# Analytic approaches to nonlinear structure formation 

## Contents

- Spherical collapse model
- Zel'dovich approximation
- Perturbation theory
- Halo model
- Galaxy/halo bias


## Spherical collapse model

## Halo formation

Halo I


Suto, Kitayama, Osato, Sasaki \& Suto (I6)


## Comparison with SCM





Suto, Kitayama, Osato, Sasaki \& Suto (I6)

Zel'dovich approximation

## Particle trajectories in ZA



## Buchert \& Ehlers ('93)



Figure 3. A family of trajectories corresponding to the model presented in Fig. 1 is shown for the first-order (upper panel) and second-order (lower panel) approximations. The trajectories end in the Eulerian space-time section $(y=0.5, t)$ centred at a cluster. These plots illustrate that the three-stream system that develops after the first shell-crossing performs a self-oscillation due to the action of self-gravity.


## N_particle $=256^{\wedge} 3$ L=200Mpc/h ^CDM

Neyrink ('I3)
power spectrum

$k[\mathrm{Mpc} / h]$
cross correlation coeff.


## Perturbation theory

## Nonlinear gravitational evolution

$$
\delta(\vec{x}) \equiv \frac{\delta \rho_{\mathrm{m}}(\vec{x})}{\bar{\rho}_{\mathrm{m}}}=\frac{1}{\sqrt{V}} \sum_{\vec{k}} \delta(\vec{k}) e^{i \vec{k} \cdot \vec{x}} \longrightarrow P(k)=\frac{1}{N_{k}} \sum_{|\vec{k}|=k}|\delta(\vec{k})|^{2}
$$




## Regime of our interest

Most of interesting cosmological information (BAO, RSD, signature of massive neutrinos, ...) lies at $k<0.2-0.3 \mathrm{~h} / \mathrm{Mpc}$
.............> Weakly nonlinear regime



## Range of applicability



## Perturbation theory (PT)

Theory of large-scale structure based on gravitational instability Juszkiewicz ('8I), Vishniac ('83), Goroff et al. ('86), Suto \& Sasaki ('9l), Jain \& Bertschinger ('94), ...

Cold dark matter + baryons = pressureless \& irrotational fluid

$$
\frac{\partial \delta}{\partial t}+\frac{1}{\mathrm{a}} \vec{\nabla} \cdot[(1+\delta) \vec{v}]=0
$$

| Basic |
| :---: | :--- |
| eqs. | | $\frac{\partial \overrightarrow{\mathrm{v}}}{\partial t}+\frac{\dot{a}}{a} \overrightarrow{\mathrm{v}}+\frac{1}{a}(\overrightarrow{\mathrm{v}} \cdot \vec{\nabla}) \overrightarrow{\mathrm{v}}=-\frac{1}{a} \vec{\nabla} \Phi$ |
| :--- |
|  |
| $\frac{1}{a^{2}} \nabla^{2} \Phi=4 \pi G \bar{\rho}_{\mathrm{m}} \delta$ |

Single-stream approx. of collisionless Boltzmann eq.
standard PT
$|\delta| \ll 1$

$$
\delta=\delta^{(1)}+\delta^{(2)}+\delta^{(3)}+\cdots \quad\left\langle\delta(\boldsymbol{k} ; t) \delta\left(\boldsymbol{k}^{\prime} ; t\right)\right\rangle=(2 \pi)^{3} \delta_{\mathrm{D}}\left(\boldsymbol{k}+\boldsymbol{k}^{\prime}\right) P(|\boldsymbol{k}| ; t)
$$

## Equations of motion

$$
\begin{aligned}
& \partial_{\tau} \delta+\partial_{i}\left[(1+\delta) v^{i}\right]=0, \\
& \partial_{\tau} v^{i}+\mathcal{H} v_{l}^{i}+\partial^{i} \phi+v_{l}^{j} \partial_{j} v^{i}=0 \\
& \Delta \phi=\frac{3}{2} \mathcal{H}^{2} \Omega_{m} \delta .
\end{aligned}
$$

T: conformal time
$(a d T=d t)$

Fourier expansion

$$
\theta \equiv \nabla \cdot \boldsymbol{v}
$$

$$
\alpha\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \equiv \frac{\boldsymbol{q}_{1} \cdot\left(\boldsymbol{q}_{1}+\boldsymbol{q}_{2}\right)}{q_{1}^{2}}, \quad \beta\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \equiv \frac{1}{2}\left(\boldsymbol{q}_{1}+\boldsymbol{q}_{2}\right)^{2} \frac{\boldsymbol{q}_{1} \cdot \boldsymbol{q}_{2}}{q_{1}^{2} q_{2}^{2}}
$$

## Standard perturbation theory

$$
\delta(\boldsymbol{k}, a)=\sum_{i=1}^{\infty} \delta_{(j)}(\boldsymbol{k}, a), \quad \theta(\boldsymbol{k}, a)=-\mathcal{H}\left((a) \sum_{i=1}^{\infty} \theta_{\oplus(i)}(\boldsymbol{k}, a)\right.
$$

$$
f(a) \equiv d \ln D_{1} / d \ln a
$$

Adopting the E-dS approximation,
$\mathrm{D}_{\mathrm{I}}(\mathrm{a})$ : Linear growth factor

$$
\begin{gathered}
\delta_{(n)}(\boldsymbol{k}, a)=\underline{D_{1}^{n}(a)} \delta_{n}(\boldsymbol{k}), \quad \theta_{(n)}(\boldsymbol{k}, a)=\underline{D_{1}^{n}(a)} \theta_{n}(\boldsymbol{k}) \cdot \\
\delta_{n}(\boldsymbol{k})=\int_{\boldsymbol{q}_{1}} \ldots \int_{\boldsymbol{q}_{n}}(2 \pi)^{3} \delta_{D}^{(3)}\left(\boldsymbol{k}-\boldsymbol{q}_{1} \ldots-\boldsymbol{q}_{n}\right) F_{n}\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right) \delta_{0}\left(\boldsymbol{q}_{1}\right) \ldots \delta_{0}\left(\boldsymbol{q}_{n}\right) \\
\theta_{n}(\boldsymbol{k})=\int_{\boldsymbol{q}_{1}} \ldots \int_{\boldsymbol{q}_{n}}(2 \pi)^{3} \delta_{D}^{(3)}\left(\boldsymbol{k}-\boldsymbol{q}_{1} \ldots-\boldsymbol{q} /\right. \text { Gaussian) } \\
\text { standard PT kernel }\left(F_{1}=G_{1}=1\right)
\end{gathered}
$$

## Recursion relation for PT kernels

$$
\mathcal{F}_{a}^{(n)}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n}\right) \equiv\left[\begin{array}{c}
F_{n}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n}\right) \\
G_{n}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n}\right)
\end{array}\right]
$$

$$
\mathcal{F}_{a}^{(n)}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n}\right)=\sum_{m=1}^{n-1} \sigma_{a b}^{(n)} \gamma_{b c d}\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mathcal{F}_{c}^{(m)}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{m}\right) \mathcal{F}_{d}^{(n-m)}\left(\boldsymbol{k}_{m+1}, \cdots, \boldsymbol{k}_{n}\right)
$$

$$
\begin{aligned}
\boldsymbol{q}_{1} & =\boldsymbol{k}_{1}+\cdots+\boldsymbol{k}_{m} \\
\boldsymbol{q}_{2} & =\boldsymbol{k}_{m+1}+\cdots+\boldsymbol{k}_{n} \\
\sigma_{a b}^{(n)} & =\frac{1}{(2 n+3)(n-1)}\left(\begin{array}{cc}
2 n+1 & 2 \\
3 & 2 n
\end{array}\right)
\end{aligned}
$$

$$
\gamma_{a b c}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right)= \begin{cases}\frac{1}{2}\left\{1+\frac{\boldsymbol{k}_{2} \cdot \boldsymbol{k}_{1}}{\left|\boldsymbol{k}_{2}\right|^{2}}\right\} ; & (a, b, c)=(1,1,2) \\ \frac{1}{2}\left\{1+\frac{\boldsymbol{k}_{1} \cdot \boldsymbol{k}^{2}}{\mid \boldsymbol{k}_{1}{ }^{2}}\right\} ; & (a, b, c)=(1,2,1) \\ \frac{\left(\boldsymbol{k}_{1} \cdot \boldsymbol{k}^{2}\right)\left|\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right|^{2}}{\left.2\left|k_{1}\right|\right|^{2}\left|k_{2}\right|^{2}} ; & (a, b, c)=(2,2,2) \\ 0 ; & \text { otherwise }\end{cases}
$$

Note-. repetition of the same subscripts (a,b,c) indicates the sum over all multiplet components

PT kernels constructed from recursion relation should be symmetrized

## Power spectrum

$$
\left\langle\delta\left(\boldsymbol{k}_{1}, a\right) \delta\left(\boldsymbol{k}_{2}, a\right)\right\rangle \equiv(2 \pi)^{3} \delta_{D}^{(3)}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right) P\left(k_{1}, a\right)
$$

$$
P_{S P T}(k)=P_{\text {lin }}(k)+P_{22}(k)+P_{13}(k)+\text { higher order loops } .
$$

$$
\begin{aligned}
& P_{22}(k)=2 \int_{\boldsymbol{q}} P_{l i n}(q) P_{l i n}(|\boldsymbol{k}-\boldsymbol{q}|) F_{2}^{2}(\boldsymbol{q}, \boldsymbol{k}-\boldsymbol{q}), \\
& P_{13}(k)=6 P_{l i n}(k) \int_{\boldsymbol{q}} P_{l i n}(q) F_{3}(\boldsymbol{k}, \boldsymbol{q},-\boldsymbol{q}),
\end{aligned}
$$



## Next-to-next-to leading order

up to 2-loop order

$$
P^{(m n)} \simeq\left\langle\delta^{(m)} \delta^{(n)}\right\rangle
$$

$$
P(k)=\underline{\underline{P^{(11)}(k)}}+\left(P_{\text {Linear (tree) }}^{\left(P^{(22)}(k)+P^{(13)}(k)\right)}+\left(P^{(33)}(k)+P^{(24)}(k)+P^{(15)}(k)\right)+\cdots\right.
$$



Crocce \& Scoccimarro ('06)


Calculation involves multi-dimensional numerical integration
(time-consuming)

## Comparison with simulations

> Standard PT qualitatively explains scale-dependent nonlinear growth, however,

## |-loop:

overestimates simulations

## 2-loop :

overestimates at high-z, while it turn to underestimate at low-z

Standard PT produces illbehaved PT expansion !!
... need to be improved


AT et al. ('09)

## Improving PT predictions

Basic Reorganizing standard PT expansion by introducing idea non-perturbative statistical quantities

$$
\delta_{0}(\boldsymbol{k})
$$

initial density field (Gaussian)
Initial power spectrum

$$
P_{0}(k)
$$

from linear theory
(CMB Boltzmann code)

$$
\delta(\boldsymbol{k} ; z)
$$

Evolved density field (non-Gaussian)
Observables

$$
\begin{aligned}
& P(k ; z) \\
& B\left(k_{1}, k_{2}, k_{3} ; z\right)
\end{aligned}
$$

Nonlinear
$T\left(k_{1}, k_{2}, k_{3}, k_{4} ; z\right)$ mapping
of dark matter/galaxies/halos

Concept of 'propagator' in physics/mathematics may be useful

## Propagator in physics

## - Green's function in linear differential equations

- Probability amplitude in quantum mechanics

Schrödinger Eq.

$$
\begin{aligned}
& \left(-i \hbar \frac{\partial}{\partial t}+H_{x}\right) \psi(x, t)=0 \quad G\left(x, t ; x^{\prime}, t^{\prime}\right) \equiv \frac{\delta \psi(x, t)}{\delta \psi\left(x^{\prime}, t^{\prime}\right)} \\
& \left(-i \hbar \frac{\partial}{\partial t}+H_{x}\right) G\left(x, t ; x^{\prime}, t^{\prime}\right)=-i \hbar \delta_{D}\left(x-x^{\prime}\right) \delta_{D}\left(t-t^{\prime}\right)
\end{aligned}
$$

$$
\psi(x, t)=\int_{-\infty}^{+\infty} d x^{\prime} G\left(x, t ; x^{\prime}, t^{\prime}\right) \psi\left(x^{\prime}, t^{\prime}\right) ; \quad t>t^{\prime}
$$

## Cosmic propagators

Propagator should carry information on non-linear evolution \& statistical properties

Evolved (non-linear) density field
Crocce \& Scoccimarro ('06)

$$
\left\langle\frac{\delta \delta_{\mathrm{m}}(\boldsymbol{k} ; t)}{\delta \delta_{0}\left(\boldsymbol{k}^{\prime}\right)}\right\rangle \equiv \delta_{\mathrm{D}}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right) \Gamma^{(1)}(k ; t) \quad \text { Propagator }
$$

Initial density field
Contain statistical information on full-nonlinear evolution (Non-linear extension of Green's function)

## Multi-point propagators

Bernardeau, Crocce \& Scoccimarro ('08) Matsubara ('II) $\longrightarrow$ integrated PT

## As a natural generalization,

Multi-point propagator
$\left\langle\frac{\delta^{n} \delta_{\mathrm{m}}(\boldsymbol{k} ; t)}{\delta \delta_{0}\left(\boldsymbol{k}_{1}\right) \cdots \delta \delta_{0}\left(\boldsymbol{k}_{n}\right)}\right\rangle=(2 \pi$
With this multi-point prop.

- Building blocks of a new perturbative theory (PT) expansion ---.....- Г-expansion or Wiener-Hermite expansion
- A good convergence of PT expansion is expected (c.f. standard PT)

$$
P(k ; t)=\left[\Gamma^{(1)}(k ; t)\right]^{2} P_{0}(k)+2 \int \frac{d^{3} \boldsymbol{q}}{(2 \pi)^{3}}\left[\Gamma^{(2)}(\boldsymbol{q}, \boldsymbol{k}-\boldsymbol{q} ; t)\right]^{2} P_{0}(q) P_{0}(|\boldsymbol{k}-\boldsymbol{q}|)
$$

$$
+6 \int \frac{d^{6} \boldsymbol{p} d^{3} \boldsymbol{q}}{(2 \pi)^{6}}\left[\Gamma^{(3)}(\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{k}-\boldsymbol{p}-\boldsymbol{q} ; t)\right]^{2} P_{0}(p) P_{0}(q) P_{0}(|\boldsymbol{k}-\boldsymbol{p}-\boldsymbol{q}|)+\cdots
$$



## Bispectrum

$B\left(k_{1}, k_{2}, k_{3}\right)=2 \Gamma^{(2)}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \Gamma^{(1)}\left(k_{1}\right) \Gamma^{(1)}\left(k_{2}\right) P_{0}\left(k_{1}\right) P_{0}\left(k_{2}\right)+$ cyc.

$$
\begin{aligned}
& +\left[8 \int d^{3} q \Gamma^{(2)}\left(\mathbf{k}_{1}-\mathbf{q}, \mathbf{q}\right) \Gamma^{(2)}\left(\mathbf{k}_{2}+\mathbf{q},-\mathbf{q}\right) \Gamma^{(2)}\left(\mathbf{q}-\mathbf{k}_{1},-\mathbf{k}_{2}-\mathbf{q}\right) P_{0}\left(\left|\mathbf{k}_{1}-\mathbf{q}\right|\right) P_{0}\left(\left|\mathbf{k}_{2}+\mathbf{q}\right|\right) P_{0}(q)\right. \\
& \left.+6 \int d^{3} q \Gamma^{(3)}\left(-\mathbf{k}_{3},-\mathbf{k}_{2}+\mathbf{q},-\mathbf{q}\right) \Gamma^{(2)}\left(\mathbf{k}_{2}-\mathbf{q}, \mathbf{q}\right) \Gamma^{(1)}\left(\mathbf{k}_{3}\right) P_{0}\left(\left|\mathbf{k}_{2}-\mathbf{q}\right|\right) P_{0}(q) P_{0}\left(k_{3}\right)+\text { cyc. }\right]
\end{aligned}
$$



## Generic property of propagators

Crocce \& Scoccimarro '06, Bernardeau et al. '08

$$
\Gamma^{(n)} \xrightarrow{k \rightarrow+\infty} \Gamma_{\text {tree }}^{(n)} e^{-k^{2} \sigma_{\mathrm{v}}^{2} / 2} ; \quad \sigma_{\mathrm{v}}^{2}=\int \frac{d q}{6 \pi^{2}} P_{\theta \theta}(q)
$$



## Origin of Exp. damping

For Gaussian initial condition,

$$
\left\langle\delta_{\mathrm{m}}(\boldsymbol{k} ; t) \delta_{0}\left(\boldsymbol{k}^{\prime}\right)\right\rangle=\Gamma^{(1)}(k ; t)\left\langle\delta_{0}(\boldsymbol{k}) \delta_{0}\left(\boldsymbol{k}^{\prime}\right)\right\rangle
$$

Cross correlation between initial \& evolved density fields


Padmanabhan et al. ('I2)

Initial structure becomes blurred by the local cosmic flow
----- origin of Gaussian damping in propagator

## Constructing regularized propagators

- UV property (k >>I) :

$$
\Gamma^{(n)} \xrightarrow{k \rightarrow+\infty} \Gamma_{\text {tree }}^{(n)} e^{-k^{2} \sigma_{\mathrm{v}}^{2} / 2} ; \quad \sigma_{\mathrm{v}}^{2}=\int \frac{d q}{6 \pi^{2}} P_{\theta \theta}(q)
$$

Bernardeau, Crocce \& Scoccimarro ('08), Bernardeau, Van de Rijt,Vernizzi ('I I )

- IR behavior $(\mathrm{k} \ll \mathrm{I})$ can be described by standard PT calculations :

$$
\Gamma^{(n)}=\Gamma_{\text {tree }}^{(n)}+\Gamma_{1-\text { loop }}^{(n)}+\Gamma_{2-\text { loop }}^{(n)}+\cdots
$$

Importantly, each term behaves like $\Gamma_{p-\text { loop }}^{(n)} \stackrel{k \rightarrow+\infty}{\longrightarrow} \frac{1}{p!}\left(-\frac{k^{2} \sigma_{v}^{2}}{2}\right)^{p} \Gamma_{\text {trice }}^{(n)}$
A regularization scheme that reproduces both UV \& IR behaviors Bernardeau, Crocce \& Scoccimarro ('I 2)

## Regularized propagator

Bernardeau, Crocce \& Scoccimarro ('I2)
A global solution that satisfies both UV $(\mathrm{k} \gg \mathrm{I})$ \& $\mathrm{IR}(\mathrm{k} \ll \mathrm{I})$ properties:

$$
\Gamma_{\text {reg }}^{(n)}=\left[\Gamma_{\text {tree }}^{(n)}\left\{1+\frac{k^{2} \sigma_{\mathrm{v}}^{2}}{2}\right\}+\Gamma_{1-\text {-loop }}^{(n)}\right] \exp \left\{-\frac{k^{2} \sigma_{\mathrm{v}}^{2}}{2}\right\} ; \quad \sigma_{\mathrm{v}}^{2}=\int \frac{d q}{6 \pi^{2}} P_{\theta \theta}(q)
$$

counter term
IR behavior is valid at I-loop level
Precision of IR behavior can be systematically improved by including higher-loop corrections and adding counter terms
e.g., For IR behavior valid at 2-loop level,

$$
\Gamma_{\text {reg }}^{(n)}=\left[\Gamma_{\text {tree }}^{(n)}\left\{1+\frac{k^{2} \sigma_{v}^{2}}{2}+\frac{1}{2}\left(\frac{k^{2} \sigma_{v}^{2}}{2}\right)^{2}\right\}+\Gamma_{1-\text { loop }}^{(n)}\left\{1+\frac{k^{2} \sigma_{v}^{2}}{2}\right\}+\Gamma_{2-\text { loop }}^{(n)}\right] \exp \left\{-\frac{k^{2} \sigma_{v}^{2}}{2}\right\}
$$

## Propagators in N-body simulations

 compared with 'Regularized' propagators constructed analytically

Bernardeau, AT \& Nishimichi ('I2)


Bernardeau et al. (' 12 )

# RegPT: fast PT code for $P(k) \& \xi(r)$ 

(regularized)
A public code based on multi-point propagators at 2-loop order http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/regpt_code.html



AT, Bernardeau, Nishimichi \& Codis (' I2)

# Why improved PT works well? 

AT, Bernardeau, Nishimichi, Codis ('।2) AT et al. ('09)

- All corrections become comparable at low-z.
- Positivity is not guaranteed.

Corrections are positive \& localized, shifted to higher-k for higher-loop

$\mathrm{k}\left[\mathrm{h} \mathrm{Mpc}{ }^{-1}\right]$

$\mathrm{k}\left[\mathrm{h} \mathrm{Mpc}{ }^{-1}\right]$

## RegPT in modified gravity

Good convergence is ensured by
a generic damping behavior in propagators $\Gamma^{(n)} \xrightarrow{k \rightarrow \infty} \Gamma_{\text {tree }}^{(n)} e^{-k^{2} \sigma_{\mathrm{d}}^{2} / 2}$ Even in modified gravity, well-controlled expansion with RegPT


N-body data: Baojiu Li


AT, Nishimichi, Bernardeau,et al.('I4)

Halo model


Ma \& Fry (2000)

## From dark matter to galaxies

Cooray \& Sheth ('02)
Assuming that galaxies in each halo follow a Poisson distribution
$P_{\mathrm{gal}}(k)=P_{\mathrm{gal}}^{1 h}(k)+P_{\mathrm{gal}}^{2 h}(k)$,

$$
\begin{aligned}
& P_{\mathrm{gal}}^{\text {lh }}(k)=\int \mathrm{d} m n(m) \frac{\left\langle N_{\mathrm{gal}}\left(N_{\mathrm{gal}}-1\right) \mid m\right\rangle}{\bar{n}_{\mathrm{gal}}^{2}}\left|u_{\mathrm{gal}}(k \mid m)\right|^{2} \quad \bar{n}_{\mathrm{gal}}=\int \mathrm{d} m n(m)\left\langle N_{\mathrm{gal}} \mid m\right\rangle \\
& P_{\mathrm{gal}}^{2 L}(k) \approx P^{\operatorname{lin}}(k)\left[\int \mathrm{d} m n(m) b_{1}(m) \frac{\left\langle N_{\mathrm{gal}} \mid m\right\rangle}{\overline{\mathrm{gal}}^{2} \mid} u_{\mathrm{gal}}(k \mid m)\right]^{2}
\end{aligned}
$$

Needs determine observationally assuming their functional forms
For SDSS LRG or CMASS, the contributions further need to be divided into central ands satellites, i.e., $N_{\text {gal }}=N_{\text {cen }}+N_{\text {sat }}$

(e.g., Zheng et al.'05)

## Galaxy power spectrum

Hikage \& Yamamoto ('I3)

$$
P^{R}(k)=P^{R 1 h}(k)+P^{R 2 h}(k)
$$

$$
P^{R 1 h}(k)=\frac{1}{\bar{n}^{2}} \int d M \frac{d n(M)}{d M}\left\langle N_{\text {cen }}\right\rangle\left[2\left\langle N_{\text {sat }}\right\rangle \tilde{u}_{\mathrm{NFW}}(k ; M)+\left\langle N_{\text {sat }}\left(N_{\text {sat }}-1\right)\right\rangle \tilde{u}_{\mathrm{NFW}}(k ; M)^{2}\right],
$$

$$
P^{R 2 h}(k)=\frac{1}{\bar{n}^{2}}\left[\int d M \frac{d n(M)}{d M}\left\langle N_{c e n}\right\rangle\left(1+\left\langle N_{s a t}\right\rangle \tilde{u}_{\mathrm{NFW}}(k ; M)\right) b(M)\right]^{2} P_{m}(k),
$$

$$
\bar{n}=\int d M(d n / d M) N_{\mathrm{HOD}}(M)
$$

$$
N_{\mathrm{HOD}}(M)=\left\langle N_{\text {cen }}\right\rangle\left(1+\left\langle N_{\text {sat }}\right\rangle\right),
$$

$$
\left\langle N_{\mathrm{cen}}\right\rangle=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{\log _{10}(M)-\log _{10}\left(M_{\min }\right)}{\sigma_{\log M}}\right)\right],
$$

$$
\left\langle N_{\mathrm{sat}}\right\rangle=f_{\mathrm{col}}(M)\left(\frac{M-M_{\mathrm{cut}}}{M_{1}}\right)^{\alpha}
$$

Zheng et al. ('07)




Zheng, Coil \& Zehavi ('07)

## Galaxy/halo bias

## Dark matter distribution

## galaxy distribution

## dark matter distribution in a rich cluster


'galaxy' distribution in a rich cluster



Dark Halo



Galaxy


Fig. 2.-Distribution of gas particles, dark matter particles, galaxies, and dark halos in the volume of $75 \times 75 \times 30\left(h^{-1} \mathrm{Mpc}\right)^{3} \mathrm{mod}$ right, gas particles; upper left, dark matter particles; lower right, galaxies; lower left, DM cores.

Yoshivikawa, et al. ('OI)
$\mathrm{z}=2 \quad$ Dark Matter


Dark Halo


Gas


Galaxy




## Kaiser (1984)

The Astrophysical Journal, 284:L9-L12, 1984 September 1
© 1984. The American Astronomical Society. All rights reserved. Printed in U.S.A.

## ON THE SPATIAL CORRELATIONS OF ABELL CLUSTERS

## Nick Kaiser

Institute for Theoretical Physics, University of California, Santa Barbara; and Department of Astronomy,
University of California, Berkeley
Received 1984 April 2; accepted 1984 June 8

## ABSTRACT

If rich clusters formed where the primordial density enhancement, when averaged over an appropriate volume, was unusually large, then they give a biased measure of the large-scale density correlation function: $\xi_{\text {clusters }}(r) \approx$ $A \xi_{\text {density }}(r)$. The factor $A$ is determined by the probability distribution of the density fluctuations on a rich cluster mass scale, and if this distribution was Gaussian the correlation function is amplified. The amplification for rich $R \geq 1$ clusters is estimated to be $A \approx 10$, and the predicted trend of $A$ with richness agrees qualitatively with that observed. Some implications of these results for the large-scale density correlations are discussed.
Subject headings: cosmology - galaxies: clustering
then

$$
\begin{aligned}
& 1+\xi_{>\nu}(r) \\
&= \frac{P_{2}}{P_{1}^{2}}=(2 / \pi)^{1 / 2}\left[\operatorname{erfc}\left(\nu / 2^{1 / 2}\right)\right]^{-2} \\
& \times \int_{\nu}^{\infty} e^{-1 / 2 y^{2}} \operatorname{erfc} \llbracket \frac{\nu-y \xi(r) / \xi(0)}{\left\{2\left[1-\xi^{2}(r) / \xi^{2}(0)\right]\right\}^{1 / 2}} \rrbracket d y .
\end{aligned}
$$

This result may also be obtained by application of Price's theorem (Price 1958). For $\xi_{c} \ll 1$ this expression simplifies to

$$
\begin{equation*}
\xi_{>\nu}(r)=\left(e^{\nu^{2} / 2} \int_{\nu}^{\infty} e^{-1 / 2 y^{2}} d y\right)^{-2} \xi(r) / \sigma^{2} \tag{2}
\end{equation*}
$$

and for $\nu \gg 1$

$$
\begin{equation*}
\xi_{>\nu}(r) \approx\left(\nu^{2} / \sigma^{2}\right) \xi(r) \tag{3}
\end{equation*}
$$

