
the logarithmic slope is equal to one, which is not true immediately. Indeed, a comparison with numerical results
shows that the total growth factor is a bit smaller,

%f!=0
cdm [a0] ≃

(
a0g(a0)

(1 − f!)
1/2anr

)
%f!=0

cdm [(1 − f!)anr]. (138)

Using this semi-analytic result, we find that the ratio between the present value of %cdm in the two models reads

%f!
cdm[a0]

%f!=0
cdm [a0]

= (1 − f!)
1/2
(

a0g(a0)

anr

)−(3/5)f!

. (139)

According to Eq. (124) this means that the total matter power spectrum is reduced by

P(k)f!

P(k)f!=0 = (1 − f!)
3
(

a0g(a0)

anr

)−(6/5)f!

. (140)

Finally, we can replace (a0/anr) by 2000m!/(1 eV) and, assuming that the mass m! is shared by a number N! of
families, we can use m! = ("!/N!)93.2 eV. We obtain an expression that depends only on (f!, N!, "m, #$)

P(k)f!

P(k)f!=0 = (1 − f!)
3[1.9 × 105g(a0)"mf!/N!]−(6/5)f! . (141)

We show in Fig. 12 that this semi-analytic expression is a very good approximation of the exact numerical result,
and also that for plausible values of ("m, N!, #$) and for f! < 0.07, it can be approximated by the well-known
linear expression [93]

P(k)f!

P(k)f!=0 ≃ −8f!. (142)

f� = 0.01

f� = 0.1

ratio of matter 
power spectrum
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Empirical 
formula
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Pf�=0(k�)

� 1� 8 f�

f� =
��

�m
� 0.075

�
0.1426
�mh2

� � m

1 eV

�
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Impact on large-scale structure
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N-body simulations
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Figure 5. Slices of baryon density distribution. All slices are

200h�1

Mpc wide and show the baryonic mass averaged over the

volume of a grid cell. Each grid cell is⇠391h�1

kpc. The top panel

shows a simulation without neutrinos. The middle and the bot-

tom panels are taken from simulations with ⌦⌫ = 0.02 (⌃m⌫ =

0.95 eV) and ⌦⌫ = 0.04 (⌃m⌫ = 1.9 eV). The baryon density

fields in the middle and the bottom panels are less evolved rel-

ative to the no-neutrino (top panel) case. The simulations were

run with N
cdm

=256

3

, N
gas

=512

3

. The density projections were

made using yt: an analysis and visualization tool (Turk 2008).

Figure 6. Matter power spectrum at z = 0 from simulations

and linear theory (dot–dashed lines) as a function of neutrino

mass. The four neutrino models are: ⌦⌫ = 0 (⌃m⌫ = 0 eV) –

solid (red), ⌦⌫ = 0.01 (⌃m⌫ = 0.475 eV) – long dash–dotted

(green), ⌦⌫ = 0.02 (⌃m⌫ = 0.95 eV) – dashed (blue) and ⌦⌫ =

0.04 (⌃m⌫ = 1.9 eV) – long-dashed (cyan). The vertical dashed

line is the maximum wavenumber up to which the power spectra

from 200h�1

Mpc box simulations are valid at 1 per cent level.

Figure 7. Fractional di↵erence between the matter power spec-

tra with and without massive neutrinos at z = 0, from the simu-

lations and the linear theory predictions (dot–dashed lines). The

four neutrino models are: ⌦⌫ = 0 (⌃m⌫ = 0 eV) – solid (red),

⌦⌫ = 0.01 (⌃m⌫ = 0.475 eV) – long dash–dotted (green), ⌦⌫ =

0.02 (⌃m⌫ = 0.95 eV) – dashed (blue) and ⌦⌫ = 0.04 (⌃m⌫ =

1.9 eV) – long-dashed (cyan). The error bars correspond to eight

simulations with di↵erent seeds for the ICs.
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lations and the linear theory predictions (dot–dashed lines). The

four neutrino models are: ⌦⌫ = 0 (⌃m⌫ = 0 eV) – solid (red),

⌦⌫ = 0.01 (⌃m⌫ = 0.475 eV) – long dash–dotted (green), ⌦⌫ =

0.02 (⌃m⌫ = 0.95 eV) – dashed (blue) and ⌦⌫ = 0.04 (⌃m⌫ =

1.9 eV) – long-dashed (cyan). The error bars correspond to eight

simulations with di↵erent seeds for the ICs.
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Constraints on neutrino masses

•Galaxy surveys

Detection of free-streaming suppression is the key to 
weigh the neutrino masses

• Weak lensing & CMB lensing

Planck Collaboration: Cosmological parameters
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Fig. 29. Samples from the Planck TT+lowP posterior in theP
m⌫–H0 plane, colour-coded by �8. Higher

P
m⌫ damps

the matter fluctuation amplitude �8, but also decreases H0
(grey bands show the direct measurement H0 = (70.6 ±
3.3) km s�1Mpc�1, Eq. 30). Solid black contours show the con-
straint from Planck TT+lowP+lensing (which mildly prefers
larger masses), and filled contours show the constraints from
Planck TT+lowP+lensing+BAO.

high multipoles produces a relatively small improvement to the
Planck TT+lowP+BAO constraint (and the improvement is even
smaller with the alternative CamSpec likelihood) so we consider
the TT results to be our most reliable constraints.

The constraint of Eq. (54b) is consistent with the 95 % limit
of
P

m⌫ < 0.23 eV reported in PCP13 for Planck+BAO. The
limits are similar because the linear CMB is insensitive to the
mass of neutrinos that are relativistic at recombination. There is
little to be gained from improved measurement of the CMB tem-
perature power spectra, though improved external data can help
to break the geometric degeneracy to higher precision. CMB
lensing can also provide additional information at lower red-
shifts, and future high-resolution CMB polarization measure-
ments that accurately reconstruct the lensing potential can probe
much smaller masses (see e.g. Abazajian et al. 2015b).

As discussed in detail in PCP13 and Sect. 5.1, the Planck
CMB power spectra prefer somewhat more lensing smoothing
than predicted in⇤CDM (allowing the lensing amplitude to vary
gives AL > 1 at just over 2�). The neutrino mass constraint
from the power spectra is therefore quite tight, since increas-
ing the neutrino mass lowers the predicted smoothing even fur-
ther compared to base ⇤CDM. On the other hand the lensing
reconstruction data, which directly probes the lensing power,
prefers lensing amplitudes slightly below (but consistent with)
the base ⇤CDM prediction (Eq. 18). The Planck+lensing con-
straint therefore pulls the constraints slightly away from zero to-
wards higher neutrino masses, as shown in Fig. 30. Although the
posterior has less weight at zero, the lensing data are incompati-
ble with very large neutrino masses so the Planck+lensing 95 %
limit is actually tighter than the Planck TT+lowP result:

X
m⌫ < 0.68 eV (95%,Planck TT+lowP+lensing). (55)

Fig. 30. Constraints on
P

m⌫ for various data combinations.

Adding the polarization spectra improves this constraint slightly
to
X

m⌫ < 0.59 eV (95%,Planck TT,TE,EE+lowP+lensing).
(56)

We take the combined constraint further including BAO, JLA,
and H0 (“ext”) as our best limit
X

m⌫ < 0.23 eV

⌦⌫h2 < 0.0025

9>>=
>>; 95%, Planck TT+lowP+lensing+ext.

(57)
This is slightly weaker than the constraint from Planck
TT,TE,EE+lowP+lensing+BAO, (which is tighter in both the
CamSpec and Plik likelihoods) but is immune to low level sys-
tematics that might a↵ect the constraints from the Planck polar-
ization spectra. Equation (57) is therefore a conservative limit.
Marginalizing over the range of neutrino masses, the Planck con-
straints on the late-time parameters are23

H0 = 67.7 ± 0.6

�8 = 0.810+0.015
�0.012

9>=
>; Planck TT+lowP+lensing+ext. (58)

For this restricted range of neutrino masses, the impact on the
other cosmological parameters is small and, in particular, low
values of �8 will remain in tension with the parameter space
preferred by Planck.

The constraint of Eq. (57) is weaker than the constraint of
Eq. (54b) excluding lensing, but there is no good reason to disre-
gard the Planck lensing information while retaining other astro-
physical data. The CMB lensing signal probes very-nearly lin-
ear scales and passes many consistency checks over the multi-
pole range used in the Planck lensing likelihood (see Sect. 5.1
and Planck Collaboration XV 2015). The situation with galaxy
weak lensing is rather di↵erent, as discussed in Sect. 5.5.2. In
addition to possible observational systematics, the weak lensing
data probe lower redshifts than CMB lensing, and smaller spa-
tial scales where uncertainties in modelling nonlinearities in the
matter power spectrum and baryonic feedback become impor-
tant (Harnois-Déraps et al. 2014).

23To simplify the displayed equations, H0 is given in units of
km s�1Mpc�1 in this section.

41

TT + lowP

TT + lowP + lensing

TT + lowP + lensing + BAO

Cluster count
Lyman-α forest
21cm (future)

• Others:

Planck 2015

Planck Collaboration: Cosmological parameters

Fig. 29. Samples from the Planck TT+lowP posterior in theP
m⌫–H0 plane, colour-coded by �8. Higher

P
m⌫ damps

the matter fluctuation amplitude �8, but also decreases H0
(grey bands show the direct measurement H0 = (70.6 ±
3.3) km s�1Mpc�1, Eq. 30). Solid black contours show the con-
straint from Planck TT+lowP+lensing (which mildly prefers
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perature power spectra, though improved external data can help
to break the geometric degeneracy to higher precision. CMB
lensing can also provide additional information at lower red-
shifts, and future high-resolution CMB polarization measure-
ments that accurately reconstruct the lensing potential can probe
much smaller masses (see e.g. Abazajian et al. 2015b).
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Eq. (54b) excluding lensing, but there is no good reason to disre-
gard the Planck lensing information while retaining other astro-
physical data. The CMB lensing signal probes very-nearly lin-
ear scales and passes many consistency checks over the multi-
pole range used in the Planck lensing likelihood (see Sect. 5.1
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weak lensing is rather di↵erent, as discussed in Sect. 5.5.2. In
addition to possible observational systematics, the weak lensing
data probe lower redshifts than CMB lensing, and smaller spa-
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straint from Planck TT+lowP+lensing (which mildly prefers
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Planck TT+lowP+lensing+BAO.
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mass of neutrinos that are relativistic at recombination. There is
little to be gained from improved measurement of the CMB tem-
perature power spectra, though improved external data can help
to break the geometric degeneracy to higher precision. CMB
lensing can also provide additional information at lower red-
shifts, and future high-resolution CMB polarization measure-
ments that accurately reconstruct the lensing potential can probe
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ization spectra. Equation (57) is therefore a conservative limit.
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other cosmological parameters is small and, in particular, low
values of �8 will remain in tension with the parameter space
preferred by Planck.

The constraint of Eq. (57) is weaker than the constraint of
Eq. (54b) excluding lensing, but there is no good reason to disre-
gard the Planck lensing information while retaining other astro-
physical data. The CMB lensing signal probes very-nearly lin-
ear scales and passes many consistency checks over the multi-
pole range used in the Planck lensing likelihood (see Sect. 5.1
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weak lensing is rather di↵erent, as discussed in Sect. 5.5.2. In
addition to possible observational systematics, the weak lensing
data probe lower redshifts than CMB lensing, and smaller spa-
tial scales where uncertainties in modelling nonlinearities in the
matter power spectrum and baryonic feedback become impor-
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Modeling LSS including massive ν
To detect small masses of ν,  

precision modeling of large-scale structure (LSS) is crucial

Nonlinear gravitational clustering of 
CDM + baryon + ν

Difficulties

•Co-existence of very hot & very cold components

•Tiny amount of neutrinos :

JCAP11(2014)039

approximation schemes of the time-evolution and quantify errors due to linear approximations
for neutrinos, especially in view of the potentially spurious behaviour described above, and
(iii) to develop a framework that provides a suitable basis for computing higher non-linear
orders in the future. We present the set of two-fluid non-linear equations that we want to
solve in section 2. In section 3, we discuss analytic arguments to explain why this approach
is consistent, and free of unphysical divergence issues on large scales. In section 4, we
present numerical solutions and compare them with the results of other approaches. Section 5
contains our conclusions. The appendix contains an alternative formulation of the evolution
equations.

2 Two-fluid equations

In this section we set up the fluid description for the neutrino component and the time-flow
equations. As a first step, one has to establish to which extent a two-fluid scheme with an
e↵ective sound speed can approximate the full solution of the Boltzmann equation. This has
been studied in detail before in [38], where the fluid description has been applied throughout
the cosmological evolution. It was found that this scheme is accurate at the level of about
10% for the neutrino density and velocity. Since we are interested in a higher precision, this
may indicate that it is not appropriate to neglect higher moments of the neutrino distribution
function. Actually, some more precise approximations involving one more moment have also
been studied in details in [38, 39, 42]. They amount in describing neutrinos as an imperfect
fluid with an e↵ective viscosity coe�cient.

However, in our context, it is important to realise that non-linear e↵ects become im-
portant only at low redshift z . 10, while the higher moments of the neutrino distribution
are suppressed for z < z

nr

⇠ 102 by powers of T

⌫

/m

⌫

. Therefore, we use a hybrid scheme
based on the full Boltzmann solution at high redshift, and on a two-perfect-fluid scheme that
includes an e↵ective pressure term for the neutrino component at low redshift. The match-
ing can be done at some redshift in the range 10 ⌧ zmatch ⌧ z

nr

. We used zmatch = 25. It
turns out that this scheme is su�ciently accurate for our purposes (about 0.1%(1%) for the
CDM(⌫) component at k = 0.1 h/Mpc, see section 4). In the following we discuss the fluid
scheme we use at small redshift for computing non-linear corrections.

2.1 Two-fluid non-linear equations

For each neutrino eigenstate i, the non-relativistic transition takes place when the mean
neutrino energy becomes smaller than the neutrino mass, at a redshift given by [3, 38]

1 + z

nr,i

' 1890
m

⌫,i

1 eV
. (2.1)

For z ⌧ z

nr,i

, the fraction of the total matter energy density in the form of neutrinos becomes
constant,

f

⌫

⌘ ⌦
⌫

⌦
m

=
1

⌦0
m

h

2

P
i

m

⌫,i

93.14 eV
, (2.2)

where ⌦0
m

⌘ ⌦
m

(z = 0) is the total matter density today in units of the critical density. The
total density contrast is given by

� = f

⌫

�

⌫

+ (1 � f

⌫

)�
cb

, (2.3)

where �

i

= �⇢

i

/⇢

i

, and �

cb

corresponds to the sum of baryons and CDM.
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evolution of the perturbed phase-space distribution func-
tion of massive neutrinos exactly and compare the exact
results to the results with the fluid approximation, i.e.,
solutions with the higher multipole moments (l ! 3)
ignored. Then, we shall examine the ranges of applicability
of fluid approximation in both spatial and time scales, as a
function of neutrino masses.

The rest of this paper is organized as follows. In Sec. II,
we briefly review the effects of massive neutrino free-
streaming on the structure formation of the universe. In
Sec. III, we provide the basic fluid equations and the
linearized Boltzmann equation required for our theoretical
flame work. In Sec. IV, we briefly discuss the analytic
solutions of the Boltzmann equation for collisionless par-
ticles. In Sec. V, we compare the exact solutions of the
Boltzmann equations with the fluid approximation, and
discuss the range of validity of the fluid approximation
for several masses of massive neutrino. Finally, in Sec. VI,
we discuss the implications of our results and conclude. In
Appendix A, we discuss how to define the free-streaming
scale starting from the fluid equations. In Appendix B, we
give the detailed derivation of the exact solution of the
Boltzmann equation both for massless and massive neu-
trinos. Even though our main interest is in massive neu-
trinos, our results shown here are also applicable to
collisionless particles in general, whose time evolution of
the perturbed phase-space distribution follows the linear-
ized collisionless Boltzmann equation with the zero-th
order phase-space distribution function being frozen at
sufficiently early time (i.e., we set the initial conditions
of the neutrino transfer function after the decoupling of
neutrino, "1 MeV).

II. THE FREE-STREAMING OF THE MASSIVE
NEUTRINO

We are interested in the mass range of 0:05<m!;i <
0:58 eV for the most massive species of neutrinos, which
became nonrelativistic well after the matter radiation
equality. The mass density of the massive neutrinos relative
to the total matter density is given by

f! # !!h
2

!mh
2 ¼

1

!mh
2

P
i
m!;i

94:1 eV
; (5)

where the summation is taken over the different species of
neutrinos. Neutrinos become nonrelativistic when the
mean energy per particle of neutrinos in the relativistic
limit,

hEi #
R
d3ppðexp½p=T!ðzÞ( þ 1Þ*1

R
d3pðexp½p=T!ðzÞ( þ 1Þ*1 ¼ 7"4

180#ð3ÞT!

’ 3:15T!; (6)

falls below m!;i. By solving 3:15T!;0ð1þ znrÞ ¼ m!;i, one
finds the redshift of relativistic to nonrelativistic transition

epoch znr as

1þ znr;i ’ 1890
!
m!;i

1 eV

"
; (7)

for the ith neutrino species.
The density fluctuation of neutrinos cannot grow within

the horizon size until neutrinos become nonrelativistic.
Once neutrinos become nonrelativistic, the neutrino den-
sity fluctuation begins to grow on scale greater than the so
called ‘‘free-streaming scale,’’ which is set by the velocity
dispersion of neutrinos:

$2
!;iðzÞ #

R
d3pp2=m2

!;iðexp½p=T!ðzÞ( þ 1Þ*1

R
d3pðexp½p=T!ðzÞ( þ 1Þ*1

¼ 15#ð5Þ
#ð3Þ

!
4

11

"
2=3 T2

%;0ð1þ zÞ2
m2

!;i

; (8)

where p is the proper momentum of the massive neutrino
(see Appendix of [41]).
The wave number corresponding to the free-streaming

scale kFS is defined by the single-fluid continuity and Euler
equations:

_&ðk; 'Þ þ (ðk; 'Þ ¼ 0 (9)

_(ðk;'ÞþH ð'Þ(ðk;'Þþ½32H 2ð'Þ*k2c2sð'Þ(&ðk;'Þ¼ 0;

(10)

where1

kFS;iðzÞ #
ffiffiffi
3

2

s
H ðzÞ
csðzÞ

’
ffiffiffi
3

2

s
H ðzÞ
$!;iðzÞ

’ 0:677

ð1þ zÞ2
!
m!;i

1 eV

"
½!mð1þ zÞ3

þ!"(1=2h Mpc*1: (11)

Here, derivatives are with respect to a conformal time,

d' ¼ dt=a, H ð'Þ # _að'Þ
að'Þ , and (ðk; 'Þ is a velocity diver-

gence of the fluid. Note that Eq. (8) assumes that neutrinos
are nonrelativistic.
In Fig. 1, we show kFS;i from Eq. (11) (dotted line),

comoving horizon scale, aHðaÞ, (thick solid line) and kFS;i
calculated numerically from Eq. (8), wherem!;i is replaced

by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

!;i

q
(thin solid line). In this figure, we use

m!;i ¼ 0:13 eV.
We find that the free-streaming scale is close to the

horizon size until the relativistic to nonrelativistic transi-

1Here, we say cs ’ $!;i; however, strictly speaking, the ve-
locity dispersion defined in Eq. (8) should not be used to define
the free-streaming scale, kFS, as the Euler equation contains
sound speed, c2s # &P

&) , not the velocity dispersion. In the non-
relativistic limit, we have cs ¼

ffiffi
5

p
3 $!;i ’ 0:745$!;i. We derive

this relation in Appendix A.
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Simulations with massive ν

- massive ν :   N-body particles
e.g., Brandbyge et al. (’08),  Viel et al. (’10), …

e.g., Brandbyge & Hannestad (’09),  Ali-Haimoud & Bird (’12), …

- massive ν :   Linear Boltzmann on grids

- massive ν :   Linear Boltzmann on grids + N-body particles
Brandbyge & Hannestad (‘10)‘Hybrid’ approach

- massive ν :   SPH particles (treated as fluid with pressure)
Hannestad,  Haugbølle, Schultz (‘12)

In addition to CDM+baryon treated as N-body particles,

‘N-one body approach’
e.g., Ringwald & Wong (’04)ignore neutrino’s self-gravity

Alternative 
method



Perturbation theory with massive ν
single-stream approximation is invalid for massive neutrinos

Strictly speaking,

A simple recipe by Saito, Takada & AT (’08, ‘09)

(neutrinos are ‘hot’ dark matter)

Need a further approximate treatment

D2
+(z) P0(k)replacing all Pcb(k; z)

linear matter 
power spectrum

linear power spectrum 
of CDM + baryon

Pm(k) = (1� f�)2 Pcb(k) + 2f�(1� f�) Pcb,�(k) + f2
� P�(k)

Linear BoltzmannStandard (or resummed) PT 
with a slight modification :

in PT expressions with

For other approach, multi-component fluid system by Blas et al. (’14)
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Figure 5. Perturbation Theory predictions for the cold matter power spectrum Pcc(k). Each panel shows the
measurements from the N-body simulations, divided by the reference power spectrum given by the two-loop,
standard PT results (black points with error-bars). Also shown are the corresponding ratios for the linear
(green, dotted), one-loop, standard PT (blue, thin, dashed curve), multi-point propagator expansion at one-
(red, thick, dashed) and two-loops (red, thick, continuous) ass obtained from the RegPT code of [62].

Let us first notice that, in the ⇤CDM case (left panels in Figure 5), the two-loops standard
PT does not provide a good fit to the data at low redshifts [64], while it reproduces fairly well the
simulation measurements at z � 1. Analytic predictions are 1% accurate at z = 1, up to a maximum
wave-number kmax ' 0.3hMpc�1

5.
Turning our attention to the CDM power spectrum in massive neutrino cosmologies (right panels

in Figure 5), at z � 1 we find approximately that the 1% accuracy is recovered up to a value of kmax

very close to the ⇤CDM case. On the other hand, at lower redshifts, z < 1, we notice that, with
respect to the massless case, PT predictions are in better agreement with the measurements extracted
from the DEMNUni simulations. This is a consequence of the fact that, due to massive neutrino free
streaming, the nonlinear evolution of CDM perturbations is suppressed, and therefore the range of
scales in which PT corrections show the same accuracy as in standard ⇤CDM cosmologies increases
with f⌫ , i.e. with the relative contribution of the total neutrino mass to ⌦m. In addition, since, massive
neutrino free streaming has an impact already at the linear level, these models are characterised by a
lower value of �

8

(and �
8,cc) than a ⇤CDM universe with the same ⌦m.

5
It is worth noticing that the agreement may also depend on the simulation mass resolution; we expect that much

higher resolutions lead to more power at small scales [65].
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Figure 6. Same as Figure 5 but for the total matter power spectrum with ⌃m⌫= 0.3 eV (left panels) and
0.53 eV (right panels). Theoretical predictions have been obtained using Eq. (4.1), i.e. computing nonlinear
correction for CDM only.

Given a prediction for the CDM power spectrum accurate at the 1% level up to a given kmax, we
check if the perturpative approach of Eq. (4.1) reproduces, with the same level of accuracy, the total
matter power spectrum measured from the simulations. The results are illustrated in Figure 6, which
shows that, indeed, the linear treatment of the Pc⌫ and P⌫ contributions to the total Pmm proves to be
a very good approximation. The di↵erence in the accuracy of the predictions between the ⌃m⌫= 0.3
eV (left panels) and the ⌃m⌫= 0.53 eV (right panels) cases is again mainly due to the di↵erent values
of f⌫ and, therefore, to the di↵erent e↵ect of neutrino free streaming on dark matter perturbations,
according to the total neutrino mass: for a given value of ⌦m, a larger value of ⌃m⌫ not only increases
the relative amount of neutrino perturbations that are washed out below the free streaming scale,
�
FS

, consequently reducing the contribution of P⌫ and Pc⌫ to the total Pmm, but also decreases the
factor (1�f⌫)2 in front of Pcc in Eq. (4.1), where the nonlinear evolution of Pcc is in turn suppressed,
with respect to the massless case, by the action of the total gravitational potential sourced both by
CDM and massive neutrinos. Apart from inducing a scale-dependence of the linear growth factors for
CDM and total matter, the main direct product of this physical mechanism is represented by a lower
amplitude of linear perturbations at z = 0, where �

8,cc = 0.786, 0.740, and �
8,mm = 0.770, 0.717, for

⌃m⌫= 0.3, 0.53 eV, respectively. We will show in §4.2 that, on scales much smaller than the so-called
turn-over scale, beyond the mildly nonlinear regime, k > 0.2 hMpc�1, where the growth factor scale-
dependence induced by neutrino free streaming approaches its asymptotic value depending only on
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Several works in the literature have discussed the e↵ects of massive neutrinos in cosmological
perturbation theory beyond the linear level [10, 27, 52–58]. In these descriptions, the neutrino compo-
nent is treated, similarly to the CDM one, as a single perfect fluid, fully characterised in terms of its
density and velocity divergence (see, however, [59, 60] for a multiple-flow approach to the evolution
of neutrino perturbations). The main di↵erence with respect to the ⇤CDM case is represented by
an e↵ective sound speed modifying the Euler equation for the neutrino component, and accounting
for the neutrino velocity distribution. The first consequence, at the linear level, is a scale-dependent
linear growth factor, D(k, z), for both the CDM and neutrino components. However, the perfect-fluid
approximation fails to provide an accuracy for the neutrino power spectrum below the 10% level [57].
Nonetheless, as shown in §4, since the neutrino contribution to the total matter power spectrum is
order of magnitudes smaller than the CDM one, such discrepancies on the neutrino component alone
do not a↵ect significantly the CDM and total matter power spectra. Therefore, we will assume the
two-fluid approximation for all the comparisons of analytical versus numerical results in this section.

In addition, even if in the mildly nonlinear regime the e↵ective sound speed a↵ects as well the
mode-coupling at all the orders of the perturbative expansion, we will follow the same approach
adopted by [54]. They have shown that limiting the neutrino-induced scale-dependence to the linear
growth factor alone (and, therefore, the use of standard EdS- like kernels in the perturbative expan-
sion) proves to be a quite good approximation to the full PT solution for the nonlinear CDM field,
on scales where PT is expected to be accurate.

Finally, we will make the additional approximation, already proposed in [52], of describing the
neutrino perturbations by means of their linear solution. While this is not per se a good assumption
[27, 58], it does provide the correct neutrino contribution to the total matter power spectrum on the
(large) scales where such contribution is relevant.

As a starting point for future, more accurate comparisons, we will consider, therefore, the fol-
lowing perturbative prediction for the total matter power spectrum

PPT
mm(k) = (1� f⌫)

2 PPT
cc (k) + 2 (1� f⌫) f⌫ P

L
c⌫(k) + f2

⌫ PL
⌫⌫(k) . (4.1)

Here, the contribution PPT
cc (k, z) represents the nonlinear power spectrum predicted in perturbation

theory along the lines of [54], i.e. it is computed in terms of its linear counterpart, PL
cc(k, z), which

provides the correct linear scale-dependence of the growth factor, but assumes the standard EdS
nonlinear kernels in the perturbative expansion. Di↵erently from previous works, however, we do
not only consider standard, one-loop corrections to PL

cc, but we take into account also standard PT
two-loop corrections, as well as the “regularised” predictions based on the multi-point propagator
expansion of [61], computed using the RegPT code of [62]. Since the RegPT code does not account
for the evolution of the scale-dependent linear growth in massive neutrino models, we produce all the
predictions at z > 0 by providing the corresponding z-input linear power spectrum as a “fake z = 0
input” required by the code.

While this is not the most rigorous approach, it represents a practical application, to massive
neutrino scenarios, of available tools developed within the ⇤CDM framework. As we will see, the
gain in accuracy achieved by recent resummation schemes, applied here to the CDM component
alone, might compensate for the crude approximations that this approach implies. Clearly we are
only considering predictions for the CDM and total matter power spectra, as these statistics are the
relevant ones for galaxy clustering and weak lensing observations.

In Figure 5 we show the perturbative results against the measurements at z = 0.5, 1, and for
⌃m⌫= 0, 0.53 eV. Error bars are the theoretical expectation for a Gaussian field, that is

�P 2(k) =
1

2⇡ k2 kf


P (k) +

1

(2⇡)3 n̄

�
2

, (4.2)

where kf ⌘ 2⇡/L is the fundamental frequency of the simulation box, L being its linear size, and n̄
is the particle number density accounting for the shot-noise component4.

4
The relatively small scatter of data points with respect to the error bars is due to the specific seed chosen for the

random number generator used for the set-up of the initial conditions [63].
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Figure 5. The 68 and 95 percent CL contour plot for neutrino mass and ΩM using three different galaxy modelling.

Figure 7. The 1-D posterior distribution of the neutrino mass using different
RSD modelling as illustrated in the legend.

different RSD modelling. As we can see, the neutrino mass con-
straints are generally similar. This is mainly because the effect of
scale-dependent RSD up to k = 0.1 h/Mpc is rather mild and is un-
likely to be degenerate with the neutrino mass. Note, however, the
neutrino mass is indeed degenerate with the linear bias parameter
b1 with the correlation coefficient being 0.716. This is easy to un-
derstand: increasing b1 shifts the whole P (k) upwards, thus a larger
neutrino mass is needed to suppress the power to compensate. This
is similar to the well-known degeneracy between the neutrino mass
and the equation-of-state w of dark energy (Hannestad 2005).

Given these results, in this work we adopt the RSD1 model,
which is equivalent to the SPT model (Eq. 9), as a default just for
simplicity.

5.1.5 P (k) or BAO?

A strong feature of the galaxy power spectrum is the BAO signal,
whose location depends on rs/DV , where rs is the sound horizon
at the baryon drag epoch, and DV is the average distance to the
galaxies pairs defined in Eq (5). The full CMASS P (k) includes
information on additional physical processes, including those re-

Σmν [eV]
RSD modelling 95 percent CL Mean σ

RSD1 < 0.340 0.149 0.104
RSD2 < 0.336 0.140 0.103
RSD3 < 0.384 0.158 0.118
RSD4 < 0.324 0.135 0.099

Table 3. The neutrino mass constraint for various RSD modelling.

lated to neutrinos. In some cases, e.g., for dark energy parameters,
BAO and the full P (k) can provide similar constraints (see, e.g.,
Sanchez et al. 2012). By comparing our constraints using the full
P (k) to the BAO only result, we can determine the amount of in-
formation about physical processes related to neutrinos that is en-
coded in the CMASS P (k).

For the constraints on the summed neutrino mass, Fig. 3 and
Table 4, show that the constraint from including the CMASS BAO
measurement, rather than the full power spectrum is much weaker,
namely,

Σmν < 0.579 eV (WMAP7 + SNLS3 + CMASS BAO),

Σmν < 0.340 eV (WMAP7 + SNLS3 + CMASS P (k)).

Clearly, the broadband shape of the CMASS P (k) contains signif-
icant information on physical processes related to neutrinos, par-
ticularly on the small-scale damping of P (k) caused by the free-
streaming of neutrinos.

5.1.6 Summary

The measurements of the neutrino mass in a ΛCDM background
cosmology are summarised in Table 4. We find that

(i) As long as WMAP7 and CMASS P (k) data are used, us-
ing SNLS3 or Union2.1 SN data yield similar neutrino mass con-
straints;
(ii) The neutrino mass constraint cannot be improved when fit-

ting to scales kmax ! 0.1 hMpc−1;
(iii) If kmax = 0.1 hMpc−1, three galaxy models for the

galaxy power spectrum described in Eqns. (9), (18) and (19), and
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Figure 7. Two-dimensional likelihood for Ωm-σ8 (left) and
∑

mν -σ8 (right) when combining Planck MCMC chains within ΛCDM and
free

∑
mν with different low redshift growth of structure constraints. We show the main Planck results in the two plots on the top.

The two bottom plots show the results where we used a Planck MCMC chain with the AL-lensing signal marginalised out. The orange
contours show Planck combined with the DV /rs, FAP and fσ8 constraints of Beutler et al. (2013). The green contours additionally
include CFHTLenS. The blue contours show Planck and Planck−AL combined with CMB lensing from the 4-point function (top left
and bottom left, respectively). The results are summarised in Table 2.

Planck−AL since AL is the parameter used to mimic the
lensing effect on the CMB temperature power spectrum
(smoothing of the higher order peaks). One must keep in
mind, however, that AL is not a physical parameter, but
only a way to remove the lensing effect from the CMB power
spectrum data. To avoid confusion, from now on we will des-
ignate the lensing contribution to the temperature power
spectrum as AL-lensing and the lensing signal in the 4-point
function as CMB lensing (or CMBlensing in Table 2). The

WMAP dataset is not sensitive to gravitational lensing, be-
cause this effect is only significant at large multipoles.

The Planck collaboration reports some anomalies with
respect to the AL-lensing contribution. When including the
parameter AL in the fit, Planck reports AL = 1.29 ± 0.13
(Planck+WP) (Ade et al. 2013a), which is 2σ from the ex-
pected value of 1, while the lensing effect in the 4-point func-
tion produces Aφφ

L = 0.99 ± 0.05 (Ade et al. 2013c). Thus
the AL-lensing contribution is in (small) tension with the
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Figure 2. Left panel: comparison between the DEMNUni runs and previous, recent simulations of
massive neutrino cosmologies in terms of CDM particle mass resolution and simulation volume. Grey
diagonal lines indicate the number of CDM particles. Right panel: same as left one but for neutrino
particle mass resolution. Multiple points for the same set of simulations reflect the di↵erent values
of neutrino masses used ( for simplicity we always assume ⌦m = 0.32 and f⌫ = 0.02 to compute
neutrinos particle masses)

enclosing a matter (CDM+neutrinos) density equal to 200 times the mean density of the
Universe ⇢m(z) at redshift z, and the corresponding mass in terms of M200 ⌘ 200 ⇢m

4⇡
3 R 3

200.
We stress here that all the post-processing has been modified to take the neutrino component
properly into account.

Figure 2 presents a comparison of the DEMNUni simulations to previous N-body sim-
ulations with massive neutrino particles, in terms of the CDM particle mass resolution mp

and simulation volume V . Diagonal grey lines indicate the number of CDM particles. With
respect to previous simulations, the DEMNUni suite represents an improvement of about an
order of magnitude in terms of particle number (only [45] considered a larger box, but with
considerably smaller mass resolution).

4 Matter power spectra

As shown in section 2, the shape of the linear power spectrum is quite sensitive to the value of
neutrino masses, and this dependence becomes even stronger in the mildly and fully nonlinear
regimes [41, 45]. Taking advantage of the large DEMNUni simulations volume, in this section
we aim at testing the accuracy of current analytical predictions for the nonlinear matter power
spectrum, Pmm, in the presence of massive neutrinos. To this end, we measure individually
the di↵erent components to Pmm in eq. (2.5), from very large scales, k ⇠ 0.003hMpc�1,
down to fully nonlinear scales, k ⇠ 3hMpc�1, and compare these measurements with PT
predictions, in the mildly nonlinear regime, and fitting functions as halofit [30, 46], in the
fully nonlinear regime.2 The goal here is to understand if possible departures from the linear
regime of neutrino perturbations have to be taken into account for precision cosmology at
the % level.

2
While the mass resolution of the DEMNUni simulations would allow to look at much smaller scales, of the

order of k ⇠ 10hMpc

�1
, we do not investigate this regime since it is dominated by baryon physics [47–51].
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Full-Boltzmann simulation, but ignoring self-gravity of neutrinos

halo, and the fraction of that mass that is bound to the halo
at late times. To calculate the total neutrino mass, we use
the BKT approximation of Sec. III A for mν ≤ 0.1 eV,
while for mν ¼ 0.2 eV, we use the BKT approximation for
M ¼ 1013M⊙, 1014M⊙ but the exact Boltzmann calcula-
tion of Sec. III C for M ¼ 1015; and for mν ≥ 0.4 eV, we
use the BKT only for Mhalo ¼ 1013M⊙ and the full
Boltzmann calculation in all other cases. For the accreted
bound mass we use Eq. (18) with an unperturbed
Boltzmann distribution for mν ≤ 0.1 eV, but include a
perturbation calculated from the BKT approximation in
Eq. (14) for mν ¼ 0.2 eV and M ¼ 1015M⊙, as well as for
mν ≥ 0.4 eV when M ¼ 1014M⊙, 1015M⊙. We calculate
the neutrino mass fluctuation interior to CDM halos with a
range of halo masses and collapse times. For neutrinos with
masses mνi ≲ 0.2 eV, δMνð< r#Þ does not vary strongly
with redshift and our calculations of the neutrino mass
within r# today are well approximated by

δMνð< r#; t0Þ

≈
X

i

ð3.4 × 109M⊙Þ
!

mνi

0.05 eV

"
2.6
!

M
1014M⊙

"
1.5

(24)

whereM is the mass of CDM. For the same mass range, the
bound neutrino mass today is well approximated by

δMνð< r#; t0Þjbound

≈
X

i

ð1.2 × 108M⊙Þ
!

mνi

0.05 eV

"
3.8
!

M
1014M⊙

"
1.9
:

(25)

For larger neutrino masses, both δMνð< r#; t0Þ and δMν
ð< r#; t0Þjbound depend more strongly on the redshift of
halo collapse and the dependence on mν and M is more
complicated than the product of power laws given above.
For instance, for mν ≳ 0.4 eV, δMνð< r#; t0Þ varies by a
factor of Oð1Þ between halos that collapse at z ∼ 0 and
z ∼ 1.5, with the larger changes occurring for high mass
halos and larger neutrino masses.

V. CONCLUSION

We have investigated neutrino clustering in the sim-
plest model of halo formation: the spherical collapse
model for an isolated halo. The methods of analysis here
can straightforwardly be applied to more realistic models
of dark matter halos if the form of the halo potential is
given. However, even in this simple model the neutrino
halos are comparatively more complicated than the dark
matter and there are several interesting takeaway lessons.
First, the physical extent of the neutrino halo is signifi-
cantly larger than the virial radius of the dark matter
halo—a factor of ∼8 for a virialized halo during matter
domination. Despite the fact that the neutrino mass
contributes only a small fraction to the total mass of
the halo, the neutrino mass is more spatially extended
and, in this simple model, the neutrino density perturba-
tion dominates over CDM density perturbation at large
distances. While it would be extremely challenging to
detect the neutrino halo, it is at least in principle possible
with weak gravitational lensing [44]. This result for
spherical halos is in qualitative agreement with the results
of [37], who found that at large radii the neutrino density
profile around CDM halos in their simulations can be fit

FIG. 7 (color online). Left: The total fluctuation in neutrino mass interior to r# at z ¼ 0. Shown is δMνð< r#Þ as a function of halo mass
M for several neutrino mass hierarchy scenarios indicated by different color lines. From bottom to top they are normal hierarchy
(mν1 ¼ 0.05 eV, mν2 ¼ 0.01 eV, and mν3 ¼ 0 eV), inverted hierarchy (mν1 ¼ 0.05 eV, mν2 ¼ 0.05 eV, and mν3 ¼ 0 eV), degenerate
mνi ¼ 0.1 eV, degenerate mνi ¼ 0.2 eV, degenerate mνi ¼ 0.4 eV, degenerate mνi ¼ 0.6 eV, Degenerate mνi ¼ 0.8 eV). At a fixed
redshift (above z ∼ 0), the neutrino mass fluctuation in a given halo depends on the time of halo collapse; shown above are zcollapse ∼ 1 (dot-
dashed), zcollapse ∼ 0.5 (dashed), and zcollapse ∼ 0 (solid). Right: The fraction of the total neutrino mass interior to r# that is bound to the halo.
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halo, and the fraction of that mass that is bound to the halo
at late times. To calculate the total neutrino mass, we use
the BKT approximation of Sec. III A for mν ≤ 0.1 eV,
while for mν ¼ 0.2 eV, we use the BKT approximation for
M ¼ 1013M⊙, 1014M⊙ but the exact Boltzmann calcula-
tion of Sec. III C for M ¼ 1015; and for mν ≥ 0.4 eV, we
use the BKT only for Mhalo ¼ 1013M⊙ and the full
Boltzmann calculation in all other cases. For the accreted
bound mass we use Eq. (18) with an unperturbed
Boltzmann distribution for mν ≤ 0.1 eV, but include a
perturbation calculated from the BKT approximation in
Eq. (14) for mν ¼ 0.2 eV and M ¼ 1015M⊙, as well as for
mν ≥ 0.4 eV when M ¼ 1014M⊙, 1015M⊙. We calculate
the neutrino mass fluctuation interior to CDM halos with a
range of halo masses and collapse times. For neutrinos with
masses mνi ≲ 0.2 eV, δMνð< r#Þ does not vary strongly
with redshift and our calculations of the neutrino mass
within r# today are well approximated by

δMνð< r#; t0Þ

≈
X

i

ð3.4 × 109M⊙Þ
!

mνi

0.05 eV

"
2.6
!

M
1014M⊙

"
1.5

(24)

whereM is the mass of CDM. For the same mass range, the
bound neutrino mass today is well approximated by

δMνð< r#; t0Þjbound

≈
X

i

ð1.2 × 108M⊙Þ
!

mνi

0.05 eV

"
3.8
!

M
1014M⊙

"
1.9
:

(25)

For larger neutrino masses, both δMνð< r#; t0Þ and δMν
ð< r#; t0Þjbound depend more strongly on the redshift of
halo collapse and the dependence on mν and M is more
complicated than the product of power laws given above.
For instance, for mν ≳ 0.4 eV, δMνð< r#; t0Þ varies by a
factor of Oð1Þ between halos that collapse at z ∼ 0 and
z ∼ 1.5, with the larger changes occurring for high mass
halos and larger neutrino masses.

V. CONCLUSION

We have investigated neutrino clustering in the sim-
plest model of halo formation: the spherical collapse
model for an isolated halo. The methods of analysis here
can straightforwardly be applied to more realistic models
of dark matter halos if the form of the halo potential is
given. However, even in this simple model the neutrino
halos are comparatively more complicated than the dark
matter and there are several interesting takeaway lessons.
First, the physical extent of the neutrino halo is signifi-
cantly larger than the virial radius of the dark matter
halo—a factor of ∼8 for a virialized halo during matter
domination. Despite the fact that the neutrino mass
contributes only a small fraction to the total mass of
the halo, the neutrino mass is more spatially extended
and, in this simple model, the neutrino density perturba-
tion dominates over CDM density perturbation at large
distances. While it would be extremely challenging to
detect the neutrino halo, it is at least in principle possible
with weak gravitational lensing [44]. This result for
spherical halos is in qualitative agreement with the results
of [37], who found that at large radii the neutrino density
profile around CDM halos in their simulations can be fit

FIG. 7 (color online). Left: The total fluctuation in neutrino mass interior to r# at z ¼ 0. Shown is δMνð< r#Þ as a function of halo mass
M for several neutrino mass hierarchy scenarios indicated by different color lines. From bottom to top they are normal hierarchy
(mν1 ¼ 0.05 eV, mν2 ¼ 0.01 eV, and mν3 ¼ 0 eV), inverted hierarchy (mν1 ¼ 0.05 eV, mν2 ¼ 0.05 eV, and mν3 ¼ 0 eV), degenerate
mνi ¼ 0.1 eV, degenerate mνi ¼ 0.2 eV, degenerate mνi ¼ 0.4 eV, degenerate mνi ¼ 0.6 eV, Degenerate mνi ¼ 0.8 eV). At a fixed
redshift (above z ∼ 0), the neutrino mass fluctuation in a given halo depends on the time of halo collapse; shown above are zcollapse ∼ 1 (dot-
dashed), zcollapse ∼ 0.5 (dashed), and zcollapse ∼ 0 (solid). Right: The fraction of the total neutrino mass interior to r# that is bound to the halo.
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For a spherical top-hat CDM halo,

C. Full Boltzmann solution

The approximate solution in Sec. III A does not accurately
treat the bound neutrinos. As we have seen in Sec. III B,
bound neutrinos can be a significant contribution to the total
δMν around the halo. In this section we sample the initial
neutrino phase space and numerically integrate the trajecto-
ries in the external halo potential to determine the neutrino
clustering (similar to the “N-1-body” approach of [28,36]).
Here, our only approximation is to assume that the change to
the CDM halo potential due to neutrino clustering can be
ignored when calculating the neutrino trajectories.
Precisely, our method here is as follows. At t ¼ 1.5tNR,

where tNR is defined as the time at which p=mν < 0.05, we
numerically integrate Eq. (1) with initial positions and
momenta taking values on a uniformly spaced grid in ri, pi.
The ranges of ri and pi are determined by the unperturbed
neutrino distribution function in Eq. (11) and the range of
positions between the halo origin and the maximum travel
distance between 1.5tNR and t for the bin with highest
initial momentum. From this grid of trajectories we can
compute properties of the neutrino distribution at later
times by numerically integrating over the volume of initial
phase space that satisfies our criterion (e.g. the trajectories
from that volume that are within r" at time t). For the
neutrino mass interior to r" we have

Mνð< r"; tÞ ¼
Z

d3ri

Z
d3pi

ð2πÞ3
f0ðpiÞ

× Θðjrðtjri;piÞj < r"Þ: (23)

This calculation is computationally intensive and for
smaller halo masses and smaller neutrino masses it is
increasingly difficult to achieve sufficient sampling of the

initial phase space for convergence. Fortunately these are
precisely the scenarios in which we expect the BKT
approximation to be accurate. As a test of our calculations
we use the same method to determine the neutrino mass
interior to r", Rc in the absence of the halo potential; that is,
if our calculation has converged we should recover
M̄νð< r"Þ ¼ 4=3πr3"ρ̄ν, M̄νð< RcÞ ¼ 4=3πR3

cρ̄ν.
In comparing this “full Boltzmann” calculation to the BKT

approximation in Sec. III Awe find that formν ≲ 0.2 eV and
M ≲ 1014M⊙, the BKT approximation for δMνð< r"Þ is
accurate to about ∼10%. In Fig. 6 results for mν ¼ 0.2 eV,
mν ¼ 0.4 eV and mν ¼ 0.6 eV are plotted. For larger
neutrino masses and larger halo masses, the BKT approxi-
mation can underestimate the neutrino mass within r", but in
no case that we consider isMν off by more than ∼50% today
(even for mν ¼ 0.8 eV and M ¼ 1015M⊙ the error in
δMνð< r"Þ is ∼50%). In the extreme Λ-dominated future
the BKT approximation is worse: the true δMνð< r"Þ
approaches a constant while in the BKT calculation δMν
continues to fall. As noted by others [28,36], the BKT
approximation underestimates the neutrino mass fluctuation
on the smaller scale of the halo radius Rc by a large amount.
The BKT approximation underestimates δMνð< RcÞ by
nearly a factor of 3 for mν ¼ 0.4 eV and an order of
magnitude for mν ¼ 0.8 eV. However, for values of the
neutrino mass that are within the current cosmological
bounds, say mν ≲ 0.2 eV, the BKT approximation is accu-
rate to about a factor of 2 even on the scale Rc.

IV. RESULTS FOR THE NEUTRINO MASS
AROUND SPHERICAL HALOS

In Fig. 7 we plot our final results for the neutrino mass
interior to r", our definition of the boundary of the neutrino

FIG. 5 (color online). Left: The accreted bound neutrino mass (from a single neutrino species) within radius r" at the collapse time as a
function of CDM halo mass calculated using Eqs. (18)–(20). The value of δMν depends on the halo collapse time and for each (mν,M)
we plot points with a range of zcollapse values; they are zcollapse ¼ 0 (solid), 0.5 (dashed), 1 (dot-dashed), and 1.5 (dotted). For
mν ≲ 0.2 eV, the bound neutrino mass scales roughly as δMνð< r"; tcollapseÞ ∝ M2m4

ν whereas for higher neutrino masses the scaling is
closer to δMνð< r"; tcollapseÞ ∝ M3=2m3

ν . Right: A subset of the trajectories ofmν ¼ 0.05 eV neutrinos captured by aM ¼ 1014M⊙ halo.
Also plotted are the radius of the CDM halo Rvir today (solid) and our definition of the boundary of the neutrino halo r" (dotted) at z ¼ 0.

MARILENA LOVERDE AND MATIAS ZALDARRIAGA PHYSICAL REVIEW D 89, 063502 (2014)

063502-8

Current simulation with massive ν  does not have sufficient 
resolution to properly describe the neutrino clustering

… comparable to the mass of neutrino’s macro particle

halo, and the fraction of that mass that is bound to the halo
at late times. To calculate the total neutrino mass, we use
the BKT approximation of Sec. III A for mν ≤ 0.1 eV,
while for mν ¼ 0.2 eV, we use the BKT approximation for
M ¼ 1013M⊙, 1014M⊙ but the exact Boltzmann calcula-
tion of Sec. III C for M ¼ 1015; and for mν ≥ 0.4 eV, we
use the BKT only for Mhalo ¼ 1013M⊙ and the full
Boltzmann calculation in all other cases. For the accreted
bound mass we use Eq. (18) with an unperturbed
Boltzmann distribution for mν ≤ 0.1 eV, but include a
perturbation calculated from the BKT approximation in
Eq. (14) for mν ¼ 0.2 eV and M ¼ 1015M⊙, as well as for
mν ≥ 0.4 eV when M ¼ 1014M⊙, 1015M⊙. We calculate
the neutrino mass fluctuation interior to CDM halos with a
range of halo masses and collapse times. For neutrinos with
masses mνi ≲ 0.2 eV, δMνð< r#Þ does not vary strongly
with redshift and our calculations of the neutrino mass
within r# today are well approximated by

δMνð< r#; t0Þ

≈
X

i

ð3.4 × 109M⊙Þ
!

mνi

0.05 eV

"
2.6
!

M
1014M⊙

"
1.5

(24)

whereM is the mass of CDM. For the same mass range, the
bound neutrino mass today is well approximated by

δMνð< r#; t0Þjbound

≈
X

i

ð1.2 × 108M⊙Þ
!

mνi

0.05 eV

"
3.8
!

M
1014M⊙

"
1.9
:

(25)

For larger neutrino masses, both δMνð< r#; t0Þ and δMν
ð< r#; t0Þjbound depend more strongly on the redshift of
halo collapse and the dependence on mν and M is more
complicated than the product of power laws given above.
For instance, for mν ≳ 0.4 eV, δMνð< r#; t0Þ varies by a
factor of Oð1Þ between halos that collapse at z ∼ 0 and
z ∼ 1.5, with the larger changes occurring for high mass
halos and larger neutrino masses.

V. CONCLUSION

We have investigated neutrino clustering in the sim-
plest model of halo formation: the spherical collapse
model for an isolated halo. The methods of analysis here
can straightforwardly be applied to more realistic models
of dark matter halos if the form of the halo potential is
given. However, even in this simple model the neutrino
halos are comparatively more complicated than the dark
matter and there are several interesting takeaway lessons.
First, the physical extent of the neutrino halo is signifi-
cantly larger than the virial radius of the dark matter
halo—a factor of ∼8 for a virialized halo during matter
domination. Despite the fact that the neutrino mass
contributes only a small fraction to the total mass of
the halo, the neutrino mass is more spatially extended
and, in this simple model, the neutrino density perturba-
tion dominates over CDM density perturbation at large
distances. While it would be extremely challenging to
detect the neutrino halo, it is at least in principle possible
with weak gravitational lensing [44]. This result for
spherical halos is in qualitative agreement with the results
of [37], who found that at large radii the neutrino density
profile around CDM halos in their simulations can be fit

FIG. 7 (color online). Left: The total fluctuation in neutrino mass interior to r# at z ¼ 0. Shown is δMνð< r#Þ as a function of halo mass
M for several neutrino mass hierarchy scenarios indicated by different color lines. From bottom to top they are normal hierarchy
(mν1 ¼ 0.05 eV, mν2 ¼ 0.01 eV, and mν3 ¼ 0 eV), inverted hierarchy (mν1 ¼ 0.05 eV, mν2 ¼ 0.05 eV, and mν3 ¼ 0 eV), degenerate
mνi ¼ 0.1 eV, degenerate mνi ¼ 0.2 eV, degenerate mνi ¼ 0.4 eV, degenerate mνi ¼ 0.6 eV, Degenerate mνi ¼ 0.8 eV). At a fixed
redshift (above z ∼ 0), the neutrino mass fluctuation in a given halo depends on the time of halo collapse; shown above are zcollapse ∼ 1 (dot-
dashed), zcollapse ∼ 0.5 (dashed), and zcollapse ∼ 0 (solid). Right: The fraction of the total neutrino mass interior to r# that is bound to the halo.
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(e.g., Ringwald & Wong ’04)



重力レンズ効果における
非線形性の低減

Ref.
Bernardeau, Nishimichi & Taruya, MNRAS 445, 1526 (’14)



Cosmic shear

⼤大規模構造の時間進化

a

b

手前に存在する宇宙大規模構造が作る（弱い）重力レンズ
効果により、遠方の背景銀河のイメージが歪む現象

銀河の歪み具合（楕円率）
幾何学的重み
×密度ゆらぎの振幅

イメージの歪みの空間相関から、宇宙大規模構造のもつ
宇宙論的情報を引き出せる → 精密宇宙論の基本観測量



Cosmic shear statistics : theory
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Cosmic shear power spectrum

線形理論からのずれが顕著
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Impact of small-scale nonlinearity 
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Motivation
小スケールからの寄与が大きすぎる!!

バリオン物理の影響（物理的不定性）

摂動論をこえる重力進化の理論モデルが不可欠
高精度予言が困難

宇宙論パラメーター推定をバイアス

小スケールからの非線形性を何とか低減して、

（e.g., フィッティング公式）

摂動論レベルの理論予言でパワースペクトルを記述できないか？
その方法論の開発

ここでの話



Nulling low-z contribution
基本的なアイデア

 適当な「重み関数」をかけてレンズカーネルの形を変える
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Simplified setup (1)
3 source-plane solution

背景銀河が離散的に、�s = �i (i = 1, 2, 3)の赤方偏移面にいる場合
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Simplified setup (2)
Multiple source-plane solution

背景銀河の赤方偏移面が3枚以上ある場合 �s = �i (i = 1, · · · , n)
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Simulations vs. Perturbation theory

w/o nulling w/ nulling
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摂動論の適用範囲が広がった

large-�

シミュレーション: Sato et al. (’09)

�2
C

�
/(

2�
)

�2
C

�
/(

2�
)

100 1000500200 300150 15007002.! 10"6

3.! 10"6

4.! 10"6
5.! 10"6

1. 10"5

2. 10"5

3. 10"5

4. 10"5
5. 10"5

1. 10"4

!

1!
"2
Π
#

!
2
C !

RegPT 2-loop
RegPT 1-loop
Linear

100 1000500200 300150 15007002.! 10"7

3.! 10"7

4.! 10"7
5.! 10"7

1.! 10"6

2.! 10"6

3.! 10"6

4.! 10"6
5.! 10"6

1. 10"5

!

1!
"2
Π
#

!
2
C !

0.0 0.5 1.0 1.5

0

200

400

600

800

z

w
!z
"

zs = 1.5

zs = 1

zs = 0.8



Realistic setup (1)
1. 背景銀河の赤方偏移分布は ‘連続的’

2. 背景銀河の赤方偏移には誤差が含まれる

1. 背景銀河分布 n(�s)

ただしこの条件だけではユニークに決まらない：
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Realistic setup (2)

例
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Realistic setup (3)
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背景銀河の赤方偏移分布
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（ガウス分布を仮定して畳み込み）

Photo-z error の影響
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少しなまる→ 直近の赤方偏移ビンへシグナルが混入
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Impact on lensing tomography

ビン1（0<z<1）: 一様な重み

Photo-z error による 隣り合うビン同士の spurious な相関

ビン2（1<z<2）:  nulling profile を適用

重力レンズトモグラフィーへの影響
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Impact of wrong cosmological prior
Nulling profile 構築には、宇宙論モデルを事前に知る必要あり

宇宙論を間違うと パーフェクトな “nulling” ができない
隣り合うビン同士の spurious な相関

ビン1（0<z<1）: 一様な重み
ビン2（1<z<2）:  nulling profile を適用
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Summary
重力レンズ観測における、Nulling テクニックの開発

摂動論を用いた理論テンプレートの適用範囲を広げる

小スケールの非線形性の影響を低減する

Impact of photo-z error / wrong cosmological prior 
on nulling lensing technique 影響小さい

重み関数
p�(�) = �� �

� �2

�1
d� ��n(�)

� �2

�1
d� n(�)

w(�) = p2(�)�
� �2

�1
d� p2(�)n(�)

� �2

�1
d� p2

�1(�)n(�)
p�1(�) ;

背景銀河のphoto-z に対して、“重み”をかけるだけ



Applicable range of perturbation theory

RegPT:

摂動論の適用範囲
チャート

Nullingテクニックなし Nullingテクニックあり

http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/regpt_code.html
摂動論パブリックコード

� �

(AT, Bernardeau, Nishimichi & Codis ’13)


