## Assignment on Special topics in Physics BXVI (35603-1361)

Intensive course on "Cosmology with Large-scale Structure" (15-17 Nov. 2016)

Due date: 22nd Dec.
Submitted to to \#208 (教務) @ Faculty of Science Bldg. 1
[1] Derive Eq. (2.52). For a quantitative estimate of $k_{\text {eq }}$, you may use $\Omega_{r, 0} h^{2}=4.155 \times 10^{-5}$ :

$$
\begin{equation*}
k_{\mathrm{eq}} \equiv a_{\mathrm{eq}} H_{\mathrm{eq}}=\sqrt{\frac{2}{\Omega_{\mathrm{r}, 0} H_{0}^{2}}} \frac{\Omega_{\mathrm{m}, 0} H_{0}^{2}}{c}=0.0095\left(\frac{\Omega_{\mathrm{m}, 0} h^{2}}{0.13}\right) \mathrm{Mpc}^{-1} . \tag{2.52}
\end{equation*}
$$

[2] Derive Eq. (2.57):

$$
\begin{equation*}
r_{s}(\eta)=\frac{2}{3 k_{\mathrm{eq}}} \sqrt{\frac{6}{R_{\mathrm{eq}}}} \ln \left(\frac{\sqrt{1+R(\eta)}+\sqrt{R(\eta)+R_{\mathrm{eq}}}}{1+\sqrt{R_{\mathrm{eq}}}}\right) . \tag{2.57}
\end{equation*}
$$

[3] Using Eqs. (4.2) and (4.4), derive the critical value $\delta_{\text {crit }}$ in Eq. (4.5) (see below):

$$
\begin{equation*}
\delta_{\text {crit }} \equiv \delta_{\operatorname{lin}}\left(t_{\text {coll }}\right)=\frac{3}{20}(12 \pi)^{2 / 3} \simeq 1.68647, \tag{4.5}
\end{equation*}
$$

where $t_{\text {coll }}$ is the collapse time, $t_{\text {coll }}=t(\theta=\pi / 2)$. The $\delta_{\text {lin }}$ is the linearized density contrast whose expression is derived by taking the limit, $\theta \ll 1[$ Hint: you must take the limit in both $\delta(\theta)$ and $t(\theta)$ to obtain $\left.\delta_{\text {lin }}(t)\right]$.
[4] Using Eq. (4.47) and Eq. (4.54), derive Eq. (4.55):

$$
\begin{equation*}
B\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right) \simeq\left\{D_{1}(a)\right\}^{4}\left\{2 F_{2}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) P_{0}\left(k_{1}\right) P_{0}\left(k_{2}\right)+(\text { cyclic perm. })\right\} . \tag{4.55}
\end{equation*}
$$

[5] Consider the gravity-induced non-Gaussianity. A simple non-Gaussian indicator is the skewness defined by:

$$
S_{3} \equiv \frac{\left\langle\{\delta(\vec{x})\}^{3}\right\rangle}{\left\langle\{\delta(\vec{x})\}^{2}\right\rangle^{2}},
$$

where the quanties in the numerator and denominator are related to the Fourier-space correlators through

$$
\left\langle\{\delta(\vec{x})\}^{n}\right\rangle=\int \frac{d^{3} \boldsymbol{k}_{1} \cdots d^{3} \boldsymbol{k}_{n}}{(2 \pi)^{3 n}}\left\langle\delta\left(\boldsymbol{k}_{1}\right) \cdots \delta\left(\boldsymbol{k}_{n}\right)\right\rangle e^{i\left(\boldsymbol{k}_{1}+\cdots+\boldsymbol{k}_{n}\right) \cdot \vec{x}} .
$$

Show that the leading-order calculation based on the perturbation theory up to the second order gives

$$
S_{3} \simeq \frac{34}{7}
$$

Hint : To compute the denominator of $S_{3}$, you may use the linear theory result, $\delta \simeq \delta_{1}=$ $D_{1}(a) \delta_{0}(\boldsymbol{k})$ to obtain

$$
\left\langle\{\delta(\vec{x})\}^{2}\right\rangle \simeq D_{1}(a)^{2} \int \frac{d k k^{2}}{2 \pi^{2}} P_{0}(k) .
$$

For the numerator, the leading-order expression of the bispectrum has to be used [see Eq. (4.55)]. With the explicit functional form of the kernel $F_{2}$ [Eq. (4.37)], the numerator is then reduced to

$$
\left\langle\{\delta(\vec{x})\}^{3}\right\rangle \propto\left[D_{1}(a)^{2} \int \frac{d k k^{2}}{2 \pi^{2}} P_{0}(k)\right]^{2} .
$$

Note-. All the equation numbers indicated above are those presented in the lecture note. The lecture note is downloaded from http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/lecture.html.

