Advanced
 Selected topics on perturbative approaches to large-scale structure

Perturbation theory (PT) of large-scale structure

Power spectrum / correlation function
Bispectrum / three-point correlation function
Power spectrum covariance
Modeling redshift-space distortions
Modeling galaxy bias

As long as we are interested in weakly nonlinear scales, PT calculation can be applied to a practical use of theoretical template However,...

UV problem in PT

Basic eqs. for perturbation theory

Starting point

single-stream approximation of collisionless Boltzmann eq.
Phase-space distribution function

$$
f(x, v ; t) \rightarrow \bar{\rho}(t)\{1+\delta(x ; t)\} \delta_{\mathrm{D}}(\boldsymbol{v}-v(x ; t))
$$

Basic eqs.

$$
\begin{aligned}
& \frac{\partial \delta}{\partial t}+\frac{1}{\mathrm{a}} \vec{\nabla} \cdot[(1+\delta) \overrightarrow{\mathrm{v}}]=0 \\
& \frac{\partial \overrightarrow{\mathrm{v}}}{\partial t}+\frac{\dot{a}}{a} \overrightarrow{\mathrm{v}}+\frac{1}{a}(\overrightarrow{\mathrm{v}} \cdot \vec{\nabla}) \overrightarrow{\mathrm{v}}=-\frac{1}{a} \vec{\nabla} \Phi \\
& \frac{1}{a^{2}} \nabla^{2} \Phi=4 \pi G \bar{\rho}_{\mathrm{m}} \delta
\end{aligned}
$$

PT expansion

Assuming the irrotational flow

$$
\begin{aligned}
& \delta=\delta^{(1)}+\delta^{(2)}+\cdots \\
& \theta=\theta^{(1)}+\theta^{(2)}+\cdots
\end{aligned}
$$

$$
\theta \equiv \frac{\nabla \cdot \vec{v}}{a H}
$$

PT kernels

initial density field

$$
\begin{aligned}
& \delta^{(n)}(\boldsymbol{k} ; t)=\int \frac{d^{3} \boldsymbol{k}_{1} \cdots d^{3} \boldsymbol{k}_{n}}{(2 \pi)^{3(n-1)}} \delta_{\mathrm{D}}\left(\boldsymbol{k}-\boldsymbol{k}_{12 \cdots n}\right) F_{n}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n} ; t\right) \delta_{0}\left(\boldsymbol{k}_{1}\right) \cdots \delta_{0}\left(\boldsymbol{k}_{n}\right), \\
& \theta^{(n)}(\boldsymbol{k} ; t)=\int \frac{d^{3} \boldsymbol{k}_{1} \cdots d^{3} \boldsymbol{k}_{n}}{(2 \pi)^{3(n-1)}} \delta_{\mathrm{D}}\left(\boldsymbol{k}-\boldsymbol{k}_{12 \cdots n}\right) G_{n}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n} ; t\right) \delta_{0}\left(\boldsymbol{k}_{1}\right) \cdots \delta_{0}\left(\boldsymbol{k}_{n}\right),
\end{aligned}
$$

EdS approximation:

$$
\begin{aligned}
& F_{n} \rightarrow\left[D_{+}(t)\right]^{n} \tilde{F}_{n}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n}\right) \quad f=\frac{d \ln D_{+}}{d \ln a}: \text { growth rate } \\
& \left.G_{n} \rightarrow-f(t)\left[D_{+}(t)\right]^{n} \widetilde{G}_{n}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n}\right)\right)
\end{aligned}
$$

D_{+}: linear growth factor

Kernels ($\tilde{F}_{n}, \tilde{G}_{n}$) are derived from recursion relations
Goroff et al. ('86)
used to compute power spectrum, bispectrum,

Power spectrum

$$
\begin{aligned}
& P(k)=\frac{P_{\operatorname{lin}}(k ; t)}{\text { Linear }}+\frac{P_{13}(k ; t)+P_{22}(k ; t)}{\text { I-loop }}+\cdots \\
& P_{\operatorname{lin}}(k ; t)=\left[D_{+}(t)\right]^{2} P_{0}(k) \quad \int_{\boldsymbol{q}} \equiv \int \frac{d^{3} \boldsymbol{q}}{(2 \pi)^{3}} \\
& P_{22}(k)=2 \int_{\boldsymbol{q}} P_{\text {lin }}(q) P_{\text {lin }}(|\boldsymbol{k}-\boldsymbol{q}|) F_{2}^{2}(\boldsymbol{q}, \boldsymbol{k}-\boldsymbol{q}), \\
& \\
& P_{13}(k)=6 P_{\text {lin }}(k) \int_{\boldsymbol{q}} P_{\text {lin }}(q) F_{3}(\boldsymbol{k}, \boldsymbol{q},-\boldsymbol{q}),
\end{aligned}
$$

Asymptotic properties

For fixed total sum k,
Goroff et al. ('86)

$$
\lim _{q \rightarrow \infty} F_{n}\left(\boldsymbol{k}_{1}, \ldots, \boldsymbol{k}_{n-2}, \boldsymbol{q},-\boldsymbol{q}\right) \propto \frac{k^{2}}{q^{2}}
$$

$$
\lim _{q \rightarrow \infty} F_{2}(\boldsymbol{q}, \boldsymbol{k}-\boldsymbol{q}) \propto \frac{k^{2}}{q^{2}} \quad \lim _{q \rightarrow \infty} F_{3}(\boldsymbol{k}, \boldsymbol{q},-\boldsymbol{q}) \propto \frac{k^{2}}{q^{2}}
$$

Low-k behavior of I-loop corrections:

$$
\begin{aligned}
& \left.P_{22}(k)\right|_{q \rightarrow \infty} \propto k^{4} \int d q q^{2} \frac{P_{\text {lin }}^{2}(q)}{q^{4}} \quad \text { high-q limit } \\
& \left.P_{13}(k)\right|_{q \rightarrow \infty} \propto P_{\text {lin }}(k) k^{2} \int d q q^{2} \frac{P_{\text {lin }}(q)}{q^{2}}
\end{aligned}
$$

P_{13} becomes dominant at $\mathrm{k} \ll \mathrm{I}$ and scales as $\mathrm{k}^{\wedge} 2$

UV sensitive terms

For higher-loops,
$P_{15}, P_{17}, P_{19}, \cdots$ become dominant at low-k and scale as k^2
$P_{n \text {-loop }}(k) \sim P_{1(2 n+1)}(k)$

$$
\begin{aligned}
& P_{1(2 n+1)}(k)=2 \cdot(2 n+1)!!P_{\operatorname{lin}}(k) \\
& \quad \times \int d^{3} \boldsymbol{q}_{1} \cdots d^{3} \boldsymbol{q}_{n} F_{2 n+1}\left(\boldsymbol{k}, \boldsymbol{q}_{1},-\boldsymbol{q}_{1}, \cdots, \boldsymbol{q}_{n},-\boldsymbol{q}_{n}\right) P_{\operatorname{lin}\left(q_{1}\right) \cdots \times P_{\operatorname{lin}}\left(q_{n}\right)}
\end{aligned}
$$

logarithmically divergent (q>>1)

$$
\begin{aligned}
k \ll q_{i} \\
\propto k^{2} P_{\operatorname{lin}(}(k) \int \frac{d q}{2 \pi^{2}} P_{\operatorname{lin}}(q)\left[\sigma_{L}(q)\right]^{2(n-1)} ;\left[\sigma_{L}(q)\right]^{2} \equiv \int_{0}^{q} \frac{d q^{\prime} q^{\prime 2}}{2 \pi^{2}} P_{\operatorname{lin}}\left(q^{\prime}\right)
\end{aligned}
$$

getting sensitive to large-q contribution for higher loop ($\mathrm{n} /$)

Loop corrections at $z=0$

Blas et al. JCAP 01 ('I4) 010
 obtained from a numerical Monte Carlo integration within standard arturbation theory at $z=0$. The lincar power spectrum is obtained from the initiar pwer spectrum from CAMB [20] using the Λ CDM model with WMAP5 parameter For the three-loop order, the error bars show an estimate for the numerical error obtained by multiplying the error output of the CUBA routine Suave by a factor of two. The relative crror is ≤ 0.002 for $k \leq 0.55 h / \mathrm{Mpc}$. The black diamonds and grey crosses correspond to two different parametrizations of the absolute loop momenta (see App. A).

loop contributions (line styles as in Fig. (1).

PI3, PI5, PI7 give a major contribution

Ubiquitous UV sensitivity

For bispectrum,
I-loop

$$
B\left(k_{1}, k_{2}, k_{3}\right)=B_{112}+\left[B_{114}+B_{123}^{I}+B_{123}^{I I}+B_{222}\right]+\cdots
$$

For $k_{1} \sim k_{2} \sim k_{3}$, low-k behavior is dominated by B_{114} and $B_{123}^{I I}$ and scales as $\mathrm{k}^{\wedge} 2$ (Baldauf et al.' ${ }^{\prime} 5 \mathrm{5a}$)

In general, $\quad B^{n-\text { loop }^{k_{i}} \ll 1} \sim B_{11(2 n+2)}, \quad B_{12(2 n+1)}^{I I}$
UV sensitive for higher loop ($\mathrm{n} / 7$)

$$
\propto k^{2}\left[P_{\operatorname{lin}}(k)\right]^{2} \int \frac{d q}{2 \pi^{2}} P_{\operatorname{lin}}(q)\left[\sigma_{L}(q)\right]^{2(n-1)}
$$

Mitigating UV sensitivity

UV sensitivity is not a real physical effect
\longrightarrow needs to be cured for an improved prediction
EFT
approach add counter terms to mitigate UV sensitivity

For $\mathrm{P}(\mathrm{k})$ at I -loop order,

$$
\text { counter term to be added: }-c_{s}^{2} k^{2} P_{\operatorname{lin}}(k)
$$

This corresponds to adding $-c_{s}^{2} \nabla \delta$ at RHS of Euler eq.

$$
\text { effective pressure } \rightarrow c_{s} \text { :'sound velocity' }
$$

$$
\frac{\partial \overrightarrow{\mathrm{v}}}{\partial t}+\frac{\dot{a}}{a} \overrightarrow{\mathrm{v}}+\frac{1}{a}(\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{v}}) \overrightarrow{\mathrm{v}}=-\frac{1}{a} \overrightarrow{\mathrm{v}} \Phi-\frac{1}{\rho_{\mathrm{m}}} \nabla \tau_{i j}
$$

$$
\tau_{i j}=\rho_{\mathrm{m}}\left[\left(c_{\mathrm{s}}^{2} \delta-\frac{c_{\mathrm{cv}}^{2}}{a H} \nabla \cdot v\right) \delta_{i j}-\frac{3}{4} \frac{c_{\mathrm{sv}}^{2}}{a H}\left\{\partial_{j} v_{i}+\partial_{i} v_{j}-\frac{2}{3}(\nabla \cdot v) \delta_{i j}\right\}\right]
$$

Power spectrum in EFT

Baldauf et al. ('I5b)

(c.f.) resummed PT w/o EFT

RegPT including next-to-next-to-leading order $L_{\text {box }}=2,048 h^{-1} \mathrm{Mpc}$ \# of particles : $1,024^{3}$ \# of runs : 60

Critical comments

- The size of each counter term is unknown, and it needs to be calibrated with N -body simulations e.g., $c_{s} \sim 1 h^{-1} \mathrm{Mpc} \quad$ (but, it generally depends on time \& cosmology)
- At 2-loop order, counter terms for sub-leading corrections also need to be considered, increasing \# of free parameters
- For bispectrum at I-loop order, we generally need 3 types of counter terms, in addition to the one introduced in $P(k)$
(Baldauf et al.' 15 a)
Physical origin or meaning of each counter term is unclear

Response function of large-scale structure to smallscale fluctuations

Nishimichi, Bernardeau \& AT, Phys.Lett.B 762 (2016) 247 arXiv:14II. 2970

3-loop : source of trouble

Further including 3-loop (i.e., next-to-next-to-next-to-leading order),

3-loop : source of trouble

Further including 3-loop (i.e., next-to-next-to-next-to-leading order),
 PT calculations start to get worse !! $P_{\mathrm{n} \text {-loop }}(k) \propto \int d \ln q K_{\text {n-loop }}(k, q) P_{0}(q)$

Nature of nonlinear mode-coupling

How the small-scale fluctuations affect the evolution of large-scale modes ? (or vice versa)

How the small disturbance added in initial power spectrum can contribute to each Fourier mode in final power spectrum?

Nature of nonlinear mode-coupling

How the small-scale fluctuations affect the evolution of large-scale modes ? (or vice versa)

How the small disturbance added in initial power spectrum can contribute to each Fourier mode in final Response function
$\underset{\text { (nonlinear) }}{\delta P_{\mathrm{nl}}(k)}=\int d \ln q K(k, q) \delta P_{0}(q)$

Measurement of kernel

Definition in terms of functional derivative :

$$
K(k, q)=q \frac{\delta P_{\mathrm{nl}}(k)}{\delta P_{0}(q)}
$$

Estimator for mode-coupling kernel (discretized):

$$
\widehat{K}\left(k_{i}, q_{j}\right) P_{0}\left(q_{j}\right) \equiv \frac{P_{\mathrm{nl}}^{+}\left(k_{i}\right)-P_{\mathrm{nl}}^{-}\left(k_{i}\right)}{\Delta \ln P_{0} \Delta \ln q} ; \begin{aligned}
& \Delta \ln q \\
& =\ln q_{j+1}-\ln q_{j}
\end{aligned}
$$

$P_{\mathrm{nl}}^{ \pm}(k)$: Final output of non-linear power spectrum, for which a small perturbation $P_{0, j}^{ \pm}(k)$ is added in initial power spectrum, $P_{0}(k)$

$$
\ln \left[\frac{P_{0, j}^{ \pm}(q)}{\ln P_{0}(q)}\right]=\left\{\begin{array}{cll}
\pm \frac{1}{2} \Delta \ln P_{0} & ; q_{j} \leq q<q_{j+1} \\
0 & ; & \text { otherwise }
\end{array}\right.
$$

Measurement of kernel

- initial power spectrum $P_{0}(k)$: \wedge CDM by wmap5
- initial perturbation $\left(\Delta \ln P_{0}\right):$ I\% of $P_{0}(k)$
- divide $k=0.006 \sim 0.12[\mathrm{~h} / \mathrm{Mpc}]$ into logarithmicl5 (or 13)-bins :

$$
\text { initial k-bin: } \quad q_{1}=0.006 h \mathrm{Mpc}^{-1}\left(\text { or } q_{1}=0.012 h \mathrm{Mpc}^{-1}\right)
$$

width of k-bin : $\Delta \ln q=\ln (\sqrt{2})$
Table 1
Simulation parameters. Box size (box), softening scale (soft) and mass of the particles (mass) are respectively given in unit of $h^{-1} \mathrm{Mpc}, h^{-1} \mathrm{kpc}$ and $10^{10} h^{-1} M_{\odot}$. The number of q-bins is shown in the "bins" column, for each of which we run two simulations with positive and negative perturbations in the linear spectrum. The "runs" column shows the number of independent initial random phases over which we repeat the same analysis. The total number of simulations are shown in the "total" column.

Run many simulations...
T.Nishimishi

column.								
name	box	particles	$z_{\text {start }}$	soft	mass	bins	runs	total
L9-N10	512	1024^{3}	63	25	0.97	5	1	10
L9-N9	512	512^{3}	31	50	7.74	15	4	120
L9-N8	512	256^{3}	15	100	61.95	13	4	104
L10-N9	1024	512^{3}	15	100	61.95	15	1	30
high_ns	512	512^{3}	31	50	7.74	5	4	40
low_ns	512	512^{3}	31	50	7.74	5	4	40

Measurement results

Nishimichi, Bernardeau \& AT ('I6)

Comparison with PT prediction

Nishimichi, Bernardeau \& AT ('16)
Response of power spectrum at k to a small initial variation at q

$$
K(k, q ; z)=q \frac{\delta P^{\mathrm{nl}}(k ; z)}{\delta P^{\operatorname{lin}}(q ; z)}
$$

Even for low-k modes,
Standard PT gets a large UV contribution (q-modes): 2-loop > I-loop > N-body

In other words, low-k mode in simulation is UV-insensitive protected against small-scale uncertainty

Comparison with PT prediction

Nishimichi, Bernardeau \& AT ('I6)
Response of power spectrum at k to a small initial variation at q

$$
K(k, q ; z)=q \frac{\delta P^{\mathrm{nl}}(k ; z)}{\delta P^{\operatorname{lin}}(q ; z)}
$$

Black solid: Standard PT I-loop (z-indept.)

Blue Green Orange Red

$\mathrm{q}<\mathrm{k}$: reproduce simulation well
$\mathrm{q}>\mathrm{k}$: discrepancy is manifest (particularly large at low-z)

UV contribution is suppressed !!

Refined measurement

Nishimichi, Bernardeau \& AT ('I6 \&'I7 in prep.)
Response of power spectrum at k

$$
K(k, q ; z)=q \frac{\delta P_{\mathrm{nl}}(k ; z)}{\delta P_{0}(q ; z)}
$$

UV suppression is seen at various k

Refined measurement

Nishimichi, Bernardeau \& AT ('I6 \&'I7 in prep.)
Response of power spectrum at k

$$
K(k, q ; z)=q \frac{\delta P_{\mathrm{nl}}(k ; z)}{\delta P_{0}(q ; z)}
$$

UV suppression is seen at various k

Reconstructing nonlinear $\mathrm{P}(\mathrm{k})$

simulation
$P_{\text {target }}(k)=P_{\text {fiducial }}(k)+\int d \ln q K(k, q)\left\{\underline{P_{0, \text { target }}(q)-P_{0, \text { fiducial }}(q)}\right\}$
fiducial: Planck 15
target: wmap3
Linear power spectrum

Nishimichi et al. (in prep)
Response func. with damping gives a better agreement with simulation

Summary

- Higher-order mode-coupling gets a larger UV contribution However Blas, Garny \& Konstandin ('I4), Bernardeau, AT \& Nishimichi ('I4) - In simulation, actual UV contribution is suppressed Nishimichi, Bernardeau \& AT ('I6, '17 in prep.)

Breakdown of single-stream PT treatment can be seen even at large scales

What is a role of small-scale dynamics ?
Is there a way to go beyond single-stream PT ?

Multi-stream flows

Suto et al. (2016)

Beyond single-stream approx.: lesson from ID cosmology

AT \& Colombi, arXiv:I70I. 09088

Vlasov-Poisson: back to the source

A more fundamental description :

Vlasov-Poisson system
(collisionless Boltzmann)

$$
\begin{aligned}
& {\left[a \frac{\partial}{\partial t}+\frac{v}{a} \cdot \frac{\partial}{\partial x}-a \frac{\partial \phi}{\partial x} \cdot \frac{\partial}{\partial v}\right] f(x, v ; t)=0} \\
& \nabla^{2} \phi(x ; t)=4 \pi G a^{2} \int d^{3} v f(x, v ; t)
\end{aligned}
$$

- $N \rightarrow \infty$ limit of self-gravitating N-body system
- Reduced to a (pressureless) fluid system for single-stream flow:

$$
f(\boldsymbol{x}, \boldsymbol{v} ; t) \rightarrow \bar{\rho}(t)\{1+\delta(\boldsymbol{x} ; t)\} \delta_{\mathrm{D}}(\boldsymbol{v}-\boldsymbol{v}(\boldsymbol{x} ; t))
$$

Single-stream flow is initially correct, but will be later violated
(at small scales)

Vlasov-Poisson: back to the source

A more fundamental description :

Vlasov-Poisson: back to the source

A more fundamental description :

ID cosmology

Simplification may help us to understand what's going on
$\nabla_{x}^{2} \phi(x)=4 \pi G \bar{\rho} a^{2} \delta(x)$

Force \propto (\# of sheets at RHS) - (\# of sheets at LHS)

- Generic features of nonlinear mode-coupling :

Response function

- Perturbative description beyond shell-crossing: Post-collapse PT

Learn something in simple ID cosmology

ID Zel'dovich solution

(Zel'dovich '70)

Exact single-stream solution

$$
\begin{array}{lc}
x(q ; \tau)=q+\psi(q) D_{+}(\tau) & D_{+}(\tau) \text { : linear growth factor } \\
\mathrm{v}(q ; \tau)=\psi(q) \frac{d D_{+}(\tau)}{d \tau} & \psi(q): \text { displacement field }
\end{array}
$$

Power spectrum in ID

Initial
Planck \wedge CDM
$P_{1 \mathrm{D}}(k)=\frac{k^{2}}{2 \pi} P_{3 \mathrm{D}}(k)$
Dimensionless initial power spectrum is the same as in 3D manifestation of the limitation of singlestream treatment

```
L=1,000 Mpc
# of particles (sheets) : 200,000
# of runs :50
```

 by Vlafroid (PM code)
 http://www.vlasix.org/uploads/Main/froid ID.I.5.tar.gz
 w/ A. Halle, S. Colombi \& T. Nishimichi (in progress)
$\mathrm{k}=0.05[\mathrm{I} / \mathrm{Mpc}]$

Response function in ID

$$
K(k, q ; z)=q \frac{\delta P_{\mathrm{nl}}(k ; z)}{\delta P_{0}(q ; z)}
$$

$L=100,000 \mathrm{Mpc}$
\# of particles (sheets) : 10^{7}
\# of runs : 2, 000 for each q-mode

Post-collapse PT:beyond shell-crossing

AT \& Colombi ('I7)
Cold collapse in I-D simulation
Breakdown of Zel'dovich solution
 position

Computing back-reaction to the Zel'dovich flow: Lagrangian
I. Expand the displacement field around shell-crossing point, (q)

$$
x(q ; \tau) \simeq A\left(q_{0} ; \tau\right)-B\left(q_{0} ; \tau\right)\left(q-q_{0}\right)+C\left(q_{0} ; \tau\right)\left(q-q_{0}\right)^{3}
$$

2. Compute force $F(x(q ; \tau))=-\nabla_{x} \Phi(x(q ; \tau))$ at multi-stream region

$$
\Delta \mathrm{v}\left(Q ; \tau, \tau_{\mathrm{q}}\right)=\int_{\tau_{\mathrm{q}}}^{\tau} d \tau^{\prime} F\left(x\left(Q, \tau^{\prime}\right)\right), \quad \Delta x\left(Q ; \tau, \tau_{\mathrm{q}}\right)=\int_{\tau_{\mathrm{q}}}^{\tau} d \tau^{\prime} \Delta \mathrm{v}\left(Q ; \tau^{\prime}, \tau_{\mathrm{q}}\right)
$$

...... polynomial function of $Q=q-q o$ up to 7th order

Post-collapse PT: single cluster AT \& Colombi ('I7)

Post-collapse PT basically fails after next shell-crossing, but it still gives reasonable prediction for density profiles

Simulation

 Zel'dovichPhase-space Shell crossing

Next crossing

Post-collapse PT

Of course, this does not guarantee the accuracy of power spectrum prediction at small scales (\rightarrow next slide)

Post-collapse PT: ^CDM

$\mathrm{k} \mathrm{P}(\mathrm{k}) / \pi$

Adaptive smoothing

 applied to initial density peaks (with filter scales determined by first-barrier crossing)

Implication to 3D

Combination of the two methods are rather crucial:

$$
\begin{gathered}
\text { PT scheme beyond shell crossing \& Coarse-graining } \\
\text { (post-collapse PT) } \\
\text { (adaptive smoothing) }
\end{gathered}
$$

But, idea \& technique are very promising and can be extended to 3D
Issues to be addressed

- Accurate pre-collapse description \checkmark Zel'dovich approx. is inaccurate \checkmark Various topologies of shell crossing
- Tractable analytical calculation of statistical quantities

http://www.vlasix.org/index.php?n=Main.CoIDICE

Implication to 3D

Combination of the two methods are rather crucial:

$$
\begin{gathered}
\text { PT scheme beyond shell crossing \& Coarse-graining } \\
\text { (post-collapse PT) } \\
\text { (adaptive smoothing) }
\end{gathered}
$$

But, idea \& technique are very promising and can be extended to 3D
Issues to be addressed

- Accurate pre-collapse description \checkmark Zel'dovich approx. is inaccurate \checkmark Various topologies of shell crossing
- Tractable analytical calculation of statistical quantities

http://www.vlasix.org/index.php?n=Main.CoIDICE

Implication to 3D

Combination of the two methods are rather crucial:

$$
\begin{aligned}
& \text { PT scheme beyond shell crossing \& Coarse-graining } \\
& \begin{array}{l}
\text { (post-collapse PT) } \\
\text { (adaptive smoothing) }
\end{array}
\end{aligned}
$$

But, idea \& technique are very promising and can be extended to 3D
Issues to be addressed

- Accurate pre-collapse description \checkmark Zel'dovich approx. is inaccurate \checkmark Various topologies of shell crossing
- Tractable analytical calculation of statistical quantities

State-of-the-art cosmological Vlasov code

DIRECT INTEGRATION OF THE COLLISIONLESS BOLTZMANN EQUATION IN SIX-DIMENSIONAL PHASE SPACE: SELF-GRAVITATING SYSTEMS
 2013

Kohil Yoshikawa ${ }^{1}$, Naoki Yoshida ${ }^{2,3}$, and Masayuki Umemura ${ }^{1}$
Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan;
${ }^{2}$ Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
${ }^{3}$ Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan Received 2012 June 18; accepted 2012 November 23; published 2012 December 20
An adaptively refined phase-space element method for cosmological simulations and collisionless dynamics

Oliver Hahn ${ }^{\star 1}$ and Raul E. Angulo \dagger^{2}
${ }^{1}$ Department of Physics, ETH Zurich, CH-8093 Zürich, Switzerland
${ }^{2}$ Centro de Estudios de Física del Cosmos de Aragón, Plaza San Juan 1, Planta-2, 44001, Teruel, Spain.
Cold initial condition
2016

ColDICE: a parallel Vlasov-Poisson solver using moving adaptive simplicial tessellation

Thierry Sousbie ${ }^{\text {ab,c,c,*},}$ Stéphane Colombi ${ }^{\text {a }}$

Describing shell-crossing in 3D

Motivation

- Post-collapse PT treatment needs an accurate analytical description of shell-crossing structure
- In 3D, Zel'dovich solution is no longer exact even before shell-crossing

In a specific initial condition,
\checkmark Higher-order Lagrangian PT
\checkmark Comparison with 6DVlasov simulation

Lagrangian PT

Basic equations

$$
\begin{aligned}
& \ddot{\text { quations }} \\
& \nabla_{x}^{2} \phi(\boldsymbol{x})=4 \pi \dot{x}=-\frac{1}{a^{2}} \nabla_{x} \phi(\boldsymbol{x}), \\
& 2^{2} \bar{\rho}_{\mathrm{m}} \delta(\boldsymbol{x}) .
\end{aligned}
$$

Lagrangian coordinate $(\boldsymbol{q}): \quad \boldsymbol{x}(\boldsymbol{q}, t)=\boldsymbol{q}+\boldsymbol{\Psi}(\boldsymbol{q}, t)$

In Lagrangian coordinate, mass density is assumed to be uniform:

$$
\bar{\rho}_{\mathrm{m}} d^{n} \boldsymbol{q}=\rho_{\mathrm{m}}(\boldsymbol{x}) d^{n} \boldsymbol{x} \longrightarrow \delta(\boldsymbol{x})=\frac{\rho_{\mathrm{m}}(\boldsymbol{x})}{\bar{\rho}_{\mathrm{m}}}-1=\left|\frac{\partial \boldsymbol{x}}{\partial \boldsymbol{q}}\right|^{-1}-1
$$

Rewriting quantities in Eulerian space with those in Lagrangian quantities

Lagrangian PT

Matsubara ('15)

$$
\begin{array}{ll}
\nabla_{x} \cdot[\ddot{\boldsymbol{x}}+2 H \dot{\boldsymbol{x}}]=-4 \pi G \bar{\rho}_{\mathrm{m}} \delta, & \\
\nabla_{x} \times[\ddot{\boldsymbol{x}}+2 H \dot{\boldsymbol{x}}]=\mathbf{0} . & \hat{\mathcal{T}} f(t) \equiv \ddot{f}(t)+2 H \dot{f}(t)
\end{array}
$$

Longitudinal: $\left(\hat{\mathcal{T}}-4 \pi G \bar{\rho}_{\mathrm{m}}\right) \Psi_{k, k}$

$$
\begin{aligned}
= & -\epsilon_{i j k} \epsilon_{i p q} \Psi_{j, p}\left(\hat{\mathcal{T}}-2 \pi G \bar{\rho}_{\mathrm{m}}\right) \psi_{k, q} \\
& -\frac{1}{2} \epsilon_{i j k} \epsilon_{p q r} \Psi_{i, p} \Psi_{j, q}\left(\hat{\mathcal{T}}-\frac{4 \pi G}{3} \bar{\rho}_{\mathrm{m}}\right) \Psi_{k, r}
\end{aligned}
$$

Transverse: $\quad \epsilon_{i j k} \hat{\mathcal{T}} \Psi_{j, k}=-\epsilon_{i j k} \Psi_{p, j} \hat{\mathcal{T}} \Psi_{p, k}$.

Levi-Civita symbol

PT expansion: $\boldsymbol{\Psi}(\boldsymbol{q}, t)=\boldsymbol{\Psi}^{(1)}(\boldsymbol{q}, t)+\boldsymbol{\Psi}^{(2)}(\boldsymbol{q}, t)+\boldsymbol{\Psi}^{(3)}(\boldsymbol{q}, t)+\cdots$

Lagrangian PT

Matsubara ('I5)
Under Einstein-de Sitter approximation: $\underset{\text { EdS }}{\boldsymbol{\Psi}}(\boldsymbol{q} ; a(t)) \longrightarrow \boldsymbol{\Psi}^{(n)}\left(\boldsymbol{q} ; D_{1}(t)\right)$

Longitudinal: $\left(\frac{\partial^{2}}{\partial \eta^{2}}+\frac{1}{2} \frac{\partial}{\partial \eta}-\frac{3}{2}\right) \Psi_{k, k}^{(n)}$
$\eta \equiv \ln D_{1}(t)$

$$
=-\sum_{m_{1}+m_{2}=n} \epsilon_{i j k} \epsilon_{i p q} \Psi_{j, p}^{\left(m_{1}\right)}\left(\frac{\partial^{2}}{\partial \eta^{2}}+\frac{1}{2} \frac{\partial}{\partial \eta}-\frac{3}{4}\right) \psi_{k, q}^{\left(m_{2}\right)} \text { vanished in ID }
$$

$$
-\frac{1}{2} \sum_{m_{1}+m_{2}+m_{3}=n} \epsilon_{i j k} \epsilon_{p q r} \Psi_{i, p}^{\left(m_{1}\right)} \Psi_{j, q}^{\left(m_{2}\right)}\left(\frac{\partial^{2}}{\partial \eta^{2}}+\frac{1}{2} \frac{\partial}{\partial \eta}-\frac{1}{2}\right) \Psi_{k, r}^{\left(m_{3}\right)},
$$

vanished in 2D

Transverse: $\quad \epsilon_{i j k}\left(\frac{\partial^{2}}{\partial \eta^{2}}+\frac{1}{2} \frac{\partial}{\partial \eta}\right) \Psi_{j, k}^{(n)}=-\sum_{m_{1}+m_{2}=n} \epsilon_{i j k} \Psi_{p, j}^{\left(m_{1}\right)}\left(\frac{\partial^{2}}{\partial \eta^{2}}+\frac{1}{2} \frac{\partial}{\partial \eta}\right) \Psi_{p, k}^{\left(m_{2}\right)}$.

Zel'dovich solution: Ist-order LPT

$$
\boldsymbol{\Psi}^{(1)}=\boldsymbol{\Psi}^{(1 L)}+\boldsymbol{\Psi}^{(1 T)}
$$

$$
\eta \equiv \ln D_{1}(t)
$$

$$
\begin{aligned}
& \left(\frac{\partial^{2}}{\partial \eta^{2}}+\frac{1}{2} \frac{\partial}{\partial \eta}-\frac{3}{2}\right) \Psi_{k, k}^{(1 L)}=0 \\
& \left(\frac{\partial^{2}}{\partial \eta^{2}}+\frac{1}{2} \frac{\partial}{\partial \eta}\right) \epsilon_{i j k} \Psi_{j, k}^{(1 T)}=0
\end{aligned}
$$

Zel'dovich approximation: $\Psi^{(1 T)}=0$ and take growing-mode only

$$
\begin{aligned}
\boldsymbol{\Psi}^{(1)}=\boldsymbol{\Psi}^{(1 L)}=-D_{1}(a) \nabla_{q} \varphi(\boldsymbol{q}), \quad \nabla_{q}^{2} \varphi(\boldsymbol{q})= & \delta_{0}(\boldsymbol{q}) \\
& \text { : initial density field } \\
\because 1+\delta_{\mathrm{m}}(\boldsymbol{x})=\left|\frac{\partial \boldsymbol{x}}{\partial \boldsymbol{q}}\right|^{-1} \equiv & \frac{1}{J} \simeq 1-\nabla_{q} \cdot \boldsymbol{\psi}
\end{aligned}
$$

N_particle $=256 \wedge 3$
L=200Mpc/h ^CDM

Neyrink ('I3)
power spectrum

$k[\mathrm{Mpc} / h]$
cross correlation coeff.

Particle trajectories in ZA

Buchert \& Ehlers ('93)

Figure 3. A family of trajectories corresponding to the model presented in Fig. 1 is shown for the first-order (upper panel) and second-order (lower panel) approximations. The trajectories end in the Eulerian space-time section $(y=0.5, t)$ centred at a cluster. These plots illustrate that the three-stream system that develops after the first shell-crossing performs a self-oscillation due to the action of self-gravity.

Higher-order solutions

For specific initial condition at t_{t},

$$
\boldsymbol{\Psi}^{(1)}\left(\boldsymbol{q}, t_{0}\right)=D_{1}\left(t_{0}\right)\left(\begin{array}{c}
\epsilon_{\mathrm{x}} \sin q_{x} \\
\epsilon_{\mathrm{y}} \sin q_{y} \\
\epsilon_{\mathrm{z}} \sin q_{z}
\end{array}\right)
$$

$$
\boldsymbol{\Psi}^{(n)}=0, \quad \text { for } n \geq 2
$$

We derive LPT solutions at 2nd, 3rd, and 4th order (W/ S. Saga)
(see Moutarde et al. '9l for similar work, but up to 3rd order)

2nd-order LPT

Longitudinal part only :

$$
\nabla_{q} \times \boldsymbol{\Psi}^{(2)}=0
$$

$$
\boldsymbol{\Psi}^{(2)}(\boldsymbol{q}, t)=D_{2}(t)\left(\begin{array}{c}
\epsilon_{\mathrm{x}} \sin q_{x}\left(\epsilon_{\mathrm{y}} \cos q_{y}+\epsilon_{\mathrm{z}} \cos q_{z}\right) \\
\epsilon_{\mathrm{y}} \sin q_{y}\left(\epsilon_{\mathrm{z}} \cos q_{z}+\epsilon_{\mathrm{x}} \cos q_{x}\right) \\
\epsilon_{\mathrm{z}} \sin q_{z}\left(\epsilon_{\mathrm{x}} \cos q_{x}+\epsilon_{\mathrm{y}} \cos q_{y}\right)
\end{array}\right)
$$

(Time-dependent) growth function:

$$
D_{2}(t)=-\frac{3}{14} e^{2 \eta}+\frac{3}{10} e^{\eta+\eta_{0}}-\frac{3}{35} e^{-(3 / 2) \eta+(7 / 2) \eta_{0}}
$$

$$
\eta \equiv \ln D_{1}(t)
$$

3rd-order LPT

$$
\boldsymbol{\Psi}^{(3)}=\boldsymbol{\Psi}^{(3 L)}+\boldsymbol{\Psi}^{(3 T)} ;
$$

Longitudinal

$$
\begin{aligned}
\boldsymbol{\Psi}^{(3 L)}(\boldsymbol{q}, t) & =D_{3}(t) \boldsymbol{d}^{(3)}(\boldsymbol{q})+E_{3}(t) \boldsymbol{e}^{(3)}(\boldsymbol{q}) ; \\
\boldsymbol{d}^{(3)} & =\frac{1}{5}\left(\begin{array}{c}
\epsilon_{\mathrm{x}} \sin q_{x}\left(\epsilon_{\mathrm{y}}^{2} \cos ^{2} q_{y}+\epsilon_{\mathrm{z}}^{2} \cos ^{2} q_{z}\right) \\
\epsilon_{\mathrm{y}} \sin q_{y}\left(\epsilon_{\mathrm{z}}^{2} \cos ^{2} q_{z}+\epsilon_{\mathrm{x}}^{2} \cos ^{2} q_{x}\right) \\
\epsilon_{\mathrm{z}} \sin q_{z}\left(\epsilon_{\mathrm{x}}^{2} \cos ^{2} q_{x}+\epsilon_{\mathrm{y}}^{2} \cos ^{2} q_{y}\right)
\end{array}\right)+\frac{1}{5}\left(\begin{array}{c}
\epsilon_{\mathrm{x}}^{2} \sin 2 q_{x}\left(\epsilon_{\mathrm{y}} \cos q_{y}+\epsilon_{\mathrm{z}} \cos q_{z}\right) \\
\epsilon_{\mathrm{y}}^{2} \sin 2 q_{y}\left(\epsilon_{\mathrm{z}} \cos q_{z}+\epsilon_{\mathrm{x}} \cos q_{x}\right. \\
\epsilon_{\mathrm{z}}^{2} \sin 2 q_{z}\left(\epsilon_{\mathrm{x}} \cos q_{x}+\epsilon_{\mathrm{y}} \cos q_{y}\right)
\end{array}\right) \\
& +\frac{2}{5}\left(\begin{array}{c}
\left(\epsilon_{\mathrm{y}}^{2}+\epsilon_{\mathrm{z}}^{2}\right) \epsilon_{\mathrm{x}} \sin q_{x} \\
\left(\epsilon_{\mathrm{z}}^{2}+\epsilon_{\mathrm{x}}^{2}\right. \\
\left(\epsilon_{\mathrm{x}}^{2} \sin \epsilon_{y}\right. \\
\left(\epsilon_{\mathrm{y}}^{2}\right) \epsilon_{\mathrm{z}} \sin q_{z}
\end{array}\right)+\boldsymbol{e}^{(3)} \\
\boldsymbol{e}^{(3)} & =\left(\begin{array}{c}
2 \epsilon_{\mathrm{x}} \epsilon_{\mathrm{y}} \epsilon_{\mathrm{z}} \sin q_{x} \cos q_{y} \cos q_{z} \\
2 \epsilon_{\mathrm{x}} \epsilon_{\mathrm{y}} \epsilon_{\mathrm{z}} \cos q_{x} \sin q_{y} \cos q_{z} \\
2 \epsilon_{\mathrm{x}} \epsilon_{\mathrm{y}} \epsilon_{\mathrm{z}} \cos q_{x} \cos q_{y} \sin q_{z}
\end{array}\right)
\end{aligned}
$$

Transverse

$$
\begin{aligned}
\boldsymbol{\Psi}^{(3 T)}(\boldsymbol{q}, t) & =F_{3}(t) \boldsymbol{f}^{(3)}(\boldsymbol{q}) ; \\
\boldsymbol{f}^{(3)} & =\frac{1}{10}\left(\begin{array}{c}
\epsilon_{\mathrm{x}}^{2} \sin 2 q_{x}\left(\epsilon_{\mathrm{y}} \cos q_{y}+\epsilon_{\mathrm{z}} \cos q_{z}\right) \\
\epsilon_{\mathrm{y}}^{2} \sin 2 q_{y}\left(\epsilon_{\mathrm{z}} \cos q_{z}+\epsilon_{\mathrm{x}} \cos q_{x}\right) \\
\epsilon_{\mathrm{z}}^{2} \sin 2 q_{z}\left(\epsilon_{\mathrm{x}} \cos q_{x}+\epsilon_{\mathrm{y}} \cos q_{y}\right)
\end{array}\right)-\frac{1}{5}\left(\begin{array}{c}
\epsilon_{\mathrm{x}} \sin q_{x}\left(\epsilon_{\mathrm{y}}^{2} \cos 2 q_{y}+\epsilon_{\mathrm{z}}^{2} \cos 2 q_{z}\right) \\
\epsilon_{\mathrm{y}} \sin q_{y}\left(\epsilon_{\mathrm{z}}^{2} \cos 2 q_{z}+\epsilon_{\mathrm{x}}^{2} \cos 2 q_{x}\right) \\
\epsilon_{\mathrm{z}} \sin q_{z}\left(\epsilon_{\mathrm{x}}^{2} \cos 2 q_{x}+\epsilon_{\mathrm{y}}^{2} \cos 2 q_{y}\right)
\end{array}\right)
\end{aligned}
$$

3rd-order LPT

Growth functions

$$
\begin{aligned}
& D_{3}(\eta)=\frac{5}{42} e^{3 \eta}-\frac{9}{70} e^{2 \eta+\eta_{0}}-\frac{3}{35} e^{-\eta / 2+(7 / 2) \eta_{0}}+\frac{2}{21} e^{-(3 / 2) \eta+(9 / 2) \eta_{0}} \\
& E_{3}(\eta)=-\frac{1}{18} e^{3 \eta}+\frac{1}{10} e^{\eta+2 \eta_{0}}-\frac{2}{45} e^{-(3 / 2) \eta+(9 / 2) \eta_{0}} \\
& F_{3}(t)=\frac{1}{14} e^{3 \eta}-\frac{1}{2} e^{3 \eta_{0}}+\frac{3}{7} e^{-\eta / 2+(7 / 2) \eta_{0}}
\end{aligned}
$$

4th-order LPT (x-component)

Longitudinal

$$
\begin{aligned}
& \Psi^{(4 L)}(\boldsymbol{q}, t)=D_{4}(t) \boldsymbol{d}^{(4)}(\boldsymbol{q})+E_{4}(t) \boldsymbol{e}^{(4)}(\boldsymbol{q})+F_{4}(t) \boldsymbol{f}^{(4)}(\boldsymbol{q})+G_{4}(t) \boldsymbol{g}^{(4)}(\boldsymbol{g})+H_{4}(t) \boldsymbol{h}^{(4)}(\boldsymbol{g}) ; \\
& d_{x}^{(4)}=\frac{1}{2} \epsilon_{\mathrm{x}} \sin q_{x}\left(2 \epsilon_{\mathrm{x}} \cos q_{x}\left(2 \epsilon_{\mathrm{y}} \cos q_{y} \epsilon_{\mathrm{z}} \cos q_{z}+\epsilon_{\mathrm{y}}^{2}+\epsilon_{\mathrm{z}}^{2}\right)+\epsilon_{\mathrm{y}} \epsilon_{\mathrm{z}}\left(\epsilon_{\mathrm{y}}\left(\cos \left(2 q_{y}\right)+3\right) \cos q_{z}\right.\right. \\
& \left.\left.+\epsilon_{z} \cos q_{y}\left(\cos \left(2 q_{z}\right)+3\right)\right)\right) \\
& e_{x}^{(4)}=\frac{1}{100} \epsilon_{\mathrm{x}} \sin q_{x}\left(20 \epsilon_{\mathrm{x}} \cos q_{x}\left(10 \epsilon_{\mathrm{y}} \cos q_{y} \epsilon_{\mathrm{z}} \cos q_{z}+\epsilon_{\mathrm{y}}^{2}+\epsilon_{\mathrm{y}}^{2} \cos \left(2 q_{y}\right)+\epsilon_{\mathrm{z}}^{2}+\epsilon_{\mathrm{z}}^{2} \cos \left(2 q_{z}\right)\right)\right. \\
& +\epsilon_{\mathrm{z}} \cos \left(q_{z}\right)\left(29 \epsilon_{\mathrm{x}}^{2}+3 \epsilon_{\mathrm{x}}^{2} \cos \left(2 q_{x}\right)+150 \epsilon_{\mathrm{y}}^{2}+50 \epsilon_{\mathrm{y}}^{2} \cos \left(2 q_{y}\right)+27 \epsilon_{\mathrm{z}}^{2}+\epsilon_{\mathrm{z}}^{2} \cos \left(2 q_{z}\right)\right) \\
& \left.+\epsilon_{\mathrm{y}} \cos q_{y}\left(29 \epsilon_{\mathrm{x}}^{2}+3 \epsilon_{\mathrm{x}}^{2} \cos \left(2 q_{x}\right)+27 \epsilon_{\mathrm{y}}^{2}+\epsilon_{\mathrm{y}}^{2} \cos \left(2 q_{y}\right)+150 \epsilon_{\mathrm{z}}^{2}+50 \epsilon_{\mathrm{z}}^{2} \cos \left(2 q_{z}\right)\right)\right) \\
& f_{x}^{(4)}=\frac{1}{6} \epsilon_{\mathrm{x}} \sin q_{x} \epsilon_{\mathrm{y}} \epsilon_{\mathrm{z}}\left(2 \cos q_{y}\left(4 \epsilon_{\mathrm{x}} \cos q_{x} \cos q_{z}+\epsilon_{\mathrm{z}}\left(\cos \left(2 q_{z}\right)+3\right)\right)+2 \epsilon_{\mathrm{y}} \cos ^{2} q_{y} \cos q_{z}\right. \\
& \left.+\epsilon_{\mathrm{y}}\left(\cos \left(2 q_{y}\right)+5\right) \cos q_{z}\right) \\
& g_{x}^{(4)}=-\frac{1}{50} \epsilon_{\mathrm{x}} \sin q_{x}\left(-5 \epsilon_{\mathrm{x}} \cos q_{x}\left(\epsilon_{\mathrm{y}}^{2} \cos \left(2 q_{y}\right)+\epsilon_{\mathrm{z}}^{2} \cos \left(2 q_{z}\right)+\epsilon_{\mathrm{y}}^{2}+\epsilon_{\mathrm{z}}^{2}\right)+\epsilon_{\mathrm{y}} \cos q_{y}\right. \\
& \times\left(3 \epsilon_{\mathrm{x}}^{2} \cos \left(2 q_{x}\right)+\epsilon_{\mathrm{y}}^{2} \cos \left(2 q_{y}\right)+4 \epsilon_{\mathrm{x}}^{2}+2 \epsilon_{\mathrm{y}}^{2},+\epsilon_{\mathrm{z}} \cos q_{z}\left(3 \epsilon_{\mathrm{x}}^{2} \cos \left(2 q_{x}\right)+\epsilon_{\mathrm{z}}^{2} \cos \left(2 q_{z}\right)\right.\right. \\
& \left.\left.+4 \epsilon_{\mathrm{x}}^{2}+2 \epsilon_{\mathrm{z}}^{2}\right)\right) \\
& h_{x}^{(4)}=\frac{1}{6} \epsilon_{\mathrm{x}} \epsilon_{\mathrm{y}} \epsilon_{\mathrm{z}} \sin q_{x}\left(2 \cos q_{y}\left(4 \epsilon_{\mathrm{x}} \cos q_{x} \cos q_{z}+\epsilon_{\mathrm{z}}\left(\cos \left(2 q_{z}\right)+3\right)\right)+2 \epsilon_{\mathrm{y}} \cos ^{2} q_{y} \cos q_{z}\right. \\
& \left.+\epsilon_{\mathrm{y}}\left(\cos \left(2 q_{y}\right)+5\right) \cos q_{z}\right)
\end{aligned}
$$

4th-order LPT (x-component)

Transverse

$$
\boldsymbol{\Psi}^{(4 T)}(\boldsymbol{q}, t)=I_{4}(t) \boldsymbol{i}^{(4)}(\boldsymbol{q})+J_{4}(t) \boldsymbol{j}^{(4)}(\boldsymbol{q})+K_{4}(t) \boldsymbol{k}^{(4)}(\boldsymbol{q}) ;
$$

$$
\begin{aligned}
i_{x}^{(4)}= & \frac{1}{150} \epsilon_{\mathrm{x}} \sin q_{x}\left(\epsilon _ { \mathrm { y } } \operatorname { c o s } q _ { y } \left(100 \epsilon_{\mathrm{x}} \epsilon_{\mathrm{z}} \cos q_{x} \cos q_{z}+3 \epsilon_{\mathrm{x}}^{2} \cos \left(2 q_{x}\right)-9 \epsilon_{\mathrm{y}}^{2} \cos \left(2 q_{y}\right)-50 \epsilon_{\mathrm{z}}^{2} \cos \left(2 q_{z}\right)\right.\right. \\
& \left.\left.+9 \epsilon_{\mathrm{x}}^{2}-3 \epsilon_{\mathrm{y}}^{2}\right)+\epsilon_{\mathrm{z}} \cos q_{z}\left(3 \epsilon_{\mathrm{x}}^{2} \cos \left(2 q_{x}\right)-50 \epsilon_{\mathrm{y}}^{2} \cos \left(2 q_{y}\right)-9 \epsilon_{\mathrm{z}}^{2} \cos \left(2 q_{z}\right)+9 \epsilon_{\mathrm{x}}^{2}-3 \epsilon_{\mathrm{z}}^{2}\right)\right) \\
j_{x}^{(4)}= & \frac{1}{3} \epsilon_{\mathrm{x}} \epsilon_{\mathrm{y}} \epsilon_{\mathrm{z}} \sin q_{x}\left(2 \epsilon_{\mathrm{x}} \cos q_{x} \cos q_{y} \cos q_{z}-\epsilon_{\mathrm{y}} \cos \left(2 q_{y}\right) \cos q_{z}-\epsilon_{\mathrm{z}} \cos q_{y} \cos \left(2 q_{z}\right)\right) \\
k_{x}^{(4)}= & \frac{1}{100} \epsilon_{\mathrm{x}} \sin q_{x}\left(\epsilon_{\mathrm{z}} \cos q_{z}\left(\epsilon_{\mathrm{x}}^{2} \cos \left(2 q_{x}\right)-3 \epsilon_{\mathrm{z}}^{2} \cos \left(2 q_{z}\right)+3 \epsilon_{\mathrm{x}}^{2}-\epsilon_{\mathrm{z}}^{2}\right)-\epsilon_{\mathrm{y}} \cos q_{y}\right. \\
& \left.\times\left(-\epsilon_{\mathrm{x}}^{2} \cos \left(2 q_{x}\right)+3 \epsilon_{\mathrm{y}}^{2} \cos \left(2 q_{y}\right)-3 \epsilon_{\mathrm{x}}^{2}+\epsilon_{\mathrm{y}}^{2}\right)\right)
\end{aligned}
$$

4th-order LPT (time dependence)

$$
\begin{aligned}
D_{4}(\eta)= & -\frac{51}{4312} e^{4 \eta}+\frac{1}{28} e^{3 \eta+\eta_{0}}-\frac{27}{1400} e^{2 \eta+2 \eta_{0}}-\frac{3}{40} e^{\eta+3 \eta_{0}}+\frac{9}{98} e^{\eta / 2+(7 / 2) \eta_{0}}-\frac{9}{350} e^{-\eta / 2+(9 / 2) \eta_{0}} \\
& +\frac{2}{385} e^{-(3 / 2) \eta+(11 / 2) \eta_{0}}-\frac{9}{9800} e^{-3 \eta+7 \eta_{0}} \\
E_{4}(\eta)= & -\frac{5}{66} e^{4 \eta}+\frac{1}{14} e^{3 \eta+\eta_{0}}+\frac{2}{21} e^{-\eta / 2+(9 / 2) \eta_{0}}-\frac{1}{11} e^{-(3 / 2) \eta+(11 / 2) \eta_{0}} \\
F_{4}(\eta)= & \frac{7}{198} e^{4 \eta}-\frac{3}{70} e^{2 \eta+2 \eta_{0}}-\frac{2}{45} e^{-\eta / 2+(9 / 2) \eta_{0}}+\frac{4}{77} e^{-(3 / 2) \eta+(11 / 2) \eta_{0}} \\
G_{4}(\eta)= & -\frac{1}{22} e^{4 \eta}+\frac{1}{10} e^{\eta+3 \eta_{0}}-\frac{3}{55} e^{-(3 / 2) \eta+(11 / 2) \eta_{0}} \\
H_{4}(\eta)= & \frac{13}{308} e^{4 \eta}-\frac{1}{20} e^{3 \eta+\eta_{0}}+\frac{1}{10} e^{\eta+3 \eta_{0}}-\frac{9}{70} e^{\eta / 2+(7 / 2) \eta_{0}}+\frac{2}{55} e^{-(3 / 2) \eta+(11 / 2) \eta_{0}} \\
I_{4}(\eta)= & -\frac{5}{84} e^{4 \eta}+\frac{3}{70} e^{3 \eta+\eta_{0}}-\frac{9}{35} e^{(1 / 2) \eta+(7 / 2) \eta_{0}}+\frac{3}{4} e^{4 \eta_{0}}-\frac{10}{21} e^{-\eta / 2+(9 / 2) \eta_{0}} \\
J_{4}(\eta)= & \frac{1}{36} e^{4 \eta}-\frac{1}{4} e^{4 \eta_{0}}+\frac{2}{9} e^{-\eta / 2+(9 / 2) \eta_{0}} \\
K_{4}(\eta)= & -\frac{1}{28} e^{4 \eta}-\frac{1}{2} e^{\eta+3 \eta_{0}}+\frac{9}{7} e^{(1 / 2) \eta+(7 / 2) \eta_{0}}-\frac{3}{4} e^{4 \eta_{0}}
\end{aligned}
$$

Comparison with Vlasov simulation

Vlasov simulation:
S. Colombi $\quad a=0.005$

Comparison with Vlasov simulation

Vlasov simulation:
S. Colombi $\quad a=0.015$

Comparison with Vlasov simulation

Vlasov simulation:
S. Colombi $\quad a=0.025$

Comparison with Vlasov simulation

Vlasov simulation:
S. Colombi $\quad a=0.030$

Comparison with Vlasov simulation

Vlasov simulation:
S. Colombi $\quad \mathrm{a}=0.035$

Vlasov simulation

Summary

Perturbation theory (PT) of large-scale structure has been developed as a precision tool, but it needs to be renovated

\checkmark UV issue in single-stream PT: Do not go to 3-loop !
\checkmark Response function: Characterizing nature of mode coupling
\checkmark Post-collapse PT with adaptive smoothing in ID:
Novel scheme beyond shell crossing
\checkmark Roadmap to 3D: pre-collapse evolution from LPT and Vlasov simulation

Stay tuned, and do not stick to Effective-field-theory approach !

