
Selected topics on perturbative 
approaches to large-scale structure 

Advanced
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Perturbation theory (PT) of 
large-scale structure

Power spectrum / correlation function

Modeling redshift-space distortions

Modeling galaxy bias

Bispectrum / three-point correlation function

Power spectrum covariance

…

As long as we are interested in weakly nonlinear scales,  PT 
calculation can be applied to a practical use of theoretical template

However,…
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UV problem in PT 
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Basic eqs. for perturbation theory

� = �(1) + �(2) + · · ·

single-stream approximation of collisionless Boltzmann eq.

Basic eqs.

Assuming the irrotational flow

� � � · �v
aH

� = �(1) + �(2) + · · ·

PT expansion

Starting point  

f(x, v; t)� �(t) {1 + �(x; t)} �D (v � v(x; t))
Phase-space distribution function

f(x, v; t)� �(t) {1 + �(x; t)} �D (v � v(x; t))
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PT kernels

2

form of these are obtained from the Poisson equation and field equation for Brans-Dicke scalar [Eqs. (3)-(5)], and the
expressions relevant for perturbations up to the third oder are respectively given by [1, 2]:

Π(k) =
1
3

{
(3 + 2ωBD)

k2

a2
+ M1(k)

}
,

S(k) = − 1
6Π(k)

(
κ2 ρm

3

)2 ∫
d3k1d3k2

(2π)3
δD(k − k12) M2(k1,k2)

δ(k1)δ(k2)
Π(k1)Π(k2)

− 1
18Π(k)

(
κ2 ρm

3

)3 ∫
d3k1d3k2d3k3

(2π)6
δD(k − k123)

{
M3(k1, k2, k3) −

M2(k12, k3)M2(k1,k2)
Π(k12)

}
δ(k1)δ(k2)δ(k3)
Π(k1)Π(k2)Π(k3)

(8)

Here, in deriving the last expression, we perturbatively solve the scalaron field ϕ in terms of δ using Eqs. (4) and (5)
(see Appendix B of Ref. [2] for derivation).

II. SOLVING STANDARD PT KERNELS NUMERICALLY

In this section, we present the evolution equations for PT kernels. Since we are interested in the late-time evolution
dominated by the growing mode, the solution for perturbed quantities δ and θ are expressed as

δ(n)(k; t) =
∫

d3k1 · · · d3kn

(2π)3(n−1)
δD(k − k12···n)Fn(k1, · · · , kn; t) δ0(k1) · · · δ0(kn),

θ(n)(k; t) =
∫

d3k1 · · · d3kn

(2π)3(n−1)
δD(k − k12···n)Gn(k1, · · · ,kn; t) δ0(k1) · · · δ0(kn), (9)

where δ0 is the random initial density field. Then, defining the operator of the matrix form (here a is the scale factor
of the Universe)

L̂(k) ≡

⎛

⎜⎜⎜⎜⎝

a
d

da
1

3
2

(
H0

H(a)

)2 Ωm,0

a3

{
1 +

1
3

(k/a)2

Π(k)

}
a

d

da
+

(
2 +

Ḣ

H2

)

⎞

⎟⎟⎟⎟⎠
, (10)

the evolution equations for the kernels Fn and Gn are written as

L̂(k1···n)

⎛

⎝
Fn(k1, · · · ,kn; a)

Gn(k1, · · · , kn; a)

⎞

⎠ =

⎛

⎝
Sn(k1, · · · , kn; a)

Tn(k1, · · · ,kn; a)

⎞

⎠ . (11)

The source functions Sn and Tn represent the nonlinear mode coupling, and are written in terms of the lower-oder
perturbed quantities. The explicit form of these functions is derived from the basic equations (6) and (6), and we will
summarize below the source functions up to the third order.

A. Sounce functions

Linear order

S1(k; a) = 0,

T1(k; a) = 0 (12)

Second order

S2(k1, k2; a) = −1
2

{
α(k1, k2)G1(k1)F1(k2) + α(k2, k1)G1(k2)F1(k1)

}
,

T2(k1, k2; a) = −1
2
β(k1,k2) G1(k1)G1(k2) +

1
12

(
k12

aH(a)

)2 H4
0

Π(k12)

(
Ωm,0

a3

)2

M2(k1, k2)
F1(k1)F1(k2)
Π(k1)Π(k2)

(13)

EdS approximation:

Gn � �f(t) [D+(t)]n G̃n(k1, · · · ,kn)

Fn � [D+(t)]n F̃n(k1, · · · ,kn)

Kernels (F̃n, G̃n) are derived from recursion relations
Goroff et al. (’86)

D+ : linear growth factor

f = d ln D+
d ln a

: growth rate

initial density field

used to compute power spectrum, bispectrum, ….
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Power spectrum
P (k) = Plin(k; t) + P13(k; t) + P22(k; t) + · · ·

From a diagrammatic point of view, we can easily convince ourselves that there is no
possibility to connect the three external points without invoking the three-point vertex of
F

2

. On the top left of Fig. 3 the tree-level bispectrum is shown.
One can then start computing higher-order corrections to the power- and bispectrum.

As shown in Fig. 2 there are two possible one-loop corrections to the power spectrum and
they take the rather simple form

P

22

(k) = 2

Z

q

Plin(q)Plin(|k � q|) F

2

2

(q,k � q) ,

P

13

(k) = 6Plin(k)

Z

q

Plin(q) F

3

(k, q, �q) ,

(2.24)

giving the SPT power spectrum

PSPT(k) = Plin(k) + P

22

(k) + P

13

(k) + higher order loops . (2.25)

These integrals can be divergent when the loop momentum q becomes large and the renor-
malization of these divergences has been discussed in the Ref. [6]. It is in fact one of the
main shortcomings of SPT that depending on the initial conditions, i.e. the form of the
linear power spectrum, the perturbative expansion leads to divergent, non-physical results.

At the one-loop level, the bispectrum receives contributions from correlating either
three �

(2)

, one �

(3)

with one �

(2)

and one �

(1)

or one �

(4)

with two �

(1)

(see Refs. [1, 22, 23]
for discussions of the one-loop bispectrum in SPT as well as Ref. [24]). This is what is
shown in Fig. 3. Translating the graphs of Fig. 3 into mathematical expressions, the four
one-loop contributions are

B

222

= 8

Z

q

F

2

(�q, q + k

1

)F
2

(q + k

1

, �q + k

2

)F
2

(k
2

� q, q)

Plin(q)Plin(|q + k

1

|)Plin(|q � k

2

|) , (2.26)

B

I
321

= 6Plin(k3

)

Z

q

F

3

(�q, q � k

2

, �k

3

)F
2

(q,k

2

� q) Plin(q)Plin(|q � k

2

|)

+ 5 perm. , (2.27)

B

II
321

= 6F
2

(k
2

,k

3

) Plin(k2

)Plin(k3

)

Z

q

F

3

(k
3

, q, �q) Plin(q) + 5 perm. ,

= F

2

(k
2

,k

3

) Plin(k2

)P
13

(k
3

) + 5 perm. , (2.28)

B

411

= 12Plin(k2

)Plin(k3

)

Z

q

F

4

(q, �q, �k

2

, �k

3

) Plin(q) + 2 cyc. perm. (2.29)

Note that B

II
321

reduces to the one-loop contribution to the power spectrum stemming from
the correlator h�

(3)

�

(1)

i, i.e. P

13

. Again, these integrals can be divergent just as in the case
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Plin

P

lin

P

22

F

2

F

2

P

lin

P

lin

P

13

F

3

P

lin

P

lin

2

Figure 2: Tree-level and one-loop power spectrum.

where k = k

1

+ . . .kn�2

. For us it will turn out to be important that also for F

2

and
F

3

a similar scaling holds when the sum of the arguments remains finite while one of the
momenta goes to infinity, i.e.

lim
q!1

F

2

(�q, q + k) / lim
q!1

F

2

(�q + k

1

, q + k

2

) / k

2

q

2

,

lim
q!1

F

3

(�q, q + k

1

,k

2

) / k

2

q

2

,

(2.20)

where we assumed that the momenta k

1

⇠ k

2

⇠ k are of the same order.

2.2 The bispectrum in SPT

Let us for the moment focus only on the SPT part of the equations of motion and postpone
a detailed discussion of the e↵ective stress tensor to Secs. 3 and 4. The two- and three-
point connected correlators of the stochastic field � are the quantities that we will consider
in this paper. In Fourier space, the power- and bispectrum are defined as

h�(k
1

, a)�(k
2

, a)i ⌘ (2⇡)3

�

(3)

D (k
1

+ k

2

) P (k
1

, a) . (2.21)

and

⌦

�(k
1

, a) �(k
2

, a) �(k
3

, a)
↵

⌘ (2⇡)3

�

(3)

D (k
1

+ k

2

+ k

3

) B(k
1

,k

2

,k

3

, a) (2.22)

Because of the �D-function, the bispectrum is not a function of three independent vectors.
We will usually drop the time argument of B and P and write B as a function of the three
moduli of the momenta B(k

1

, k

2

, k

3

). The linear power spectrum Plin is then nothing but
the two-point correlator of two �

(1)

and it can be represented diagrammatically by a simple
dot with two external lines as shown on the left in Fig. 2. The arrows show the direction
of the momenta. Since we are considering only the case of Gaussian initial conditions,
the correlator of three �

(1)

is zero. The first non-trivial contribution stems from the first
non-linear contribution to �

(1)

, i.e. �

(2)

, which gives us the tree-level bispectrum

B

112

(k
1

, k

2

, k

3

, a) = 2F
2

(k
1

,k

2

)Plin(k1

, a)Plin(k2

, a) + 2 cycl. perm. (2.23)
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Plin(k; t) = [D+(t)]2 P0(k)

1-loopLinear

Diagrams
F2 F3F2

Z

q
⌘

Z
d3q

(2⇡)3
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Asymptotic properties

Low-k behavior of 1-loop corrections:

1 Symbols for the fields

q

1

q

n

k

F

n

q

1

q

2

k

F

�
2

c

2

s

k

2

F

2

q

2

k

q

1

F

↵;�
2

↵;�

c

2

s

q

2

1

q

1

q

2

k

F

⌧
2

E

i

k

c

2

s

k

2

k

k

c

2

s

k

2

P

lin

P

13

P

lin

F

3

P

lin

1

Figure 1: SPT vertex.

In ⇤CDM, the growth factor of the n-th order solution has to be computed at every given
order using Eqs. (2.14) and (2.15). However, it is possible to write the n-th order growth
factor as the n-th power of D

1

�

(n)

(k, a) = D

n
1

(a) �n(k) , ✓

(n)

(k, a) = D

n
1

(a) ✓n(k) . (2.17)

In the limit of ⌦m = 1, the above solution is exact, i.e. the n-th order solution scales exactly
as a

n. The approximation in (2.17) is valid at the 1% level of accuracy up to third order
as pointed out in Ref. [16].2 The momentum dependence is given in terms of a convolution
of powers of �

1

�n(k) =

Z

q1

...

Z

qn

(2⇡)3

�

(3)

D (k � q

1

... � qn) Fn(q
1

, ..., qn) �

1

(q
1

)...�
1

(qn) ,

✓n(k) =

Z

q1

...

Z

qn

(2⇡)3

�

(3)

D (k � q

1

... � qn) Gn(q
1

, ..., qn) �

1

(q
1

)...�
1

(qn) ,

(2.18)

where the symmetric kernel functions Fn and Gn are known and given e.g. in Ref. [1]. Note
that Fn and Gn only depend on ratios of the momenta. A diagrammatic representation
of SPT has been discussed in the literature. One usually represents the kernels Fn and
Gn as a vertex to which one can attach n external legs as is shown in Fig. 1. Note that
as opposed to the diagrammatic language of renormalized perturbation theory (RPT, see
Refs. [17–20]), we use already the time integrated kernels as vertices.3

For the following discussion, it is important to know how the kernels scale if one of
the momenta becomes very large. It was noted in Ref. [21] (see also Ref. [1]) that the
kernels obey scaling laws such as

lim
q!1

Fn(k
1

, . . . ,kn�2

, q, �q) / k

2

q

2

, (2.19)

2We checked that with the Green’s function of Eq. (2.15) the di↵erence between the (exact) second

order growth factor and D

1

(a)2 is at the ⇠ 0.1% level. However, replacing D� ⇡ D

�3/2

1

inside the Green’s
function increases this di↵erence to ⇠ 4% at late times.

3Note that in renormalized perturbation theory “renormalization” does not refer to the cancellation of
UV-divergences as in EFTofLSS but to a procedure to include higher order contributions in SPT.
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For fixed total sum k, Goroff et al. (’86)

Figure 5: The shapes of the tree-level and one-loop bispectrum divided by ⌃
0

are plotted
as a function of x

2

= k

2

/k

1

and x

3

= k

3

/k

1

for a fixed k

1

= 0.2 h Mpc�1. The shape is
restricted to the range of x

2

� x

3

� 1 � x

2

.

2.3 UV-limit of the loop integrals

In the context of the EFTofLSS we are particularly interested in the UV-limit of the loop
integrals. Therefore, we will have a closer look at this regime before discussing in detail the
EFT contributions to the bispectrum. When the loop momentum becomes much larger
than the external momenta, we can expand the kernels according to the scaling laws in
Eq. (2.19). The resulting expressions give us a hint of how the contributions from the
e↵ective stress tensor should look like in order to cancel the possible divergences.

Let us first consider the UV-limit of the one-loop power spectrum (see also Ref. [6]).
Looking at the diagrams in Fig. 2, we can imagine that the momentum that runs inside
the loop becomes much larger than the external momentum. Since the vertices scale as
/ k

2

/q

2 in this limit (see Eq. (2.19)), we conclude that the two diagrams behave as P

22

/ k

4

and P

13

/ k

2. Including the correct numerical factors, in the UV-limit the two one-loop
integrals in Eq. (2.24) take the form

P

22

(k)
�

�

�

q!1
=

9

196⇡2

k

4

Z

dq q

2

P

2

lin(q)

q

4

, (2.32)

P

13

(k)
�

�

�

q!1
= � 61

630⇡2

Plin(k) k

2

Z

dq q

2

Plin(q)

q

2

(2.33)

= � 61

105
Plin(k) k

2

�

2

v ,

where we defined the quantity �

2

v ⌘ 1/3
R

q

Plin(q)/q2 as the UV-limit of this integral.
For the bispectrum, we follow exactly the same procedure as for the power spectrum

in order to get the UV-limits of the integrals in Eqs. (2.26), (2.27), (2.28) and (2.29). We
can again look at the one-loop diagrams in Fig. 3 and insert for every vertex a factor k

2

/q

2.
Assuming that all three external momenta are of the same order k ⇠ k

1

⇠ k

2

⇠ k

3

and
q � k, we get the rough scaling of

– 14 –
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In the context of the EFTofLSS we are particularly interested in the UV-limit of the loop
integrals. Therefore, we will have a closer look at this regime before discussing in detail the
EFT contributions to the bispectrum. When the loop momentum becomes much larger
than the external momenta, we can expand the kernels according to the scaling laws in
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e↵ective stress tensor should look like in order to cancel the possible divergences.

Let us first consider the UV-limit of the one-loop power spectrum (see also Ref. [6]).
Looking at the diagrams in Fig. 2, we can imagine that the momentum that runs inside
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2

/q
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22

/ k

4

and P

13

/ k
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P

22

(k)
�

�

�

q!1
=

9

196⇡2

k

4

Z

dq q

2

P

2

lin(q)

q

4

, (2.32)

P

13

(k)
�

�

�

q!1
= � 61

630⇡2

Plin(k) k

2

Z

dq q

2

Plin(q)

q

2

(2.33)
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105
Plin(k) k

2

�

2

v ,
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R
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Plin(q)/q2 as the UV-limit of this integral.
For the bispectrum, we follow exactly the same procedure as for the power spectrum

in order to get the UV-limits of the integrals in Eqs. (2.26), (2.27), (2.28) and (2.29). We
can again look at the one-loop diagrams in Fig. 3 and insert for every vertex a factor k

2

/q
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Assuming that all three external momenta are of the same order k ⇠ k

1

⇠ k

2

⇠ k

3

and
q � k, we get the rough scaling of
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integrals. Therefore, we will have a closer look at this regime before discussing in detail the
EFT contributions to the bispectrum. When the loop momentum becomes much larger
than the external momenta, we can expand the kernels according to the scaling laws in
Eq. (2.19). The resulting expressions give us a hint of how the contributions from the
e↵ective stress tensor should look like in order to cancel the possible divergences.

Let us first consider the UV-limit of the one-loop power spectrum (see also Ref. [6]).
Looking at the diagrams in Fig. 2, we can imagine that the momentum that runs inside
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�

�

high-q limit

lim
q��

F3(k, q,�q)lim
q��

F2(q,k � q) � k2

q2
� k2

q2

becomes dominant at k<<1 and scales as k^2P13
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UV sensitive terms
For higher-loops, 
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Ubiquitous UV sensitivity
For bispectrum, 
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of the one-loop power spectrum. An important part of this paper is dedicated to prove
that these divergences can be cancelled. In sum, the SPT bispectrum at the one-loop level
reads
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If properly regularized, the integrals in Eqs. (2.26), (2.27), (2.28) and (2.29) can be eval-
uated analytically for a power-law linear power spectrum Plin(k) / k

n in EdS as done
in Ref. [22]. For a more realistic ⇤CDM universe, these integrals have to be evaluated
numerically since we do not have an analytic form of the linear power spectrum at the
present epoch. Also, in this case we do not encounter formally divergent integrals since
modes entering the horizon during radiation domination are suppressed.

We compute the one-loop integrals using two independent codes: once using the built-
in routines of Mathematica and a C++ code which uses the CUBA libraries [26]. The two
calculations agree very well with each other and we can easily reproduce the results found
in the literature, e.g. in Ref. [25]. To avoid numerically unstable situations, the one-loop
contribution to the bispectrum is most conveniently computed using the IR-safe integrand
discussed in Appx. B (see also Ref. [7, 27]). In Fig. 4 we show the one-loop diagrams in
three special configurations. As opposed to the one- and two-loop power spectrum, in the
bispectrum there are not very large cancellation among the single diagrams. Nevertheless,
the IR-safe integrand improved somewhat the precision of the numerical computation.
Fig. 5 shows the two shapes of the tree-level and one-loop diagrams. In order to emphasize
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Mitigating UV sensitivity

EFT 
approach

UV sensitivity is not a real physical effect 
needs to be cured for an improved prediction

For P(k) at 1-loop order,

This corresponds to adding at RHS of Euler eq.�c2
s� �

add counter terms to mitigate UV sensitivity

counter term to be added :

free parameter

�c2
s k2 Plin(k)

: ’sound velocity’cseffective pressure

Power spectrum and kernel function in effective field theory of large-scale structure

Atsushi Taruya
(Dated: April 9, 2015)

Using a numerical scheme to compute the kernels of standard perturbation theory (PT), we
compute the kernel function of power spectrum in the context of effective field theory of large-scale
structure (EFTofLSS).

PACS numbers:

I. BASIC EQUATIONS FOR PERTURBATIONS

In the standard PT formalism, we normally adopt the single-stream approximation, under which the (CDM+baryon)
system can be reduced to a pressureless fuild system. In the context of EFTofLSS, on top of this treatment, we
introduce the effective stress tensor, τij , which superficially describes the effect of small-scale physics, and compensate
the deviation from single-stream approximation after shell-crossing. The governing equations for perturbations are
then

∂δ

∂t
+

1
a
∇ · [(1 + δ)v] = 0, (1)

∂v

∂t
+ H v +

1
a
(v ·∇) · v = −1

a
∇ψ − 1

ρm

1
a
∇τij , (2)

1
a2

∇2ψ =
κ2

2
ρm δ (3)

(4)

with κ2 = 8πG. The functional form of the stress tensor τij can be in principle derived from the collisionless
Boltzmann equation by taking a spatial average over the small scales. It generally involves not only a type of pressure
perturbation and shear viscosity terms but also the nonlinear interaction terms, which may not be locally expressed
in terms of the fluid quantities. Here, we are particularly concerned with the power spectrum at the one-loop order
of standard PT calculations. In this case, the relevant terms would be the leading-order terms which are expressed in
terms of a linear combination of the fluid quantities. We then write the effective stress tensor as (e.g., [1–3])

τij = ρm

[(
c2
s δ −

c2
bv

aH
∇ · v

)
δij −

3
4

c2
sv

aH

{
∂jvi + ∂ivj −

2
3
(∇ · v)δij

}]
. (5)

The coefficient cs is the sound speed, while csv and cbv are the shear and bulk viscosity coefficients with units of speed.
Eqs. (1)–(3) with effective tensor (5) are the basic equations for perturbations. In Fourier space, these can be

reduced to a more compact form. As usual in the standard PT formalism, we assume the irrotationality of fluid
quantities, and introduce the velocity divergence field, θ = ∇ · v/(aH). Then, we have

H−1 ∂δ(k)
∂t

+ θ(k) = −
∫

d3k1d3k2

(2π)3
δD(k − k12)α(k1, k2) θ(k1)δ(k2), (6)

H−1 ∂θ(k)
∂t

+

{
2 +

Ḣ

H2

}
θ(k) +

κ2 ρm

2H2
δ(k) − k2

a2H2

{
c2
s δ(k) − c2

v θ(k)
}

= −1
2

∫
d3k1d3k2

(2π)3
δD(k − k12)β(k1, k2) θ(k1)θ(k2), (7)

where we define c2
v = c2

bv + c2
sv

1. The functions α and β are the mode-coupling kernels given by

α(k1, k2) = 1 +
k1 · k2

|k1|2
, β(k1, k2) =

(k1 · k2)|k1 + k2|2

|k1|2|k2|2
.

1 That is, as long as we consider the irrotational flow, the shear and bulk viscosity are indistinguishable.
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Power spectrum in EFT

with the finite part of the regularized two-loop calculation,
allows us to extend the 1% agreement range to
k ≈ 0.3 hMpc−1. Here we should stop for a minute and
reconsider the goal of this exercise. Usually one tries to fit
the nonlinear power spectrum as well as possible up to the
highest possible wave number. But actually this should
not be the goal of the fit with the deterministic part of the
EFT, which we are computing here. The nonlinear power
spectrum is the sum of this deterministic part and the
stochastic part. As we have pointed out in [31,32], this
stochastic term amounts to a percent of the total power at
k ¼ 0.25 hMpc−1 (and about 3% at k ¼ 0.3 hMpc−1). This
means that the deterministic part of the power spectrum
should deviate from the nonlinear power spectrum by at
least this much for k > 0.25 hMpc−1. The deterministic
EFT calculation (performed here) should asymptote to the
perturbative or deterministic part of the power spectrum
PPT ¼ Pnl − Pstoch and not to the nonlinear power spectrum
itself. Thus, we have slightly underfitted the c2s parameter
and overfitted the power. Once our EFT calculation is
failing, it predicts more power than the nonlinear power
spectrum (downturn in Fig. 10). This failure would have
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FIG. 9 (color online). Effect of the IR resummation on the one-
and two-loop power spectra. We show the ratio of the power
spectra before and after IR resummation with respect to the
corresponding no-wiggle power spectrum in order to remove
broadband effects. Below k ¼ 0.2 hMpc−1 the bare two-loop
calculation agrees with the IR-resummed one-loop calculation at
the percent level. After IR resummation the wiggle part of the
one- and two-loop calculations agree, which tells us that the IR
resummation captured the relevant terms in the explicit two-loop
calculation correctly.
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FIG. 10 (color online). Ratio of the data to the various PT models at redshifts z ¼ 0, 0.5, 1, 2 from top left to bottom right. We show the
linear theory calculation (green dot-dashed line), the one-loop EFT (red solid line) and the two-loop calculation (blue dashed line). For
the EFT calculation we show results both before (thin line) and after IR resummation (thick line). The ratio is evaluated at the simulation
data points, and the two sigma errors on these data points are indicated by the gray band.

TOBIAS BALDAUF, LORENZO MERCOLLI, and MATIAS ZALDARRIAGA PHYSICAL REVIEW D 92, 123007 (2015)

123007-14

Baldauf et al. (’15b)

2-loop

1-loopz=0 z=0.5

z=1 z=2

P
si

m
/P

P
T

P
si

m
/P

P
T

P
si

m
/P

P
T

P
si

m
/P

P
T

13



(c.f.) resummed PT w/o EFT

AT, Bernardeau, Nishimichi & Codis ('12)

poor convergence of standard PT expansion, since
the low-k behavior of regularized propagators heav-
ily relies on the standard PT treatment. To be spe-

cific, the convergence of !ð1Þ
reg is the main source of

this discrepancy. Indeed, if !ð1Þ
reg is computed at one-

loop order only, the power spectrum is enhanced, and
then N-body results at low k lie in between the two
predictions. The impact of the high-order PT correc-
tions to the two-point propagator are specifically
studied in a separate publication, [38].

(ii) Another discrepancy can be found in the high-z
results, which temporally overshoot the N-body
results at mid-k regime (k# 0:2–0:3h Mpc$1). It
is unlikely to be due to a poor convergence of
standard PT expansion. We rather think that the
performances of the N-body simulations might be
responsible for this (small) discrepancy. We have
tested several runs with different resolutions, and
found that the low-resolution simulation with a
small number of particles tends to underestimate
the power at high z. Possible reason for this comes
from the precision of force calculation around the
intervening scales, where the tree and particle-mesh
algorithms are switched, and we suspect that the
discrepancy is mainly attributed to the inaccuracy of

the tree algorithm. Though the intervening scale is
usually set at a sufficiently small scale, with a low-
resolution simulation, it may affect the large-scale
dynamics with noticeable effects at higher redshifts.
Systematic studies on the convergence and resolu-
tion of N-body simulations will be reported else-
where [42].

Apart from the tiny systematics at subpercent level,
REGPT approach can give a reliable power spectrum pre-
diction at rather wider range, which entirely covers the
relevant scales of BAOs at z * 0:35. As we will see later in
Sec. VI B, the applicable range of the REGPT calculation
remains wide enough even in other cosmological models,
and can be empirically described with the criterion (42).

C. Correlation function

We next consider the two-point correlation function,
which can be computed from the power spectrum as

!ðrÞ ¼
Z dkk2

2"2 PðkÞ sinðkrÞ
kr

: (29)

In Fig. 10, left panel focuses on the behaviors around the
baryon acoustic peak, while right panel shows the global
shape of the two-point correlation function plotted in loga-
rithmic scales, for which !ðrÞ has been multiplied by the

FIG. 9 (color online). Comparison of power spectrum results between N-body simulations and REGPT calculations. In each panel, the
results at z ¼ 3, 2, 1, and 0.35 are shown (from top to bottom). Left panel shows the ratio of power spectrum to the smooth linear
spectrum, PðkÞ=Pno$wiggleðkÞ, where the reference spectrum Pno$wiggleðkÞ is calculated from the no-wiggle formula of the linear

transfer function in Ref. [47]. Solid lines are the REGPT results, while dotted lines represent the linear theory predictions. Right panel
plots the difference between N-body and REGPT results normalized by the no-wiggle spectrum, i.e., ½PN$bodyðkÞ $
PRegPTðkÞ'=Pno$wiggleðkÞ. In each panel, the vertical arrows respectively indicate the maximum wavenumber below which a percent-

level agreement with N-body simulation is achieved with Lagrangian resummation theory [25,48] and closure theory [22,29],
including the PT corrections up to two-loop order.

TARUYA et al. PHYSICAL REVIEW D 86, 103528 (2012)

103528-10

cube of the separation. The REGPT results agree with
N-body simulations almost perfectly over the plotted
scales. As it is known, the impact of nonlinear clustering
on the baryon acoustic peak is significant: the peak position
becomes slightly shifted to a smaller scale, and the
structure of the peak tends to be smeared as the redshift
decreases (e.g., Refs. [24,25,49,50]). The REGPT calcula-
tion can describe not only the behavior around the baryon
acoustic peak but also the small-scale behavior of the
correlation function. Note that similar results are also
obtained from other improved PT treatments such as
closure and LRT. Although the REGPT predictions eventu-
ally deviate from simulations at small scales—the result
at z ¼ 0:35 indeed manifests the discrepancy below
r" 30h#1 Mpc—the actual range of agreement between
REGPT and N-body results is even wider than what is
naively expected from the power spectrum results. In
fact, it has been recently advocated by several authors
that with several improved PT treatments, the one-loop
calculation is sufficient to accurately describe the two-
point correlation function (e.g., Refs. [22,48,51]). We
have checked that the REGPT treatment at one-loop order
can give a satisfactory result close to the two-loop result,
and the prediction including the two-loop corrections only
slightly improves the agreement with N-body simulations
at small scales. This is good news for practical purposes in
the sense that we do not necessarily have to evaluate the
multidimensional integrals for the accurate prediction of
two-point correlation function in the weakly nonlinear
regime. Nevertheless, in this work, we keep the two-loop
contributions in the computed contributions. The computa-
tional costs of the two-loop order will be addressed in the
following with the development of a method for acceler-
ated PT calculation at two-loop order.

V. REGPT-FAST: ACCELERATED POWER
SPECTRUM CALCULATION

In this section, we present a method that allows accel-
erated calculations of the required diagrams of the two-
loop order REGPT prescription. In principle, the power
spectra calculations in the context of REGPT require multi-
dimensional integrations that cannot be done beforehand as
they fully depend on the linear power spectra. It is however
possible to obtain the required quantities much more
rapidly provided we know the answer for a close enough
model.
The key point in this approach is to utilize the fact that

the nonlinear REGPT power spectrum is a well-defined
functional form of the linear power spectrum. Each of
the diagrams that has to be computed is of quadratic, cubic,
etc. order with respect to the linear power spectrum with a
kernel that, although complicated, can be explicitly given.
It is then easy to Taylor-expand each of these terms with
respect to the linear power spectrum. In principle one then
just needs to prepare, in advance, a set of the REGPT results
for some fiducial cosmological models, and then take the
difference between fiducial and target initial power spectra
for which we want to calculate the nonlinear power spec-
trum. These differences involve only one-dimensional in-
tegrals at the first order in the Taylor expansion.
In the following, we present the detail of the implemen-

tation of this approach illustrating it with the one-loop
calculation case.

A. Power spectrum reconstruction from fiducial model

While our final goal is to present the fast PT calculation
at two-loop order, in order to get insights into the imple-
mentation of this calculation, we consider the power

FIG. 10 (color online). Comparison of two-point correlation function between N-body and REGPT results at z ¼ 3, 2, 1, and 0.35
(from bottom to top). In each panel, magenta solid, and black dotted lines represent the prediction from REGPT and linear theory
calculations, respectively. Left panel focuses on the behavior around baryon acoustic peak in linear scales, while right panel shows the
overall behavior in a wide range of separation in logarithmic scales. Note that in right panel, the resulting correlation function is
multiplied by the cube of the separation for illustrative purpose.
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103528-11

Power spectrum

RegPT including next-to-next-to-leading order

RegPT
Linear

RegPT
Linear

Correlation function

Lbox = 2, 048 h�1 Mpc
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Critical comments
• The size of each counter term is unknown, and it needs to be 
calibrated with N-body simulations

(but, it generally depends on time & cosmology)

•  For bispectrum at 1-loop order, we generally need 3 types of 
counter terms, in addition to the one introduced in P(k)

(Baldauf et al. ’15a)

•  At 2-loop order,  counter terms for sub-leading corrections also 
need to be considered, increasing # of free parameters

cs � 1 h�1 Mpc

Physical origin or meaning of each counter term is unclear

e.g., 
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Response function of 
large-scale structure to small-

scale fluctuations

Nishimichi, Bernardeau & AT, Phys.Lett.B 762 (2016) 247
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3-loop : source of trouble 

PT calculations start to get worse !!
Further including 3-loop (i.e., next-to-next-to-next-to-leading order), 

z=1.75

z=0.35

Blas et al. (’14)

next-to-next-to-next-to-leading 
order (3-loop)

N-body simulations
Standard PT 2-loop

Linear
Standard PT 3-loop
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RegGp−loop
aþ ðkÞ ¼

Z
dq
q
Kp−loop

aþ ðk; qÞP0ðqÞ: (76)

We then have, for instance,

K1-loop
1þ ðk; qÞ ¼ 4πq3

!
fðq; kÞ þ 1

6

k2

q2

"
; (77)

K2−loop
1þ ðk;qÞ ¼−ð4πÞ2q3

Z
dq1

q21k
2

q21þq2
αf

!
q1
k
;
q
k

"
P0ðq1Þ:

(78)

Note that the kernel functions depend themselves a priori
on the initial power spectrum: K1−loop

aþ ðk; qÞ is a tree-order
object,K2-loop

aþ ðk; qÞ a one-loop order object (and therefore a
linear function of P0ðqÞ), etc. These functions give, for
each order, the impact of a linear mode q on the amplitude
of the late-time mode k we are interested in. In particular it
tells how the small-scale modes affect the large-scale
modes under consideration. In the following we will focus
our interest in understanding the high-q behavior of the ker-
nel functions Kðk; qÞ.
In Fig. 11 we show the shape of the kernel functions at

one, two-loop and three-loop order for k ¼ 0.1 h=Mpc.
The dashed line corresponds to the one-loop expression.
As can be seen it is rather peaked at q ≈ k and we have

K1-loop
1þ ðk; qÞP0ðqÞ ¼

464π
315

q3P0ðqÞ for q ≪ k (79)

K1-loop
1þ ðk; qÞP0ðqÞ ¼

176π
315

k2qPðqÞ for q ≫ k (80)

At two-loop order, the behaviors are qualitatively different.
The function peaks rather for q ¼ 0.5 h=Mpc, irrespective
of the value for k (when k < 0.5 h=Mpc). We note that

K2-loop
1þ ðk; qÞP0ðqÞ ∼ k2q2P0ðqÞ for q ≫ k (81)

so that the convergence is obtained for a spectral index
smaller than −2. This corresponds to the result mentioned
in the beginning of Sec. III D. These trends are amplified
for the three-loop results shown with a dot-dashed line for
which an even lower power law index is required for con-
vergence. In general the convergence properties of the mul-
tiloop kernel are determined by the properties of the
functions FnðqiÞ and GnðqiÞ and how they behave when
one of their argument is, in norm, much larger than the
sum of the wave modes. As mentioned in [36] it is to
be noted that the Galilean invariance of the motion equation
implies that

Fnðq1;…;qnÞ ∼
j
P

jqjj2

q2i
when qi ≫

####
X

j

qj

####; (82)

whenever one of the qi is much larger than the sum. This
can be seen at an elementary level on the properties of
the vertex function αðk1;k2Þ and βðk1;k2Þ: they both van-
ish when the sum of the argument goes to 0. The property
(82) has direct consequences on the properties of the loop
corrections. As a result, the p-loop correction takes indeed
the form

FIG. 10 (color online). Regular parts of the density propagator
RegGp−loop

1þ ðkÞ at one-, two-, and three-loop order with, respec-
tively, solid, dashed, and dotted lines. The calculations are done
for z ¼ 0.5. Note that each of this contribution scales with the
redshift like DþðzÞ2p where p is the number of loops. The light
yellow regions show the parameter space where the induced cor-
rections to the power spectrum are less than 1 percent.

FIG. 11 (color online). The shape of the kernel functions
P0ðqÞK1-loopðk; qÞ (blue solid line), P0ðqÞK2-loopðk; qÞ (green
dashed line) for k ¼ 0.1 h=Mpc and P0ðqÞK3-loopðk; qÞ (red dot-
ted line) as a function of q for z ¼ 0.5.

COSMIC PROPAGATORS AT TWO-LOOP ORDER PHYSICAL REVIEW D 89, 023502 (2014)

023502-15

Bernardeau, AT & Nishimichi (’14)

Pn-loop(k) �
�

d ln q Kn-loop(k, q) P0(q)

A large UV 
contribution !!

Does this really happen in real universe ?
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Nature of nonlinear mode-coupling
How the small-scale fluctuations affect the evolution 

of large-scale modes ? (or vice versa)

How the small disturbance added in initial power spectrum can 
contribute to each Fourier mode in final power spectrum ?

Initial Final

P0(k)� P fid
0 (k) + � P0(k)

P fid
nl (k) N-body

PT

P fid
0 (k)

�Pnl(k)
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Initial Final

P0(k)� P fid
0 (k) + � P0(k)

P fid
nl (k) N-body

PT

P fid
0 (k)

�Pnl(k)�Pnl(k) =
�

d ln q K(k, q) �P0(q)
Final (nonlinear) initial (linear)

Response 
function
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Measurement of kernel

K(k, q) = q
�Pnl(k)
�P0(q)

Definition in terms of 
functional derivative :

Estimator for mode-coupling kernel (discretized):

ln

�
P±0,j(q)
lnP0(q)

�

�K(ki, qj) P0(qj) �
P+

nl (ki)� P�nl (ki)
� lnP0 � ln q

=
�
± 1

2� lnP0 ; qj � q < qj+1

0 ; otherwise

� ln q = ln qj+1 � ln qj

� ln q = ln qj+1 � ln qj
;

P±nl (k) :  Final output of non-linear power spectrum, for which a small 
perturbation             is added in initial power spectrum, P±0,j(k) P0(k)
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Measurement of kernel

• initial perturbation (  　  　)：1% of� lnP0

• divide k=0.006~0.12 [h/Mpc] into logarithmic15 (or 13)-bins：

• initial power spectrum　　  ： ΛCDM by wmap5 P0(k)

q1 = 0.006 h Mpc�1 (or q1 = 0.012 h Mpc�1)

� ln q = ln(
�

2)

initial k-bin：
width of k-bin：

Run many simulations…

T.Nishimishi

P0(k)
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One way to reformulate this question is to quantify the im-
pact of small-scale structures on the growth of large scale modes. 
Perturbation theory (PT) is a powerful framework to predict the 
growth of structure. Assuming that the system is described by 
self-gravitating pressure-less fluids, it provides the first-principle 
approach to the nonlinear growth (see [12] for a review). Its im-
portance has been heightened after the detection of BAOs in the 
clustering of galaxies, making precise predictions of nonlinearities 
crucially important.

PT calculations show precisely that mode couplings between 
different scales are unavoidable. We propose here to quantify these 
couplings with a two-variable response function,5 defined as the 
linear response of the nonlinear power spectrum at wave mode k
with respect to the linear counterpart at wave mode q6:

K (k,q; z) = q
δP nl(k; z)

δP lin(q; z)
. (1)

In the context of PT calculations, Refs. [14,15] showed progres-
sive broadening of the response function with increasing PT order, 
pointing to the need of regularization of the small-scale contribu-
tion.

If the broadness of the response function at late times is true, 
physics at very small scale can influence significantly the matter 
distribution on large scales, where the acoustic feature is promi-
nent.7 It also questions the reliability of simulations, which can 
follow the evolution of Fourier modes only in a finite dynam-
ical range. We here discuss the response function at the non-
perturbative level utilizing cosmological N-body simulations.

2. Methodology

We here describe our method to measure the response function 
from simulations. We prepare two initial conditions with small 
modulations in the linear spectrum over a finite interval of wave 
mode q, evolve them to a late time, and take the difference of the 
nonlinear spectra measured from the two. That is

K̂ i, j P lin
j ≡

P nl
i [P lin

+, j] − P nl
i [P lin

−, j]
" ln P lin" ln q

, (2)

where the two perturbed linear spectra are given by

ln

[
P lin

±, j(q)

P lin(q)

]

=
{

±1
2
" ln P lin if q ∈ [q j,q j+1),

0 otherwise.
(3)

In the above, the index i ( j) runs over the wave-mode bins for 
the nonlinear (linear) spectrum, and we choose log-equal binning, 
ln q j+1 − ln q j = ln ki+1 − ln ki = " ln q. It is straightforward to show 
that the estimator K̂ approaches to the response function K de-
fined in Eq. (1), when " ln q and " ln P lin are small. The defini-
tion (1) is advantageous in that it allows the measurement in this 
way at the fully nonlinear level.8 Note that a similar function was 
first discussed numerically in Ref. [18] in the context of local trans-
formations of the density field.

We adopt a flat-#CDM cosmology consistent with the five-
year WMAP result [19] with parameters ($m, $b/$m, h, As, ns) =
(0.279, 0.165, 0.701, 2.49 ×10−9, 0.96), which are the current mat-
ter density parameter, baryon fraction, the Hubble constant in 

5 This concept was recently utilized in Ref. [13] to compute the difference of the 
nonlinear power spectrum for slightly different cosmological models.

6 The normalization is such that K contributes to the change in P nl with uniform 
weights per decade.

7 Notice, however, that the feature can also be affected by galaxy bias [16,17].
8 This is contrasted to the function Fn appearing in PT for the n-th order coupling.

Table 1
Simulation parameters. Box size (box), softening scale (soft) and mass of the parti-
cles (mass) are respectively given in unit of h−1 Mpc, h−1 kpc and 1010h−1 M⊙ . The 
number of q-bins is shown in the “bins” column, for each of which we run two sim-
ulations with positive and negative perturbations in the linear spectrum. The “runs” 
column shows the number of independent initial random phases over which we re-
peat the same analysis. The total number of simulations are shown in the “total” 
column.

name box particles zstart soft mass bins runs total

L9-N10 512 10243 63 25 0.97 5 1 10
L9-N9 512 5123 31 50 7.74 15 4 120
L9-N8 512 2563 15 100 61.95 13 4 104
L10-N9 1024 5123 15 100 61.95 15 1 30
high_ns 512 5123 31 50 7.74 5 4 40
low_ns 512 5123 31 50 7.74 5 4 40

units of 100 km/s/Mpc, the scalar amplitude normalized at k0 =
0.002 Mpc−1 and its power index, respectively. We also consider 
different cosmologies to check the generality of the result. Since 
we can check the dependence of the response function on the 
overall amplitude of the power spectrum by looking at the re-
sults at different redshifts, we here focus on the variety in only 
the shape of the spectrum. As a representative of the parame-
ters that control the shape, we consider the spectral tilt ns . We 
run simulations for two additional models, one with a higher 
(1.21; high_ns) and the other with a lower (0.71; low_ns) 
value of ns. Although the parameter ns has been constrained 
very tightly from observations of the cosmic microwave back-
ground (with only ∼ 1% uncertainty), we choose to give it a 
rather large (±0.25) variation to cover a wider class of models 
with different linear power spectra. The amplitude parameter As
for these models is determined such that the rms linear fluctua-
tion at 8 h−1 Mpc is kept unchanged. The matter transfer function 
is computed for these models using the CAMB code [20] with 
the high-precision mode of the calculation in the transfer func-
tion (transfer_high_precision is set to be true and accu-
racy_boost= 2) up to kmax = 100 h Mpc−1. We confirm that the 
result is well converged by testing more strict values in the param-
eter file.

We run four sets of simulations for the fiducial model with 
different volume and number of particles as listed in Table 1. 
Covering different wave number intervals, these simulations allow 
us to examine the convergence of the measured response func-
tion. The initial conditions are created using a code developed in 
[21,22] based on the second-order Lagrangian PT (e.g., [23,24]). 
The initial redshifts of the simulations are determined as follows. 
A lower starting redshift can induce transient effects associated 
with higher-order decaying modes. On the other hand, as increas-
ing the initial redshift, the randomly generated particle position 
generally gets closer to the pre-initial grid, and this can lead to 
discreteness noise in the force calculation. To minimize the sum of 
these two systematic effects, we set the initial redshift such that 
the rms displacement is roughly 20% of the inter-particle spac-
ing, and thus it depends on the resolution as shown in Table 1. 
We evolve the matter distribution using a Tree-PM code Gad-
get2 [25]. We finally measure the power spectrum by fast Fourier 
transform of the Cloud-in-Cell (CIC) density estimates on 10243

mesh with the CIC kernel deconvolved in Fourier space.
For each set of simulations, we prepare multiple initial condi-

tions with linear spectra perturbed by ±1% over q j ≤ q < q j+1. The 
amplitude of perturbation should be sufficiently small such that 
the correction from the higher-order derivative (δ2 P nl/δP linδP lin) 
does not contaminate the result. We tested different amplitudes 
(±3% and ±5%), and confirmed that the result is almost un-
changed. We set the bin width as " ln q = ln(

√
2) and each sim-

ulation set covers different wavenumber range corresponding to 
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ing the initial redshift, the randomly generated particle position 
generally gets closer to the pre-initial grid, and this can lead to 
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For each set of simulations, we prepare multiple initial condi-

tions with linear spectra perturbed by ±1% over q j ≤ q < q j+1. The 
amplitude of perturbation should be sufficiently small such that 
the correction from the higher-order derivative (δ2 P nl/δP linδP lin) 
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Measurement results
Nishimichi, Bernardeau & AT (’16)

: positive

: negative

or

or

Measured at 
k=0.162 [h/Mpc]

3

FIG. 1: Response function measured from simulations. We
plot |K(k, q)|P lin(q) as a function of the linear mode q for
a fixed nonlinear mode at k = 0.161hMpc�1 indicated by
the vertical arrow. The filled (open) symbols show L9-N9
(L10-N9), the lines depict L9-N8, while the big hatched sym-
bols on small scales are L9-N10. Positive (negative) values
are indicated as the upward (downward) triangles or the solid
(dashed) lines.

FIG. 2: Response function predicted by PT (un-binned) up
to one- (thin solid) and two-loop (thick solid) order at k =
0.2hMpc�1 at z = 1. Dashed (dotted) lines show each of the
one- (two-)loop contributions with the legend (ij) showing
the perturbative order of the calculation. We show a negative
sign in the legend when K is negative. Note that we ignore
terms proportional to the Dirac delta function at k = q, which
is meaningful only when binning is considered.

galilean invariance of the system as discussed in e.g., [20–

24]. On the other hand, small scales are dominated by
one term at each order, P

13

(k) and P
15

(k). It has been
shown that similar terms dominate the behavior at any
order in PT.

FIG. 3: Rescaled response function, T (k, q) ⌘ [K(k, q) �
K lin(k, q)]/[qP lin(k)]. PT calculations are shown by lines,
whereas the symbols are L9-N9 (see legend for detail). The
nonlinear wave-mode bin is fixed at k = 0.161hMpc�1 (ver-
tical arrow). Binning is taken into account to the analytical
calculations consistently to the simulations.

We then rescale the response function at various red-
shifts as T (k, q) = [K(k, q)�K lin(k, q)]/[qP lin(k)], where
K lin is the linear contribution, and plot them in Fig. 3.
They are compared with the one-loop PT calculation
(solid), which is time-independent with this normaliza-
tion. The simulation data indeed shows little time de-
pendence at q . k in remarkable agreement with the
one-loop calculation, reproducing the expected q depen-
dence [44], as well as the change of sign between large and
small scales. The small but non-negligible z-dependence
at k ⇠ q is further reproduced by the two-loop calcula-
tion (see the figure legend). Note that at the wave-mode
k plotted here (i.e., 0.161hMpc�1), the two-loop SPT
prediction for the nonlinear power spectrum agrees with
simulations within 1% at z & 1 and the agreement gets
worse at lower redshift reaching to ⇠ 5% at z = 0 (see
e.g., [10]).
At q & 0.3hMpc�1, however, the measured response

function is damped compared to the PT. The one-
loop PT predicts the response function to reach a con-
stant [45]; at the two-loop order, it grows in amplitude
with time. The numerical measurements show on the
other hand that the scaled response function is strongly
damped with decreasing redshift. It is such that the
couplings take place e↵ectively between modes of simi-
lar wavelengths. This e↵ect is particularly important at
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Wide field galaxy surveys are widely considered for un-
veiling the detailed geometrical properties or energy con-
tent of the universe [1]. Large-scale projects, such as the
EUCLID mission[14], are planned in the coming decade,
aiming at the determination of these properties with an
unprecedented accuracy. Such measurements rely to a
large extent on the use of the statistical properties of the
large-scale cosmic structures up to scales entering the
weakly non-linear regime, that is to scales where the sole
linear theory cannot be used. But such a scientific pro-
gram could then only be achieved if the properties of the
large-scale cosmological structure can be safely predicted
either from numerical simulations or from analytical in-
vestigations for any given cosmological model. In partic-
ular it is important such observables are shielded from
the details of small scale astrophysics and gas physics at
galactic or sub-galactic scales.

One way to reformulate this question is to quantify
how small scale structures can impact the growth of large
scale structure as soon as modes are entering the nonlin-
ear regime. Perturbation theory (PT) of the structure
formation is a powerful framework to precisely predict
the nonlinear gravitational dynamics of the cosmic fluid
from the first principle at least when gravity only is at
play. The importance of such methods has been height-
ened after the detection of the baryon acoustic oscilla-
tions (BAOs) in the clustering of galaxies at late times
(e.g., [2]), making precise predictions of the nonlinear
matter power spectrum crucially important.

PT calculations show precisely that mode couplings be-
tween different scales is unavoidable. It makes PT results
in general difficult to develop in a controlled manner. We
propose here to quantify such couplings with the use of
a two-variable kernel function[15], defined as the linear
response at wave-mode k with respect to initial pertur-
bation of the linear power spectrum at wave-mode q. In
the context of PT calculations Ref. [3] showed progres-
sive broadening of the kernel function as increasing the
PT order, and speculated that a regularization scheme

in the UV domain is required to give a realistic estimate
of the high-order perturbative contributions. The recent
paper by [4] also pointed out the unsuccessful conver-
gence of PT series at late times and proposed a simple
ansatz based on the Padé approximation to suppress the
strong UV sensitivity seen in the standard PT (SPT).

If the broadness of the kernel at late times suggested
from PT calculations is true, physics at very small scale
can influence significantly the matter distribution on
large scales where the acoustic feature is prominent. It
also poses a question to the reliability of simulations, with
which we can follow the evolution of Fourier modes only
in finite dynamic range. We here present a first direct
measurement of the kernel structure from cosmological
N -body simulations. We show that this allows a di-
rect test of regularization schemes employed in analytical
models.

Definition and methodology.— What is the response
of the nonlinear power spectrum at wavenumber k to
the linear power spectrum at wavenumber q? At linear
level, it is simply a Dirac-delta function since each Fourier
mode evolves independently in standard cosmological
scenarios. Here we wish to introduce a well-defined kernel
function and investigate it at fully nonlinear level. We
consider the nonlinear power spectrum as a functional
of the linear power spectrum, i.e., P nl = P nl[P lin], and
define the kernel function as its functional derivative:

K(k, q; z) = q
δP nl(k; z)
δP lin(q; z)

. (1)

We omit the explicit dependence on z from the arguments
in what follows. The normalization for K is chosen such
that a small variation in P nl is related to that of P lin as

δP nl(k) =
∫

d ln q K(k, q)δP lin(q). (2)

This relation provides us a simple way to measure the ker-
nel function from simulations. In order to do so, we pre-
pare two initial conditions with small modulations in the
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formation is a powerful framework to precisely predict
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(e.g., [2]), making precise predictions of the nonlinear
matter power spectrum crucially important.
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which we can follow the evolution of Fourier modes only
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measurement of the kernel structure from cosmological
N -body simulations. We show that this allows a di-
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Definition and methodology.— What is the response
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the linear power spectrum at wavenumber q? At linear
level, it is simply a Dirac-delta function since each Fourier
mode evolves independently in standard cosmological
scenarios. Here we wish to introduce a well-defined kernel
function and investigate it at fully nonlinear level. We
consider the nonlinear power spectrum as a functional
of the linear power spectrum, i.e., P nl = P nl[P lin], and
define the kernel function as its functional derivative:

K(k, q; z) = q
δP nl(k; z)
δP lin(q; z)

. (1)

We omit the explicit dependence on z from the arguments
in what follows. The normalization for K is chosen such
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late time. At redshift zero, the discrepancy between the
model and simulations is striking. Furthermore analysis
of the response structure at three and higher loop order
(see e.g., [9]) suggests that PT calculations, at any finite
order, predict an even larger amplitude of the response
function in the high q region. This strongly suggests that
this anomaly is genuinely non-perturbative.

We propose an e↵ective description of this observed
behavior. As illustrated in Fig. 4 it can be modeled with
a Lorentzian:

T e↵.(k, q) =
⇥
T 1�loop(k, q) + T 2�loop(k, q)

⇤ 1

1 + (q/q
0

)2

(4)
characterized by a time-dependent critical wave mode,
q
0

(z) = 0.3D�2

+

(z)h/Mpc, where D
+

is the linear growth
factor, and the prefactor 0.3 is determined by fitting to
the data. Note that, as it can be checked in Fig. 4, q

0

is
independent of k preserving the k dependence of the re-
sponse function at the small scale limit. This dependence
is in full agreement with PT predictions.

FIG. 4: Response function divided by the two-loop PT at the
three wave modes k shown in the legend. We plot data points
only at q � 2k for definiteness. The over-plotted solid lines
correspond to the empirical form (4). Small solid symbols are
L9-N9 while the big hatched are L9-N10.

Discussion—. The simulation results give a clear evi-
dence that the mode transfer from small to large scales
is suppressed compared to the PT prediction when the
mode q enters the nonperturbative regime. However, the
origin of the suppression is yet to be understood. In
particular it is not clear whether it roots genuinely shell
crossing e↵ects [46].

It might be possible that such damping e↵ect origi-
nates from simpler mechanisms in single-stream physics.
It has been shown in particular that the nonlinear den-
sity propagator, which expresses the evolution of a given

wave mode with time, is exponentially damped by the
large-scale displacements. This is the standard result on
which the Renormalized Perturbation Theory is based
[25, 26]. As explicitly shown in [27] equal-time spectra
are however insensitive to displacements of the global sys-
tem, that originates from wave modes smaller than k.
Displacements at intermediate scales are nonetheless ex-
pected to induce some e↵ective damping for equal-time
spectra. The physical idea behind that is that the force
driving the collapse of a large-scale perturbation (e.g., a
cluster of galaxies) is a↵ected by the small scale inhomo-
geneities within the structure (say galaxies), but that this
dependence might be damped when such small scale in-
homogeneities are actually moving within the structure.
It is however beyond the scope of this presentation to
evaluate the importance of this e↵ect.
Summary—. We have presented the first direct mea-

surement of the response function that governs the de-
pendence of the nonlinear power spectrum on the initial
spectrum during cosmic structure formation. This mea-
surement was done using a large ensemble of N -body
simulations that di↵er slightly in their initial conditions.
The results were found to be robust to the simulation
resolution – as shown in Table I – supporting the idea
that measured shapes were genuine features in the devel-
opment of gravitational instabilities.
The response functions were computed concurrently at

next and next-to-next leading order in PT. Comparisons
with measurements show a remarkable agreement over a
wide range of scale and time. We found however mode
transfers from small to large scales to be strongly sup-
pressed compared to theoretical expectations especially
at late time. We propose a description of the damping
tail with a Lorentzian shape.
These results are of far-reaching consequences. They

first give insights into the mode coupling structure of cos-
mological fluids and show that PT approaches capture
most of their properties. The small scale damping sig-
nals the validity limit of the PT beyond next-to-leading
order. It provides in particular indications on how to
regularize their contributions. The observed damping
also marks the irruption of collective non-linear e↵ects
although the underlying mechanisms are yet to be un-
covered. Most importantly the damped response sug-
gests that small scale physics, whether from the initial
metric perturbations or late-time processes, can be ef-
fectively controlled. It paves the way for solid estimates
of the theoretical uncertainties on the determination of
cosmological parameters (such as inflationary primordial
non-Gaussianities, neutrino masses or dark energy pa-
rameters) from large-scale surveys.
We thank Patrick Valageas for fruitful discussions on

analytical calculations of the response function. This
works is supported in part by grant ANR-12-BS05-0002
of the French Agence Nationale de la Recherche. TN is
supported by JSPS. AT is supported by a Grant-in-Aid
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FIG. 1: Response function measured from simulations. We
plot |K(k, q)|P lin(q) as a function of the linear mode q for
a fixed nonlinear mode at k = 0.161hMpc�1 indicated by
the vertical arrow. The filled (open) symbols show L9-N9
(L10-N9), the lines depict L9-N8, while the big hatched sym-
bols on small scales are L9-N10. Positive (negative) values
are indicated as the upward (downward) triangles or the solid
(dashed) lines.

FIG. 2: Response function predicted by PT (un-binned) up
to one- (thin solid) and two-loop (thick solid) order at k =
0.2hMpc�1 at z = 1. Dashed (dotted) lines show each of the
one- (two-)loop contributions with the legend (ij) showing
the perturbative order of the calculation. We show a negative
sign in the legend when K is negative. Note that we ignore
terms proportional to the Dirac delta function at k = q, which
is meaningful only when binning is considered.

galilean invariance of the system as discussed in e.g., [20–

24]. On the other hand, small scales are dominated by
one term at each order, P

13

(k) and P
15

(k). It has been
shown that similar terms dominate the behavior at any
order in PT.

FIG. 3: Rescaled response function, T (k, q) ⌘ [K(k, q) �
K lin(k, q)]/[qP lin(k)]. PT calculations are shown by lines,
whereas the symbols are L9-N9 (see legend for detail). The
nonlinear wave-mode bin is fixed at k = 0.161hMpc�1 (ver-
tical arrow). Binning is taken into account to the analytical
calculations consistently to the simulations.

We then rescale the response function at various red-
shifts as T (k, q) = [K(k, q)�K lin(k, q)]/[qP lin(k)], where
K lin is the linear contribution, and plot them in Fig. 3.
They are compared with the one-loop PT calculation
(solid), which is time-independent with this normaliza-
tion. The simulation data indeed shows little time de-
pendence at q . k in remarkable agreement with the
one-loop calculation, reproducing the expected q depen-
dence [44], as well as the change of sign between large and
small scales. The small but non-negligible z-dependence
at k ⇠ q is further reproduced by the two-loop calcula-
tion (see the figure legend). Note that at the wave-mode
k plotted here (i.e., 0.161hMpc�1), the two-loop SPT
prediction for the nonlinear power spectrum agrees with
simulations within 1% at z & 1 and the agreement gets
worse at lower redshift reaching to ⇠ 5% at z = 0 (see
e.g., [10]).
At q & 0.3hMpc�1, however, the measured response

function is damped compared to the PT. The one-
loop PT predicts the response function to reach a con-
stant [45]; at the two-loop order, it grows in amplitude
with time. The numerical measurements show on the
other hand that the scaled response function is strongly
damped with decreasing redshift. It is such that the
couplings take place e↵ectively between modes of simi-
lar wavelengths. This e↵ect is particularly important at

UV suppression is seen at various k
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late time. At redshift zero, the discrepancy between the
model and simulations is striking. Furthermore analysis
of the response structure at three and higher loop order
(see e.g., [9]) suggests that PT calculations, at any finite
order, predict an even larger amplitude of the response
function in the high q region. This strongly suggests that
this anomaly is genuinely non-perturbative.

We propose an e↵ective description of this observed
behavior. As illustrated in Fig. 4 it can be modeled with
a Lorentzian:
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independent of k preserving the k dependence of the re-
sponse function at the small scale limit. This dependence
is in full agreement with PT predictions.

FIG. 4: Response function divided by the two-loop PT at the
three wave modes k shown in the legend. We plot data points
only at q � 2k for definiteness. The over-plotted solid lines
correspond to the empirical form (4). Small solid symbols are
L9-N9 while the big hatched are L9-N10.

Discussion—. The simulation results give a clear evi-
dence that the mode transfer from small to large scales
is suppressed compared to the PT prediction when the
mode q enters the nonperturbative regime. However, the
origin of the suppression is yet to be understood. In
particular it is not clear whether it roots genuinely shell
crossing e↵ects [46].

It might be possible that such damping e↵ect origi-
nates from simpler mechanisms in single-stream physics.
It has been shown in particular that the nonlinear den-
sity propagator, which expresses the evolution of a given

wave mode with time, is exponentially damped by the
large-scale displacements. This is the standard result on
which the Renormalized Perturbation Theory is based
[25, 26]. As explicitly shown in [27] equal-time spectra
are however insensitive to displacements of the global sys-
tem, that originates from wave modes smaller than k.
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pected to induce some e↵ective damping for equal-time
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driving the collapse of a large-scale perturbation (e.g., a
cluster of galaxies) is a↵ected by the small scale inhomo-
geneities within the structure (say galaxies), but that this
dependence might be damped when such small scale in-
homogeneities are actually moving within the structure.
It is however beyond the scope of this presentation to
evaluate the importance of this e↵ect.
Summary—. We have presented the first direct mea-

surement of the response function that governs the de-
pendence of the nonlinear power spectrum on the initial
spectrum during cosmic structure formation. This mea-
surement was done using a large ensemble of N -body
simulations that di↵er slightly in their initial conditions.
The results were found to be robust to the simulation
resolution – as shown in Table I – supporting the idea
that measured shapes were genuine features in the devel-
opment of gravitational instabilities.
The response functions were computed concurrently at

next and next-to-next leading order in PT. Comparisons
with measurements show a remarkable agreement over a
wide range of scale and time. We found however mode
transfers from small to large scales to be strongly sup-
pressed compared to theoretical expectations especially
at late time. We propose a description of the damping
tail with a Lorentzian shape.
These results are of far-reaching consequences. They

first give insights into the mode coupling structure of cos-
mological fluids and show that PT approaches capture
most of their properties. The small scale damping sig-
nals the validity limit of the PT beyond next-to-leading
order. It provides in particular indications on how to
regularize their contributions. The observed damping
also marks the irruption of collective non-linear e↵ects
although the underlying mechanisms are yet to be un-
covered. Most importantly the damped response sug-
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FIG. 1: Response function measured from simulations. We
plot |K(k, q)|P lin(q) as a function of the linear mode q for
a fixed nonlinear mode at k = 0.161hMpc�1 indicated by
the vertical arrow. The filled (open) symbols show L9-N9
(L10-N9), the lines depict L9-N8, while the big hatched sym-
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are indicated as the upward (downward) triangles or the solid
(dashed) lines.

FIG. 2: Response function predicted by PT (un-binned) up
to one- (thin solid) and two-loop (thick solid) order at k =
0.2hMpc�1 at z = 1. Dashed (dotted) lines show each of the
one- (two-)loop contributions with the legend (ij) showing
the perturbative order of the calculation. We show a negative
sign in the legend when K is negative. Note that we ignore
terms proportional to the Dirac delta function at k = q, which
is meaningful only when binning is considered.

galilean invariance of the system as discussed in e.g., [20–

24]. On the other hand, small scales are dominated by
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FIG. 3: Rescaled response function, T (k, q) ⌘ [K(k, q) �
K lin(k, q)]/[qP lin(k)]. PT calculations are shown by lines,
whereas the symbols are L9-N9 (see legend for detail). The
nonlinear wave-mode bin is fixed at k = 0.161hMpc�1 (ver-
tical arrow). Binning is taken into account to the analytical
calculations consistently to the simulations.

We then rescale the response function at various red-
shifts as T (k, q) = [K(k, q)�K lin(k, q)]/[qP lin(k)], where
K lin is the linear contribution, and plot them in Fig. 3.
They are compared with the one-loop PT calculation
(solid), which is time-independent with this normaliza-
tion. The simulation data indeed shows little time de-
pendence at q . k in remarkable agreement with the
one-loop calculation, reproducing the expected q depen-
dence [44], as well as the change of sign between large and
small scales. The small but non-negligible z-dependence
at k ⇠ q is further reproduced by the two-loop calcula-
tion (see the figure legend). Note that at the wave-mode
k plotted here (i.e., 0.161hMpc�1), the two-loop SPT
prediction for the nonlinear power spectrum agrees with
simulations within 1% at z & 1 and the agreement gets
worse at lower redshift reaching to ⇠ 5% at z = 0 (see
e.g., [10]).
At q & 0.3hMpc�1, however, the measured response

function is damped compared to the PT. The one-
loop PT predicts the response function to reach a con-
stant [45]; at the two-loop order, it grows in amplitude
with time. The numerical measurements show on the
other hand that the scaled response function is strongly
damped with decreasing redshift. It is such that the
couplings take place e↵ectively between modes of simi-
lar wavelengths. This e↵ect is particularly important at

UV suppression is seen at various k

/ 1

1 + (q/q0)2
Lorentzian

Response of power spectrum at k 
to a small initial variation at q 

K(k, q; z) = q
�Pnl(k; z)

�P0(q; z)
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Reconstructing nonlinear P(k)

FIG. 12. Same as in Fig. 11, but for WM3 cosmology as the target model.

Figure 13 illustrates an example path with three steps following this prescription. We

show on the left the linear power spectra for the target (EXT015, see Table I) and fiducial

cosmologies (solid), as well as the two intermediate steps (dotted). The corresponding

nonlinear spectra recovered by our method is shown in the right panel. On the left panel,

we show by the horizontal arrow the location of the wavenumber k
match

below which we

adjust the linear spectra. On the other hand, we show the expected maximum wavenumber

k
max

on the right panel.

FIG. 13. Linear power spectra in the multi-step reconstruction.
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w/ damping

Ptarget(k) = Pfiducial(k) +

Z
d ln q K(k, q) {P0,target(q)� P0,fiducial(q)}

Response funcion

Linear power spectrum

simulation

Response func. with damping gives a better agreement with simulation

fiducial: Planck 15
target: wmap3

z=0.5z=1.0z=2.0

Nishimichi et al. (in prep)
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Summary

What is a role of small-scale dynamics ?

Breakdown of single-stream PT treatment 
can be seen even at large scales 

•  Higher-order mode-coupling gets a larger UV contribution

• In simulation,  actual UV contribution is suppressed
Blas, Garny & Konstandin (’14), Bernardeau, AT & Nishimichi (’14)

Nishimichi, Bernardeau & AT (’16, ’17 in prep.)

However

Multi-stream flows

12

Fig. 2.— Halo I’s color contrast images of the phase space density (left) and the corresponding profiles (right) of radial velocity (green
dashed), radial (black solid) and tangential (red dotted) velocity dispersions, for z =1 (top), 0.4 (middle) and 0 (bottom). For the contrast
image for z = 0, the self-similar solution (Filmore & Goldreich 1984; Bertschinger 1985) in the EdS universe is overplotted.

Suto et al. (2016)

Is there a way to go beyond single-stream PT ?
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Beyond single-stream approx.: 
lesson from 1D cosmology

AT & Colombi, arXiv:1701.09088
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Vlasov-Poisson: back to the source

Vlasov-Poisson 
system

[ ] f(x, v; t) = 0
�

�

�t
+

v

a
· �

�x
� a

��

�x
· �

�v

�
a

�
f(x)dx�2�(x; t) = 4� Ga2 d3v f(x, v; t)

f(x, v; t)� �(t) {1 + �(x; t)} �D (v � v(x; t))

A more fundamental description :

•  Reduced to a (pressureless) fluid system for single-stream flow:

• N→∞ limit of self-gravitating N-body system 

Single-stream flow is initially correct, but will be later violated 
(at small scales)

(collisionless Boltzmann)
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1D cosmology
Simplification may help us to understand what’s going on

•Generic features of nonlinear mode-coupling :

• Perturbative description beyond shell-crossing:

x

2 A. Taruya and S. Colombi

suggests a very large UV contribution to the large-scale
modes through the nonlinear mode-coupling, and indicates
the break down of higher-order perturbative calculations
even at large scales.

The deficiency of the perturbation theory calculation
has been also highlighted from recent numerical analysis.
Nishimichi et al. (2014) directly measured the coupling be-
tween the different scales with the cosmological N -body sim-
ulations, and found that the actual contribution from small
scales to the large-scale modes is suppressed, as opposed to
the prediction of perturbation theory based on the single-
stream approximation. These facts imply that the validity
of the single-stream treatment is questionable even at large
scales, and the higher-order perturbative correction needs
to be cured or remedied by a proper account of small-scale
dynamics, where the multi-stream flow is important.

One approach to address this issue may be to start with
the effective fluid equations that introduce non-vanishing
stress tensor arising from the small-scale clustering, for
which the single-stream treatment with Eqs. (4) and (5) is
unable to describe. This effective-field theory approach has
recently appeared with a great interest, and has been studied
in details (e.g., Baumann et al. 2012; Carrasco et al. 2012;
Hertzberg 2014; Baldauf et al. 2015). The drawback of this
approach is, however, that the parameters in the stress ten-
sor characterizing the small-scale dynamics need to be cali-
brated with N -body simulations, to make the prediction of
perturbative calculation under control. Furthermore, these
parameters generally varies with cosmology and redshifts,
and no prediction with perturbation theory is possible inde-
pendently of N -body simulations.

Alternative but a solid approach that we shall discuss
in this paper is to go back to a fundamental description,
i.e., Vlasov-Poisson system in Eqs. (1) and (2). Starting
with cold initial condition, virialized system called dark mat-
ter halos are formed at high dense region, and each sys-
tem evolves following the multi-stream flow. Thus, beyond
the single-stream treatment, dealing with multi-stream flow
is rather critical and essential. Our main goal in this pa-
per is therefore to give a perturbative description of multi-
stream dynamics beyond shell-crossing, and to investigate
the impact of such multi-stream dynamics on the statistics
of large-scale structure. For this purpose, we shall consider
the one-dimensional (1D) cosmology. With one-spatial di-
mension, dynamics of matter clustering is described by the
interaction of mass sheets moving toward left and right un-
der the influence of Hubble expansion. Despite its simplic-
ity, the dynamics in 1D modes still has a rich physics which
partly share the same features as seen in the 3D cluster-
ing. This is partly the reason why the 1D model has re-
cently attracted much attention (e.g., McQuinn & White
2016; Vlah et al. 2016; Baldauf et al. 2016). In particular,
the Zel’dovich solution gives an exact solution for the dy-
namics of mass sheets before the shell-crossing (Zel’dovich
1970; Shandarin & Zeldovich 1989), and thus starting with
Zel’dovich solution, a tractable perturbative treatment of
multi-stream flow is made possible based on the Lagrangian
description. The analytis in the present paper is an extension
of the method developed in Colombi (2015) to the cosmolog-
ical setup. We will describe perturbatively the post-collapse
dynamics around the shell-crossing region, and apply it to
several cases including the random initial conditions.

Note, finally, that the analytical study in 1D is, of
course, first step toward a proper description of 6D phase-
space dynamics. Indeed, thanks to a tremendous effort
on the development of Vlasov-Poisson code, simulation
in 6D phase-space has become available (Yoshikawa et al.
2013; Sousbie & Colombi 2015; Hahn & Angulo 2016).
Apart from few examples including self-similar solutions
(Fillmore & Goldreich 1984a,b; Bertschinger 1985; Ryden
1993; Lithwick & Dalal 2011), little has been analytically
known for the dynamics of Vlasov-Poisson system. There-
fore, the development of analytical treatment is also indis-
pensable complementary to the simulations, and even help-
ful to cross check the simulation code.

This paper is organized as follows. In Sec. 2, we be-
gin by describing the basic setup of our calculation in one-
dimensional cosmology. We then discuss in Sec. 3 the ana-
lytic treatment beyond shell-crossing, and develop the post-
collapse perturbation theory. The analytic calculation with
post-collapse perturbation is compared with N -body simu-
lations in Sec. 5. Finally, Sec. 6 is devoted to conclusion and
discussion.

2 1D COSMOLOGY

2.1 Basic setup

Consider the evolution of one-dimensional density field in
an expanding universe. In the standard picture of structure
formation, the large-scale structure evolves with the cold
initial condition. In one-dimensional case, this implies that
the phase-space distribution is confined in a one-dimensional
sheet. Thus, solving Vlasov-Poisson system with cold initial
condition is mathematically equivalent to solving the equa-
tion of motion for each mass sheet:

dx
dt

=
v
a

, (7)

dv
dt

+ H v = −1
a
∇xφ, (8)

∇2
xφ(x) = 4πGρ a2 δ(x), (9)

where the density field δ. To deal with this system, especially
for the dynamics after shell-crossing, it would be essential
to introduce the Lagrangian coordinate, q, and to express
the comoving position and the peculiar velocity of the mass
element as x(q, t) and v(q, t). Assuming the uniform density
in the Lagrangian coordinate, the mass conservation implies

dq = [1 + δ(x)] dx =⇒ δ(x) =

„
∂x
∂q

«−1

− 1. (10)

It is to be noticed that the above cosmological system
is effectively reduced to the system in a non-cosmological
setup. To do this, we introduce the super-conformal time τ
defined by (e.g., Doroshkevich et al. 1973):

dτ =
dt
a2

(11)

Also, we define the new velocity v and potential Φ:

v ≡ a v, Φ ≡ a2φ (12)

MNRAS 000, 1–21 (2015)

Response function
Post-collapse PT

Learn something in simple 1D cosmology
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Then, Eqs. (7)–(9) are rewritten with

dx
dτ

= v, (13)

dv
dτ

= −∇xΦ, (14)

∇2
xΦ = 4πGρm a4 δ =

3
2

Ωm,0H
2
0 a δ, (15)

With the new expressions above, the solution is formally
written as:

x(q; τ) = x(q; τ0) +

Z τ

τ0

dτ ′ v(q; τ ′), (16)

v(q; τ) = v(q; τ0) −
Z τ

τ0

dτ ′ ∇xΦ(x(q; τ ′); τ ′), (17)

where the x(q; τ0) and v(q; τ0) are the initial condition given
at an initial time τ0, which will be specified below.

In what follows, we consider the dynamics of the cosmo-
logical system given above in a finite-size box of 0 ≤ x ≤ L,
imposing the periodic boundary condition. From Eq. (15),
the potential Φ satisfying the periodic boundary condition
is expressed in an integral form as:

Φ(x) =
3
2

Ωm,0H
2
0 a

×
Z L

0

dx′

"
−L

2

(„
|x − x′|

L
− 1

2

«2

− 1
12

)#
δ(x′). (18)

The derivation of this integral expression is presented in Ap-
pendix A. Then, the force exerted on a mass element at the
position x is given by:

F (x) ≡ −∇xΦ(x)

= −3
2

Ωm,0H
2
0 a
hZ L

0

dx′ δ(x
′)

2

˘
Θ(x − x′) − Θ(x′ − x)

¯

+
1
L

Z L

0

dx′ x′ δ(x′)
i
, (19)

where the function Θ(x) represents the Heaviside step func-
tion. In the above, we used the fact that the fluctuation aver-
aged over the space becomes vanishing, i.e.,

R L

0
dx′ δ(x′) =

0. Taking the limit L → ∞, the above expression recovers
the well-known result in the case with the infinite space.

2.2 Initial condition and pre-collapse dynamics

In one-dimensional case, the so-called Zel’dovich approxima-
tion gives an exact solution for the dynamics of mass sheet
before shell-crossing. The Zel’dovich solution also provides
a natural basis for the cold initial condition. The solution is
given by

x(q; τ) = q + ψ(q) D+(τ), v(q; τ) = ψ(q)
dD+(τ)

dτ
. (20)

Here, the function D+ is the linear growth factor satisfying
the following equation:
»

d2

dτ2
− 3

2
Ωm,0H

2
0 a(τ)

–
D+(τ) = 0. (21)

Note that in terms of the cosmic time t, Eq. (21) is reduced
to the standard form of the linear evolution equation:
»

d2

dt2
+ 2H(t)

d
dt

− 3
2

Ωm,0H
2
0

a3(t)

–
D+(t) = 0. (22)

The Zel’dovich solution in Eq. (20) contains an arbitrary
function called displacement field, ψ(q), which is related
to the linear density field δL(q) given at a very early time
(τini → −∞ or tini → 0):

dψ(q)
dq

D+(τini) = −δL(q; τini) = −δL(q) D+(τini) (23)

Since the Zel’dovich solution is exact before the shell-
crossing, we do not necessarily assume that the evolved den-
sity field δ(x) is small. One may thus consider the situa-
tion that at the region around a Lagrangian coordinate q0,
the density field becomes large, and the region will undergo
the shell-crossing at the time τ0. The conditions for shell-
crossing are generally described by1

∂x
∂q

˛̨
˛̨
q0

= 0,
∂2x
∂q2

˛̨
˛̨
q0

= 0,
∂3x
∂q3

˛̨
˛̨
q0

> 0. (24)

Denoting the time of shell-crossing by τ0, we may expand the
solution (20) at τ0 around the shell-crossing region below:

x(q; τ0) ≃ q0 + ψ(q0)D+(τ0) +

ȷ
1 +

dψ(q0)
dq0

D+(τ0)

ff
(q − q0)

+
X

n=2

1
n!

dnψ(q0)
dqn

0

D+(τ0) (q − q0)
n. (25)

Using Eq. (23), the conditions for shell-crossing [Eq. (24)]
imply that

δL(q0) =
1

D+(τ0)
,

dδL(q)
dq

˛̨
˛̨
q0

= 0,
d2δL(q)

dq2

˛̨
˛̨
q0

< 0. (26)

That is, the region where the shell-crossing takes place cor-
responds to the local density peak, and the conditions for
the shell-crossing are equivalent to the peak constraints.

3 PERTURBATIVE TREATMENT OF
POST-COLLAPSE DYNAMICS

We are interested in the dynamics of mass sheet after the
shell-crossing, when the Zel’dovich solution is no longer valid
and the dynamics is governed by the the multi-stream flow.
In this section, extending the work by Colombi (2015), we
develop the perturbative calculations to deal with the multi-
stream motion around the shell-crossing.

3.1 Post-collapse perturbation theory

The basic formalism to treat post-collapse dynamics is as
follows. Starting with the cold initial conditions in Sec. 2.2,
we first follow the pre-collapse dynamics with the exact
Zel’dovich solution. Then, at the regions undergoing the
shell-crossing, we switch to a perturbative treatment, and
compute the backreaction to the Zel’dovich flow, based on
an explicit functional form of the displacement field around
the shell-crossing region. To be precise, we compute the force
exerted at each position, extrapolating the Zel’dovich flow
from Eq. (19). Integrating the force over the time, we ob-
tain the correction of the velocity to the Zel’dovich motion
from Eq. (16). Further integrating the corrected velocity over

1 The shell-crossing point is the inflection point for the mapping
from Lagrangian to Eulerian frame.
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dt2
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d
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2

Ωm,0H
2
0

a3(t)

–
D+(t) = 0. (22)

The Zel’dovich solution in Eq. (20) contains an arbitrary
function called displacement field, ψ(q), which is related
to the linear density field δL(q) given at a very early time
(τini → −∞ or tini → 0):

dψ(q)
dq

D+(τini) = −δL(q; τini) = −δL(q) D+(τini) (23)

Since the Zel’dovich solution is exact before the shell-
crossing, we do not necessarily assume that the evolved den-
sity field δ(x) is small. One may thus consider the situa-
tion that at the region around a Lagrangian coordinate q0,
the density field becomes large, and the region will undergo
the shell-crossing at the time τ0. The conditions for shell-
crossing are generally described by1

∂x
∂q

˛̨
˛̨
q0

= 0,
∂2x
∂q2

˛̨
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q0

= 0,
∂3x
∂q3

˛̨
˛̨
q0

> 0. (24)

Denoting the time of shell-crossing by τ0, we may expand the
solution (20) at τ0 around the shell-crossing region below:
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1 +

dψ(q0)
dq0
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+
X

n=2

1
n!

dnψ(q0)
dqn

0

D+(τ0) (q − q0)
n. (25)

Using Eq. (23), the conditions for shell-crossing [Eq. (24)]
imply that

δL(q0) =
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dq
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= 0,
d2δL(q)

dq2
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That is, the region where the shell-crossing takes place cor-
responds to the local density peak, and the conditions for
the shell-crossing are equivalent to the peak constraints.

3 PERTURBATIVE TREATMENT OF
POST-COLLAPSE DYNAMICS

We are interested in the dynamics of mass sheet after the
shell-crossing, when the Zel’dovich solution is no longer valid
and the dynamics is governed by the the multi-stream flow.
In this section, extending the work by Colombi (2015), we
develop the perturbative calculations to deal with the multi-
stream motion around the shell-crossing.

3.1 Post-collapse perturbation theory

The basic formalism to treat post-collapse dynamics is as
follows. Starting with the cold initial conditions in Sec. 2.2,
we first follow the pre-collapse dynamics with the exact
Zel’dovich solution. Then, at the regions undergoing the
shell-crossing, we switch to a perturbative treatment, and
compute the backreaction to the Zel’dovich flow, based on
an explicit functional form of the displacement field around
the shell-crossing region. To be precise, we compute the force
exerted at each position, extrapolating the Zel’dovich flow
from Eq. (19). Integrating the force over the time, we ob-
tain the correction of the velocity to the Zel’dovich motion
from Eq. (16). Further integrating the corrected velocity over

1 The shell-crossing point is the inflection point for the mapping
from Lagrangian to Eulerian frame.
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where the function Θ(x) represents the Heaviside step func-
tion. In the above, we used the fact that the fluctuation aver-
aged over the space becomes vanishing, i.e.,

R L

0
dx′ δ(x′) =

0. Taking the limit L → ∞, the above expression recovers
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tion gives an exact solution for the dynamics of mass sheet
before shell-crossing. The Zel’dovich solution also provides
a natural basis for the cold initial condition. The solution is
given by

x(q; τ) = q + ψ(q) D+(τ), v(q; τ) = ψ(q)
dD+(τ)

dτ
. (20)

Here, the function D+ is the linear growth factor satisfying
the following equation:
»

d2

dτ2
− 3

2
Ωm,0H

2
0 a(τ)

–
D+(τ) = 0. (21)

Note that in terms of the cosmic time t, Eq. (21) is reduced
to the standard form of the linear evolution equation:
»

d2

dt2
+ 2H(t)

d
dt

− 3
2

Ωm,0H
2
0

a3(t)

–
D+(t) = 0. (22)

The Zel’dovich solution in Eq. (20) contains an arbitrary
function called displacement field, ψ(q), which is related
to the linear density field δL(q) given at a very early time
(τini → −∞ or tini → 0):

dψ(q)
dq

D+(τini) = −δL(q; τini) = −δL(q) D+(τini) (23)

Since the Zel’dovich solution is exact before the shell-
crossing, we do not necessarily assume that the evolved den-
sity field δ(x) is small. One may thus consider the situa-
tion that at the region around a Lagrangian coordinate q0,
the density field becomes large, and the region will undergo
the shell-crossing at the time τ0. The conditions for shell-
crossing are generally described by1

∂x
∂q

˛̨
˛̨
q0

= 0,
∂2x
∂q2

˛̨
˛̨
q0

= 0,
∂3x
∂q3

˛̨
˛̨
q0

> 0. (24)

Denoting the time of shell-crossing by τ0, we may expand the
solution (20) at τ0 around the shell-crossing region below:

x(q; τ0) ≃ q0 + ψ(q0)D+(τ0) +

ȷ
1 +

dψ(q0)
dq0

D+(τ0)

ff
(q − q0)

+
X

n=2

1
n!

dnψ(q0)
dqn

0

D+(τ0) (q − q0)
n. (25)

Using Eq. (23), the conditions for shell-crossing [Eq. (24)]
imply that

δL(q0) =
1

D+(τ0)
,

dδL(q)
dq

˛̨
˛̨
q0

= 0,
d2δL(q)

dq2

˛̨
˛̨
q0

< 0. (26)

That is, the region where the shell-crossing takes place cor-
responds to the local density peak, and the conditions for
the shell-crossing are equivalent to the peak constraints.

3 PERTURBATIVE TREATMENT OF
POST-COLLAPSE DYNAMICS

We are interested in the dynamics of mass sheet after the
shell-crossing, when the Zel’dovich solution is no longer valid
and the dynamics is governed by the the multi-stream flow.
In this section, extending the work by Colombi (2015), we
develop the perturbative calculations to deal with the multi-
stream motion around the shell-crossing.

3.1 Post-collapse perturbation theory

The basic formalism to treat post-collapse dynamics is as
follows. Starting with the cold initial conditions in Sec. 2.2,
we first follow the pre-collapse dynamics with the exact
Zel’dovich solution. Then, at the regions undergoing the
shell-crossing, we switch to a perturbative treatment, and
compute the backreaction to the Zel’dovich flow, based on
an explicit functional form of the displacement field around
the shell-crossing region. To be precise, we compute the force
exerted at each position, extrapolating the Zel’dovich flow
from Eq. (19). Integrating the force over the time, we ob-
tain the correction of the velocity to the Zel’dovich motion
from Eq. (16). Further integrating the corrected velocity over

1 The shell-crossing point is the inflection point for the mapping
from Lagrangian to Eulerian frame.
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Then, Eqs. (7)–(9) are rewritten with

dx
dτ

= v, (13)

dv
dτ

= −∇xΦ, (14)

∇2
xΦ = 4πGρm a4 δ =

3
2

Ωm,0H
2
0 a δ, (15)

With the new expressions above, the solution is formally
written as:

x(q; τ) = x(q; τ0) +

Z τ

τ0

dτ ′ v(q; τ ′), (16)

v(q; τ) = v(q; τ0) −
Z τ

τ0

dτ ′ ∇xΦ(x(q; τ ′); τ ′), (17)

where the x(q; τ0) and v(q; τ0) are the initial condition given
at an initial time τ0, which will be specified below.

In what follows, we consider the dynamics of the cosmo-
logical system given above in a finite-size box of 0 ≤ x ≤ L,
imposing the periodic boundary condition. From Eq. (15),
the potential Φ satisfying the periodic boundary condition
is expressed in an integral form as:

Φ(x) =
3
2

Ωm,0H
2
0 a

×
Z L

0

dx′

"
−L

2

(„
|x − x′|

L
− 1

2

«2

− 1
12

)#
δ(x′). (18)

The derivation of this integral expression is presented in Ap-
pendix A. Then, the force exerted on a mass element at the
position x is given by:

F (x) ≡ −∇xΦ(x)

= −3
2

Ωm,0H
2
0 a
hZ L

0

dx′ δ(x
′)

2

˘
Θ(x − x′) − Θ(x′ − x)

¯

+
1
L

Z L

0

dx′ x′ δ(x′)
i
, (19)

where the function Θ(x) represents the Heaviside step func-
tion. In the above, we used the fact that the fluctuation aver-
aged over the space becomes vanishing, i.e.,

R L

0
dx′ δ(x′) =

0. Taking the limit L → ∞, the above expression recovers
the well-known result in the case with the infinite space.

2.2 Initial condition and pre-collapse dynamics

In one-dimensional case, the so-called Zel’dovich approxima-
tion gives an exact solution for the dynamics of mass sheet
before shell-crossing. The Zel’dovich solution also provides
a natural basis for the cold initial condition. The solution is
given by

x(q; τ) = q + ψ(q) D+(τ), v(q; τ) = ψ(q)
dD+(τ)

dτ
. (20)

Here, the function D+ is the linear growth factor satisfying
the following equation:
»

d2

dτ2
− 3

2
Ωm,0H

2
0 a(τ)

–
D+(τ) = 0. (21)

Note that in terms of the cosmic time t, Eq. (21) is reduced
to the standard form of the linear evolution equation:
»

d2

dt2
+ 2H(t)

d
dt

− 3
2

Ωm,0H
2
0

a3(t)

–
D+(t) = 0. (22)

The Zel’dovich solution in Eq. (20) contains an arbitrary
function called displacement field, ψ(q), which is related
to the linear density field δL(q) given at a very early time
(τini → −∞ or tini → 0):

dψ(q)
dq

D+(τini) = −δL(q; τini) = −δL(q) D+(τini) (23)

Since the Zel’dovich solution is exact before the shell-
crossing, we do not necessarily assume that the evolved den-
sity field δ(x) is small. One may thus consider the situa-
tion that at the region around a Lagrangian coordinate q0,
the density field becomes large, and the region will undergo
the shell-crossing at the time τ0. The conditions for shell-
crossing are generally described by1

∂x
∂q

˛̨
˛̨
q0

= 0,
∂2x
∂q2

˛̨
˛̨
q0

= 0,
∂3x
∂q3

˛̨
˛̨
q0

> 0. (24)

Denoting the time of shell-crossing by τ0, we may expand the
solution (20) at τ0 around the shell-crossing region below:

x(q; τ0) ≃ q0 + ψ(q0)D+(τ0) +

ȷ
1 +

dψ(q0)
dq0

D+(τ0)

ff
(q − q0)

+
X

n=2

1
n!

dnψ(q0)
dqn

0

D+(τ0) (q − q0)
n. (25)

Using Eq. (23), the conditions for shell-crossing [Eq. (24)]
imply that

δL(q0) =
1

D+(τ0)
,

dδL(q)
dq

˛̨
˛̨
q0

= 0,
d2δL(q)

dq2

˛̨
˛̨
q0

< 0. (26)

That is, the region where the shell-crossing takes place cor-
responds to the local density peak, and the conditions for
the shell-crossing are equivalent to the peak constraints.

3 PERTURBATIVE TREATMENT OF
POST-COLLAPSE DYNAMICS

We are interested in the dynamics of mass sheet after the
shell-crossing, when the Zel’dovich solution is no longer valid
and the dynamics is governed by the the multi-stream flow.
In this section, extending the work by Colombi (2015), we
develop the perturbative calculations to deal with the multi-
stream motion around the shell-crossing.

3.1 Post-collapse perturbation theory

The basic formalism to treat post-collapse dynamics is as
follows. Starting with the cold initial conditions in Sec. 2.2,
we first follow the pre-collapse dynamics with the exact
Zel’dovich solution. Then, at the regions undergoing the
shell-crossing, we switch to a perturbative treatment, and
compute the backreaction to the Zel’dovich flow, based on
an explicit functional form of the displacement field around
the shell-crossing region. To be precise, we compute the force
exerted at each position, extrapolating the Zel’dovich flow
from Eq. (19). Integrating the force over the time, we ob-
tain the correction of the velocity to the Zel’dovich motion
from Eq. (16). Further integrating the corrected velocity over

1 The shell-crossing point is the inflection point for the mapping
from Lagrangian to Eulerian frame.
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Power spectrum in 1D

# of particles (sheets) :
# of runs：
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Dimensionless initial power 
spectrum is the same as in 3D

by Vlafroid (PM code)
http://www.vlasix.org/uploads/Main/froid1D.1.5.tar.gz
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the development of phase-space structure. In each figure, the
upper and lower panels show the results without and with
adaptive smoothing, respectively. The free parameter of the
adaptivie smoothing, fcross, is set here to 1 for post-collapse
PT and 0.5 for Zel’dovich solution.

In general, as the clusters dynamically gets closer, both
the post-collapse PT and Zel’dovich solution fail to describe
the real dynamics in N -body simulations. While the post-
collapse PT can only give the perturbative correction to the
motion of clusters based on the initial density fields, the
actual motion of clusters is significantly affected by the in-
teraction with one other cluster. As a result, the location
of multi-valued regions predipcted by the post-collapse PT
becomes largely deviates from the actual position, and the
outcome of phase-space structure in N -body simulation sub-
stantially differ from what is expected from post-collapse PT
and Zel’dovich solution.

This generic trend does not change at all even if we in-
troduce the adaptive smoothing, but at the time after the
merger happens (i.e., a = 0.32), the visual impression is
rather changed. The dynamics at central part is now de-
scribed by the smoothed displacement field, with which the
predicted phase-space structure is just like those of a sin-
gle cluster. While this is totally a wrong prediction to the
merging dynamics, the substantial improvement is found
for the description at the outer part, where without adap-
tive smoothing, we still see the elongated two clusters, and
the disagreement between prediction and simulation is much
more pronounced. Introducing both adaptive smoothing and
the higher-order corrections to the post-collapse PT further
gives a better description to the merging clusters (Fig. 5 ).

The results seen in the merging clusters demonstrate
that the adaptive smoothing is indeed powerful and effec-
tive in describing the global trend of the phase-space struc-
ture. While this cannot capture the detailed inner structure
of the high-density region, it can give a better description
to a large-scale dynamics, keeping the location and size of
halos reasonably accurate. As we will see later, the adap-
tive smoothing can also give a drastic improvement on the
prediction of power spectrum in random initial conditions.
Further, the introduction of adaptive smoothing makes the
analytic calculations insensitive to the small-scale cutoff in
the initial condition, thus giving us a robust prediction. In
these respects, the criterion (iii) in Sec. 4.2 is the essen-
tial part of the adaptive smoothing procedure, and a choice
of fcross is crucial. Our various examinations suggest that
fcross = 1 and 0.5 are respectively the most optimal choice
for the post-collapse PT and Zel’dovich solution, and we
shall adopt these values in subsequent section.

5.4 Random initial condition: CDM-like spectrum

Let us now consider a more relevant cosmological set up
with random initial conditions. Although there is no realistic
setup in 1D, a relevant initial condition to be compared with
3D case may be given by the Gaussian random condisition
with the initial power spectrum:

P1D(k) =
k2

2π
P3D(k) (70)

with P3D being the matter power spectrum in 3D, which
we computed with the transfer function by Eisenstein & Hu

(1998). We set the cosmological parameters to those of
the base ΛCDM model determined by Planck Ade et al.
(2015): Ωm,0 = 0.3121, ΩΛ = 0.6879, Ωb = 0.04884,
H0 = 67.51 km s−1 Mpc−1, ns = 0.9653, σ8 = 0815. The
simulations were performed with the boxsize L = 1, 000Mpc
and initial redshift, zi = 99. The convergence of the simula-
tion results has been tested by varying the number of par-
ticles Nparticle

2, number of PM grid Ngrid and cutoff scales
of the initial power spectrum, kcut. Here, we mainly present
the results with Nparticle = 200, 000, Ngrid = 20, 000, and
kcut = 12.6Mpc−1. For the power spectrum measurement,
we ran the 50 simulations.

Fig. 6 shows the evolved results of the power spectra ob-
tained from the simulations (red) and the predictions. In left
panel, the predictions are plotted for the basic post-collapse
PT (blue solid) and Zel’dovich solution (green dotted), while
the variants of the prediction for post-collapse PT are sum-
marized in right panel, with the same color codes and line
types as in previous figures. Note that these predictions are
the measurement results. That is, based on the Zel’dovich
solution or post-collapse PT, we create the phase-space por-
trait with particles for each random initial condition, and
collecting the 50 independent realizations, the power spec-
trum is measured at each redshift from those phase-space
data. For comparison, in left panel, we also plot the analytic
power spectrum of the Zel’dovich solution, PZA(k) (black
solid line) (color code and line type for analytic power spec-
trum may have to be changed):

PZA(k; z) =

Z ∞

0

dq cos(k q)
h
e−k2{I(0)−I(q)}D+(z)2 − 1

i
;

I(q) =

Z ∞

0

dp
π

cos(p q)
P1D(p)

p2
(71)

In contrast to the 3D case, the amplitude of power spec-
trum at small scales is not strongly enhanced in 1D, and
the dimensionless power asymptotically becomes flat, i.e.,
k P (k) ≃const., as it has been predicted by a simple argu-
ment (e.g., Gouda & Nakamura 1989). Still, the deviation
from linear theory predictions is significant, and a proper
account of nonlinearity is essential for theoretical prediction.

Without the adaptive smoothing (depcited as thin
lines), the prediction with Zel’dovich solution starts to de-
viate from simulations at very early time (z = 15.3). The
post-collapse PT can capture the nonlinear growth associ-
ated with formation of halos, and it reproduces the sim-
ulation results to some extent. As decreasing the redshift,
however, the structure of halos is well-developed via the
merging and accretion processes, and the predictions de-
picted as thin lines significantly underestimate the power
spectrum even if the higher-order corrections are included
(left panel). Fig. 7 shows the phase-space structure clipped
from a particular realization data. As we see in left pan-
els, both the Zel’dovich solution and post-collapse PT fail
to reproduce the halo structures in simulation, and predict
the spurious elongated structure, leading to the underesti-
mation of the power spectrum. Note that the predictions

2 To be precise, sheets rather than particles may be more ap-
propriate terminology, as we have used in previous section. But
here, we shall follow the conventions in N -body simulation and
interchangebly use both.
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3D case
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FIG. 3: Prescription (15) at z = 2 (thick black solid). Also shown are SPT (one-loop: blue dotted, two-loop: blue dashed),

MPTbreeze (two-loop: red dashed) and the damped SPT (orange dot-dashed).
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FIG. 4: Same as Fig. 3, but at z = 1.
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FIG. 5: Same as Fig. 3, but at z = 0.35.
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FIG. 6: Same as Fig. 3, but at z = 0.

[1] A. Taruya, F. Bernardeau, T. Nishimichi, and S. Codis, Phys. Rev. D 86, 103528 (2012), 1208.1191.

[2] Notice that the convention of the normalization for K is di↵erent from that used in our previous paper.
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FIG. 3: Prescription (15) at z = 2 (thick black solid). Also shown are SPT (one-loop: blue dotted, two-loop: blue dashed),

MPTbreeze (two-loop: red dashed) and the damped SPT (orange dot-dashed).
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FIG. 4: Same as Fig. 3, but at z = 1.
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FIG. 5: Same as Fig. 3, but at z = 0.35.
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FIG. 6: Same as Fig. 3, but at z = 0.

[1] A. Taruya, F. Bernardeau, T. Nishimichi, and S. Codis, Phys. Rev. D 86, 103528 (2012), 1208.1191.

[2] Notice that the convention of the normalization for K is di↵erent from that used in our previous paper.
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Post-collapse PT:beyond shell-crossing
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Breakdown of Zel’dovich solution 

1. Expand the displacement field around shell-crossing point, q0:
x(q; �) � A(q0; �)�B(q0; �)(q � q0) + C(q0; �)(q � q0)3 + · · ·

2. Compute force F (x(q; �)) = ��x�(x(q; �)) at multi-stream region
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3.2 Computing force in multi-valued region

To derive the corrections to the motion, we first compute the
force exerted on the mass element inside the multi-valued
region, − bQc ≤ Q ≤ bQc, shown in Fig. 1. Note that the
regions outside the shell-crossing, given at x < x(− bQc) and

x > x( bQc), are described by the Zel’dovich solution.
The force in the multi-valued region is computed with

Eq. (19), dividing each integral at the right-hand-side into
three contributions:
Z L

0

dx −→
“Z x(− bQc)

0

+

Z x( bQc)

x(− bQc)

+

Z L

x( bQc)

”
dx. (38)

Assuming that the collapse region, |Q| ≤ bQc, is small
enough, the contributions to the integrals from each do-
main can be computed analytically, based on the geomet-
rical setup in Fig. 1. The detailed calculations are presented
in Appendix B. Summing up all the contributions given in
Eqs. (B4), (B5), (B8), and (B12), the force exerted on the
mass element at x = x(Q) inside the multi-valued region
becomes

F (x(Q; τ)) = −3
2
H2

0Ωm,0 a(τ)
h
J (Q; q0, τ) + F(q0, τ)

i

(39)

with the functions J and F respectively defined by

J (Q; q0, τ) =

8
>>>>>>>>><

>>>>>>>>>:

n
1 + B(q0; τ)

o
Q − C(q0; τ) Q3

−sgn(Q)
q

3(Q̂2
c − Q2)

; Qc < |Q| < bQc,

n
−2 + B(q0; τ)

o
Q − C(q0; τ) Q3

; |Q| < Qc,

(40)

and

F(q0, τ) = −ψ(q0) D+(τ), (41)

where the quantities A, B, and C are defined by Eqs. (28)–
(30). Note that in deriving Eq. (39), we have assumed that

the system follows Zel’dovich solution at |Q| > bQc. Since
the resultant expressions are written in terms of the local
quantities characterizing the density peak at position q0 and
the shell-crossing time τ0, Eq. (39) is still applicable to the
cases in which there appear other shell-crossing regions at
|Q| > bQc.

3.3 Corrections to the Zel’dovich flow

Provided the explicit expression for the force in multi-stream
region, we now compute the corrections to the Zel’dovich
flow based on the formal solution in Eqs. (16) and (17),
which give the approximate expression relevant at the multi-
valued region:

∆v(Q; τ, τq) =

Z τ

τq

dτ ′ F (x(Q, τ ′)), (42)

∆x(Q; τ, τq) =

Z τ

τq

dτ ′ ∆v(Q; τ ′, τq). (43)

Notice that depending on the position in Lagrangian space
of our interest, the expression of the force is different [see
Eq. (39)]. Thus, we have to divide the domain of the integrals
in Eqs. (42) and (43) into several pieces:

(i) τ0 ≤ τ < bτc(Q) : The position Q is located at the
single-valued region (i.e., |Q| > Qc), and the motion is still
described by the Zel’dovich solution. We have

x(Q; τ) = xZel(Q; τ) ≡ q + ψ(q)D+(τ), (44)

v(Q; τ) = vZel(Q; τ) ≡ ψ(q)
dD+(τ)

dτ
. (45)

(ii) bτc(Q) ≤ τ < τc(Q) : The position Q lies at multi-

valued region, and it satisfies Qc < |Q| ≤ bQc. Thus, in
addition to the Zel’dovich flow, the corrections arising from
the multi-stream flow needs to be added:

x(Q; τ) = xZel(Q; bτc(Q)) + ∆xout(Q; τ, bτc(Q)), (46)

v(Q; τ) = vZel(Q; bτc(Q)) + ∆vout(Q; τ, bτc(Q)). (47)

(iii) τc(Q) ≤ τ : This corresponds to |Q| ≤ Qc, and the
position Q now lies at inner part of the multi-valued region.
Similar to the above case, the backreacion to the Zel’dovich
flow needs to be computed, including both the multi-stream
dynamics at inner part and the incoming flow from the outer
part. We may write

x(Q; τ) = xZel(Q; bτc(Q)) + ∆xin(Q; τ, bτc(Q)), (48)

v(Q; τ) = vZel(Q; bτc(Q)) + ∆vin(Q; τ, bτc(Q)). (49)

In what follows, we shall compute the backreaction to
the Zel’dovich flow, and derive the expressions for ∆x and
∆v at each domain. The calculation of the corrections is
rather straightforward, but needs several step. Readers who
are not interested in the detailed derivation may skip the
subsequent section, but just check the final results summa-
rized in Eqs. (53) and (57) for outer part, and Eqs. (61) and
(65) for inner part, together with the coefficients in Table 1
and 2.

3.3.1 Velocity and position at outer part: Qc < |Q| ≤ bQc

Let us first consider the outer part of the multi-valued region
(ii). In this case, the correction to the velocity becomes

∆vout(Q; τ, bτc) = −3
2
H2

0 Ωm,0

Z τ

bτc(Q)

dτ ′ a(τ ′)

×
n
J (Q; q0, τ

′) + F(q0, τ
′)
o

(50)

Recalling the fact that bτc − τ0 ≃ (κ/8) Q2 [see Eq. (36)], the
above integrals are performed with a help of the formulae in
Appendix D [see Eqs. (D4) and (D5)]. For the integration of
the first term, we obtain the approximate expression valid
for the short period after the shell-crossing time τ0:

Z τ

bτc(Q)

dτ ′ a(τ ′)J (Q; q0, τ
′)

≃ a(τ0)

"
T Q +

ȷ
−κ

8
+

1
6
δ′′L(q0)D+(τ0) T

ff
Q3

− sgn(Q)
κ

4
√

3

“
bQc(τ)

2 − Q2
”3/2

− κ
48
δ′′L(q0)D+(τ0) Q5

#
,

(51)
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the shell-crossing time τ0, Eq. (39) is still applicable to the
cases in which there appear other shell-crossing regions at
|Q| > bQc.

3.3 Corrections to the Zel’dovich flow

Provided the explicit expression for the force in multi-stream
region, we now compute the corrections to the Zel’dovich
flow based on the formal solution in Eqs. (16) and (17),
which give the approximate expression relevant at the multi-
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Eq. (39)]. Thus, we have to divide the domain of the integrals
in Eqs. (42) and (43) into several pieces:
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single-valued region (i.e., |Q| > Qc), and the motion is still
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position Q now lies at inner part of the multi-valued region.
Similar to the above case, the backreacion to the Zel’dovich
flow needs to be computed, including both the multi-stream
dynamics at inner part and the incoming flow from the outer
part. We may write

x(Q; τ) = xZel(Q; bτc(Q)) + ∆xin(Q; τ, bτc(Q)), (48)

v(Q; τ) = vZel(Q; bτc(Q)) + ∆vin(Q; τ, bτc(Q)). (49)

In what follows, we shall compute the backreaction to
the Zel’dovich flow, and derive the expressions for ∆x and
∆v at each domain. The calculation of the corrections is
rather straightforward, but needs several step. Readers who
are not interested in the detailed derivation may skip the
subsequent section, but just check the final results summa-
rized in Eqs. (53) and (57) for outer part, and Eqs. (61) and
(65) for inner part, together with the coefficients in Table 1
and 2.

3.3.1 Velocity and position at outer part: Qc < |Q| ≤ bQc

Let us first consider the outer part of the multi-valued region
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polynomial function of Q=q-q0 up to 7th order

Computing back-reaction to the Zel’dovich flow:

AT & Colombi (’17)

Lagrangian
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 Post-collapse PT: single cluster
AT & Colombi (‘17)
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Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).

MNRAS 000, 1–22 (2015)

10 A. Taruya and S. Colombi

Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).

MNRAS 000, 1–22 (2015)

10 A. Taruya and S. Colombi

Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).

MNRAS 000, 1–22 (2015)

10 A. Taruya and S. Colombi

Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).

MNRAS 000, 1–22 (2015)

10 A. Taruya and S. Colombi

Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).

MNRAS 000, 1–22 (2015)

10 A. Taruya and S. Colombi

Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).

MNRAS 000, 1–22 (2015)

10 A. Taruya and S. Colombi

Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).

MNRAS 000, 1–22 (2015)

10 A. Taruya and S. Colombi

Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).

MNRAS 000, 1–22 (2015)

10 A. Taruya and S. Colombi

Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).

MNRAS 000, 1–22 (2015)

10 A. Taruya and S. Colombi

Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).

MNRAS 000, 1–22 (2015)

10 A. Taruya and S. Colombi

Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).

MNRAS 000, 1–22 (2015)

10 A. Taruya and S. Colombi

Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).

MNRAS 000, 1–22 (2015)

10 A. Taruya and S. Colombi

Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).

MNRAS 000, 1–22 (2015)

10 A. Taruya and S. Colombi

Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).

MNRAS 000, 1–22 (2015)

10 A. Taruya and S. Colombi

Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).

MNRAS 000, 1–22 (2015)

Density profile

Post-collapse PT basically fails after next shell-crossing, but it still 
gives reasonable prediction for density profiles

Of course, this does not guarantee the accuracy of power 
spectrum prediction at small scales (→ next slide)

Simulation
Zel’dovich
Post-collapse PT
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Post-collapse PT:  ΛCDM

Simulation
Zel’dovich
Post-collapse PT

(Dimensionless) power spectrum

AT & Colombi (‘17)

Phase-space

Linear

Adaptive smoothing
applied to initial density peaks 

(with filter scales determined 
by first-barrier crossing)

z=0
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Implication to 3D

But, idea & technique are very promising and can be extended to 3D

•  Accurate pre-collapse description

•Tractable analytical calculation of 
statistical quantities http://www.vlasix.org/index.php?n=Main.ColDICE

x

y
vx

vy is color coded

2D collapse with Vlasov codeIssues to be addressed

✓ Zel’dovich approx. is inaccurate

✓ Various topologies of shell crossing

Combination of the two methods are rather crucial:
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ABSTRACT

We present a scheme for numerical simulations of collisionless self-gravitating systems which directly integrates the
Vlasov–Poisson equations in six-dimensional phase space. Using the results from a suite of large-scale numerical
simulations, we demonstrate that the present scheme can simulate collisionless self-gravitating systems properly.
The integration scheme is based on the positive flux conservation method recently developed in plasma physics.
We test the accuracy of our code by performing several test calculations, including the stability of King spheres, the
gravitational instability, and the Landau damping. We show that the mass and the energy are accurately conserved for
all the test cases we study. The results are in good agreement with linear theory predictions and/or analytic solutions.
The distribution function keeps the property of positivity and remains non-oscillatory. The largest simulations are
run on 646 grids. The computation speed scales well with the number of processors, and thus our code performs
efficiently on massively parallel supercomputers.

Key words: galaxies: kinematics and dynamics – methods: numerical
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1. INTRODUCTION

Gravitational interaction is one of the most important physical
processes in the dynamics and the formation of astrophys-
ical objects, such as star clusters, galaxies, and the large-
scale structure of the universe. Stars and dark matter in these
self-gravitating systems are essentially collisionless, except for
a few cases, such as globular clusters and stars around supermas-
sive black holes. The dynamics of the collisionless systems is
described by the collisionless Boltzmann equation or the Vlasov
equation.

Conventionally, gravitational N-body simulations are used to
follow the evolution of collisionless systems. In such simu-
lations, particles represent sampled points of the distribution
function in the phase space. The particles—point masses—
interact gravitationally with other particles, through which their
orbits are determined. They are actually superparticles of stars
or dark matter particles. The gravitational potential field repro-
duced in an N-body simulation is therefore intrinsically grainy
rather than what it should be in the real physical system. It is
well known that two-body encounters can alter the distribution
function in a way that violates the collisionless feature of the
systems, and undesired artificial two-body relaxation is often
seen in N-body simulations. There is another inherent problem
in N-body simulations. Gravitational softening needs to be intro-
duced to avoid artificial large-angle scattering of particles caused
by close encounters. Physical quantities such as mass density
and velocity field are subject to intrinsic random noise owing to
the finite number of particles especially in low-density regions.

To overcome these shortcomings of the N-body simulations,
several alternative approaches have been explored. For example,
the self-consistent field (SCF) method (Hernquist & Ostriker
1992; Hozumi 1997) integrates orbits of particles under the
gravitational field calculated by expanding the density and the
gravitational potential into a set of basis functions. In the SCF
method, the particles do not directly interact with one another but

move on the smooth gravitational potential calculated from the
overall distribution of the particles. Despite of these attractive
features, the major disadvantage of the SCF method is its
inflexibility that the basis set must be chosen so that the lowest
order terms reproduce the global structure of the systems under
investigation (Weinberg 1999). In other words, the SCF method
can be applied only to the symmetric gravitational collapse or
the secular evolution of the collisionless systems.

The ultimate approach for numerical simulations of the
collisionless self-gravitating systems would be direct inte-
gration of the collisionless Boltzmann equation, or Vlasov
equation, combined with the Poisson equation. The advan-
tage of the Vlasov–Poisson simulations was previously shown
by Janin (1971) and Cuperman et al. (1971), who studied
one-dimensional violent relaxation problems using the water-
bag method (Hohl & Feix 1967; Roberts & Berk 1967).
Fujiwara (1981, 1983), for the first time, successfully solved
the Vlasov–Poisson equations for one-dimensional and spheri-
cally symmetric systems using the finite volume method. Other
grid-based approaches include the seminal splitting method of
Cheng & Knorr (1976), more generally the semi-Lagrangean
methods (Sonnendrücker 1998), a finite element method (Zaki
et al. 1988), a finite volume method (Filbet et al. 2001), the
spectral method (Klimas 1987; Klimas & Farrell 1994), and a
more recent multi-moment method (Minoshima et al. 2011).
A comparison study of some of these methods is presented in
Filbet & Sonnendrücker (2003).

So far, such direct integration of the Vlasov equation has been
applied only to problems in one or two spatial dimensions. Solv-
ing the Vlasov equation in six-dimensional phase space requires
an extremely large memory and computational time. However,
the rapid development of massively parallel supercomputers has
made it possible to simulate collisionless self-gravitating sys-
tems in the full six-dimensional phase space by numerically
integrating the Vlasov–Poisson equations with a scientifically
meaningful resolution.

1
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ABSTRACT
Dark matter numerical simulations and the N -body method are essential for understanding
how structure forms and evolves in the Universe. However, the discrete nature of N -body
simulations can a↵ect its accuracy when modelling collisionless systems.
We introduce a new approach to simulate the gravitational evolution of cold collisionless
fluids by solving the Vlasov-Poisson equations in terms of adaptively refineable “Lagrangian
phase space elements”. These geometrical elements are piecewise smooth maps between
three-dimensional Lagrangian space and six-dimensional Eulerian phase space and ap-
proximate the continuum structure of the distribution function. They allow for dynamical
adaptive splitting to accurately follow the evolution even in regions of very strong mixing.
The elements thus permit a deterministic non-linear description of self-gravitating cold
and collisionless fluids in the continuous limit.
We discuss in detail various one-, two- and three-dimensional test problems which demon-
strate the correctness and performance of our method. We show that our method has
several advantages compared to standard N -body algorithms by i) explicitly tracking the
fine-grained distribution function, ii) naturally representing caustics, iii) providing an
arbitrarily regular density field that is defined everywhere in space, iv) giving directly a
smooth and regular gravitational potential field, thus eliminating the need for any type of
ad-hoc force softening.
Finally, we illustrate the feasibility of using our method for cosmological studies by
simulating structure formation in a warm dark matter cosmology. We show that spurious
collisionality and large-scale discreteness noise of N -body methods are both strongly
suppressed, which eliminates artificial fragmentation of filaments while providing access to
the full deterministic evolution of the fluid in phase space.
Therefore, we argue that our new approach improves on the N -body method when
simulating self-gravitating cold and collisionless fluids, and is the first method that allows
to explicitly follow the fine-grained evolution in six-dimensional phase space.

Key words: cosmology: dark matter – cosmology: large-scale structure of the Universe –
cosmology: theory – galaxies: kinematics and dynamics – methods: numerical

1 INTRODUCTION

Numerical simulations lie at the very heart of contemporary
cosmology. They are the only method that can accurately follow
the growth of small primordial density fluctuations into the
highly nonlinear objects that populate the low-redshift Universe
(e.g. Davis et al. 1985; Efstathiou et al. 1985; Bertschinger 1998;
Springel et al. 2005; Angulo et al. 2012). As such, they have
proven an indispensable tool in the formulation of our theory
of cosmological structure formation and in the validation of
the ⇤CDM model.

Since most of the mass in the Universe appears to be in

? Email: hahn@phys.ethz.ch
† Email: rangulo@cefca.es

the form of dark matter (DM; a fundamental particle with a
negligible non-gravitational interaction cross-section with both
itself and baryonic matter), numerical simulations that only fol-
low gravitational forces were the natural first tool employed by
pioneer cosmologists. Since the 1970s, these simulations have
progressively increased their scope and accuracy, nowadays
spanning a huge dynamic range. State-of-the-art simulations
employ trillions of bodies to describe volumes comparable to
the observable Universe, while resolving the collapsed DM
structures that could host the faintest galaxies (see e.g. Heit-
mann et al. 2014; Skillman et al. 2014; Ishiyama et al. 2014,
for recent examples).

A milestone in the history of gravity-only simulations was
the establishment of a universal form for the density profile
of collapsed dark matter haloes (Navarro et al. 1996, 1997).
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Figure 14. The initial conditions for the “ripple-wave” test problem
(cf. Sec. 4.2). Shown are the particle locations (panel a), the density
field using the tetrahedral phase space elements (panel b), using
tri-linear elements (panel c) and using tri-quadratic elements (panel
d). The linear elements are discontinuous at element boundaries,
while the quadratic is continuous.

tri-quadratic reconstructed from N-body 323

tri-quadratic 323 self-consistent

Figure 16. Comparison between a reconstruction of the tri-
quadratic density field from the 322 standard N-body run (top
half-panel) and the self-consistent evolution of the tri-quadratic
elements (bottom half-panel). One clearly sees that N -body particle
noise significantly perturbs the solution, in particular, caustics are
not persistent.

using refinement in Figure 17, comparing once more against
the 5123 particle high-res N -body solution at the same force
resolution. We only consider the tri-quadratic elements in this
case, although the linear elements also perform reasonably well.
We started with the same 323 initial conditions as in the fixed
resolution test shown in Figure 15, but now employed the force
refinement criterion with a threshold of 0.1 to dynamically
split elements if required (the results using velocity refinement
are however not significantly di↵erent). The solution allowing
for one additional level of refinement is shown in the top panel,
the one for two levels in the middle panel, and the reference
N -body solution at the bottom. Rather strikingly, the solutions
quickly converge to the reference solution in the exact shape
and position of caustics. Already with one additional level, the
central density of the clump is comparable to the reference
solution. We do not perform a more quantitative solution of

a. 323 + one level dynamic adaptive refinement

b. 323 + two level dynamic adaptive refinement

c. 5123 N-body

Figure 17. The ripple wave collapse test with dynamic adaptive
refinement. The 323 runs use the same initial conditions as in Fig. 15,
tri-quadratic elements and one (top, panel a), and two (middle, panel
b) of dynamic adaptive refinement. The bottom panel shows the
solution of a high-resolution N -body run using 5123 particles at the
same 2563 PM force resolution. On clearly sees how adding more
supporting points approaches the high-resolution N -body solution.
Still, the top two panels have significantly fewer degrees of freedom
than the N -body run.

these toy problems but let the images speak for themselves
and perform a quantitative convergence study of refinement
in the next section, where we apply the Lagrangian element
method to cosmological structure formation.

5 A FIRST APPLICATION: COSMOLOGICAL
SIMULATION OF A WARM DM UNIVERSE

We now apply our Lagrangian phase space element method to a
cosmological problem. We simulate the gravitational evolution
of a L=20 Mpc/h cube in a universe where dark matter is
made of warm particles of mass m

dm

= 250 eV, leading to a
small-scale cut-o↵ in the density perturbation spectrum.

The cosmological parameters we employ correspond to
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Abstract

Resolving numerically Vlasov-Poisson equations for initially cold systems can be reduced to following the evolution
of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical al-
gorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of
which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-
dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local
representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime.
In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by
measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method
on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the
intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [64, 65, 66]
generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution
of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinu-
soidal waves. We also perform a “warm” dark matter simulation in six-dimensional phase-space that we use to check
the parallel scaling of the code.

Keywords: Vlasov-Poisson, Tessellation, Simplicial mesh, refinement, Dark matter, Cosmology

1. Introduction

Stars in galaxies and dark matter in the Universe can be described as a smooth self-gravitating collisionless fluid
following Vlasov-Poisson equations,

@ f
@t
+ u.rr f � rr�.ru f = 0, (1)

�r� = 4⇡G⇢ = 4⇡G
Z

f (r,u, t) du, (2)

where f (r,u, t) represents the phase-space density at position r, velocity u and time t, � is the gravitational potential
and G is the gravitational constant.

In this article, we focus on the cold case, relevant to the dynamics of cold dark matter. In the concordant model of
large scale structure formation [121, 122], the matter content in Universe is indeed dynamically dominated by a cold
and collisionless component, designated by “dark” matter as it does not emit detectable light or radiation. The cold
nature of this component implies that the phase-space distribution function is initially concentrated on a phase-space
sheet: at the macroscopic level, the thickness of the this sheet is virtually null:

f (r,u, t = ti) = ⇢i(r) �D[u � ui(r)], (3)

⇤Corresponding author
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Describing shell-crossing in 3D

✓ Comparison with 6D Vlasov simulation

Figure 1 – Panneau du haut : densité projetée obtenue à la fin de la si-
mulation (c) de la Table 1. Les tranches correspondant aux plans x = 0,
y = 0 et z = 0 sont représentées. Panneau du bas : profil logarithmique de
la densité radiale ⇢(r) mesuré à di↵érent temps dans la simulation du pan-
neau de gauche (courbes en continu, pointillés et tirets). La courbe en tirets
correspond au temps dynamique représenté dans le panneau de gauche. Pour
indication, la pente �1.7 est montrée en rouge. A titre de comparaison, la
densité mesurée dans la simulation de très haute résolution (g) est représentée
par une courbe orange, à comparer directement à la courbe continue.

4

•Post-collapse PT treatment needs an accurate analytical 
description of shell-crossing structure

Motivation

✓ Higher-order Lagrangian PT

• In 3D, Zel’dovich solution is no longer exact 
even before shell-crossing

In a specific initial condition,

39
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ABSTRACT
Employing Lagrangian perturbation theory, we derive the analytic expressions for pre-
collapse phase of the single-halo formation, starting with sine-wave initial displacement
field. We here present the explicit expressions for displacement field up to the third
order in 2D and 3D cases.
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1 BASIC EQUATIONS

We begin by writing down equations of motion for mass
element, which have to be solved with Poisson equation:

ẍ+ 2Hẋ = − 1
a2

∇x φ(x), (1)

∇2
x φ(x) = 4πGa2ρm δ(x). (2)

Taking the divergence and rotation, Eq. (1) with a help
of Eq. (2) yield

∇x ·
[
ẍ+ 2Hẋ

]
= −4πG ρm δ, (3)

∇x ×
[
ẍ+ 2Hẋ

]
= 0. (4)

In what follows, using the Lagrangian coordinate, q,
we will describe the motion of mass element in Eulerian
space, x. Introducing the displacement field Ψ, the relation
between the Eulerian and Lagrangian positions is given by

x(q, t) = q +Ψ(q, t). (5)

In Lagrangian coordinate, mass element is supposed to be
homogeneously distributed, i.e., ρm dnq = ρm(x) dnx with n
being the space dimension. In this report, we shall consider
the n = 2 and 3 cases. The density field δ is expressed as

δ(x) =
ρm(x)
ρm

− 1 =

∣∣∣∣
∂x
∂q

∣∣∣∣
−1

− 1. (6)

Below, following Matsubara (2015), we will derive the
evolution equations for displacement field. To do this, for
convenience, we introduce the quantities J and J defined
by

Jij ≡ ∂xi

∂qj

= δij +Ψi,j(q), (7)

J ≡ det(J). (8)

Note that J and J−1 are expressed in terms of J as follows:

J =

⎧
⎪⎪⎨

⎪⎪⎩

1
6
ϵijkϵpqrJipJjqJkr (3D)

1
2
ϵijϵpqJipJjq (2D)

(9)

(J−1)ij =

⎧
⎪⎪⎨

⎪⎪⎩

1
2J

ϵjkpϵiqr Jkq Jpr (3D)

1
J
ϵikϵjl Jlk (2D)

(10)

Here, the quantities ϵijk and ϵij represent the 3D and 2D
Levi-Civita symbols, respectively. Properties of Levi-Civita
symbols are summarized as1

(3D) : ϵ123 = 1 = ϵ231 = ϵ312, ϵ132 = −1 = ϵ213 = ϵ312,
ϵijkϵklm = δilδjm − δimδjl,
ϵilmϵjlm = 2δij , ϵijkϵijk = 6

(2D) : ϵ12 = 1 = −ϵ21,
ϵijϵik = δjk, ϵijϵij = 2

(11)

Using the Lagrangian quantities defined above, Eqs. (3)
and (4) are rewritten with

ϵikpϵjqrJkqJpr

(
T̂ − 4πG

3
ρm

)
Jij + 8πGρm = 0, (12)

JijϵjkpJqk T̂ Jqp = 0. (13)

in 3D case, and

ϵilϵjkJlk

(
T̂ − 2πG ρm

)
Jij + 4πGρm = 0, (14)

ϵpkJqk T̂ Jqp = 0. (15)

1 Subscripts 1, 2 and,3 correspond to qx, qy and qz , respectively.

c⃝ 2017 The Authors
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by
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symbols are summarized as1
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(
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element, which have to be solved with Poisson equation:

ẍ+ 2Hẋ = − 1
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∇x φ(x), (1)

∇2
x φ(x) = 4πGa2ρm δ(x). (2)

Taking the divergence and rotation, Eq. (1) with a help
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∇x ·
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we will describe the motion of mass element in Eulerian
space, x. Introducing the displacement field Ψ, the relation
between the Eulerian and Lagrangian positions is given by

x(q, t) = q +Ψ(q, t). (5)
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homogeneously distributed, i.e., ρm dnq = ρm(x) dnx with n
being the space dimension. In this report, we shall consider
the n = 2 and 3 cases. The density field δ is expressed as

δ(x) =
ρm(x)
ρm

− 1 =

∣∣∣∣
∂x
∂q

∣∣∣∣
−1

− 1. (6)

Below, following Matsubara (2015), we will derive the
evolution equations for displacement field. To do this, for
convenience, we introduce the quantities J and J defined
by

Jij ≡ ∂xi

∂qj

= δij +Ψi,j(q), (7)

J ≡ det(J). (8)

Note that J and J−1 are expressed in terms of J as follows:

J =

⎧
⎪⎪⎨

⎪⎪⎩

1
6
ϵijkϵpqrJipJjqJkr (3D)

1
2
ϵijϵpqJipJjq (2D)

(9)

(J−1)ij =

⎧
⎪⎪⎨

⎪⎪⎩

1
2J

ϵjkpϵiqr Jkq Jpr (3D)

1
J
ϵikϵjl Jlk (2D)

(10)

Here, the quantities ϵijk and ϵij represent the 3D and 2D
Levi-Civita symbols, respectively. Properties of Levi-Civita
symbols are summarized as1

(3D) : ϵ123 = 1 = ϵ231 = ϵ312, ϵ132 = −1 = ϵ213 = ϵ312,
ϵijkϵklm = δilδjm − δimδjl,
ϵilmϵjlm = 2δij , ϵijkϵijk = 6

(2D) : ϵ12 = 1 = −ϵ21,
ϵijϵik = δjk, ϵijϵij = 2

(11)

Using the Lagrangian quantities defined above, Eqs. (3)
and (4) are rewritten with

ϵikpϵjqrJkqJpr

(
T̂ − 4πG

3
ρm

)
Jij + 8πGρm = 0, (12)

JijϵjkpJqk T̂ Jqp = 0. (13)

in 3D case, and

ϵilϵjkJlk

(
T̂ − 2πG ρm

)
Jij + 4πGρm = 0, (14)

ϵpkJqk T̂ Jqp = 0. (15)

1 Subscripts 1, 2 and,3 correspond to qx, qy and qz , respectively.

c⃝ 2017 The Authors

In Lagrangian coordinate, mass density is assumed to be uniform:
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ẍ+ 2Hẋ = − 1
a2

∇x φ(x), (1)

∇2
x φ(x) = 4πGa2ρm δ(x). (2)

Taking the divergence and rotation, Eq. (1) with a help
of Eq. (2) yield

∇x ·
[
ẍ+ 2Hẋ
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2 Authors

in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:

3D✓ ✏
(
T̂ − 4πG ρm

)
Ψk,k

= −ϵijkϵipq Ψj,p

(
T̂ − 2πG ρm

)
ψk,q

− 1
2
ϵijkϵpqr Ψi,pΨj,q

(
T̂ − 4πG

3
ρm

)
Ψk,r,

(16)

ϵijk T̂ Ψj,k = −ϵijk Ψp,j T̂ Ψp,k. (17)✒ ✑
2D✓ ✏

(
T̂ − 4πG ρm

)
Ψk,k

= −ϵilϵjk Ψl,k

(
T̂ − 2πG ρm

)
ψi,j (18)

ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:

3D✓ ✏
( ∂2

∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵijkϵipq Ψ
(m1)
j,p

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

k,q

− 1
2

∑

m1+m2+m3=n

ϵijkϵpqr Ψ
(m1)
i,p Ψ(m2)

j,q

×
( ∂2

∂η2
+

1
2
∂
∂η

− 1
2

)
Ψ(m3)

k,r , (22)

ϵijk
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

j,k

= −
∑

m1+m2=n

ϵijk Ψ
(m1)
p,j

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

p,k . (23)

✒ ✑
2D✓ ✏

( ∂2

∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵilϵjk Ψ
(m1)
l,k

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

i,j

(24)

ϵpq
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

q,p

= −
∑

m1+m2=n

ϵpq Ψ
(m1)
k,q

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

k,p . (25)

✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:

3D✓ ✏
(
T̂ − 4πG ρm

)
Ψk,k

= −ϵijkϵipq Ψj,p

(
T̂ − 2πG ρm

)
ψk,q

− 1
2
ϵijkϵpqr Ψi,pΨj,q

(
T̂ − 4πG

3
ρm

)
Ψk,r,

(16)

ϵijk T̂ Ψj,k = −ϵijk Ψp,j T̂ Ψp,k. (17)✒ ✑
2D✓ ✏

(
T̂ − 4πG ρm

)
Ψk,k

= −ϵilϵjk Ψl,k

(
T̂ − 2πG ρm

)
ψi,j (18)

ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:

3D✓ ✏
( ∂2

∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵijkϵipq Ψ
(m1)
j,p

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

k,q

− 1
2

∑

m1+m2+m3=n

ϵijkϵpqr Ψ
(m1)
i,p Ψ(m2)

j,q

×
( ∂2

∂η2
+

1
2
∂
∂η

− 1
2

)
Ψ(m3)

k,r , (22)

ϵijk
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

j,k

= −
∑

m1+m2=n

ϵijk Ψ
(m1)
p,j

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

p,k . (23)

✒ ✑
2D✓ ✏

( ∂2

∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵilϵjk Ψ
(m1)
l,k

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

i,j

(24)

ϵpq
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

q,p

= −
∑

m1+m2=n

ϵpq Ψ
(m1)
k,q

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

k,p . (25)

✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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2 Authors

in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:

3D✓ ✏
(
T̂ − 4πG ρm

)
Ψk,k

= −ϵijkϵipq Ψj,p

(
T̂ − 2πG ρm

)
ψk,q

− 1
2
ϵijkϵpqr Ψi,pΨj,q

(
T̂ − 4πG

3
ρm

)
Ψk,r,

(16)

ϵijk T̂ Ψj,k = −ϵijk Ψp,j T̂ Ψp,k. (17)✒ ✑
2D✓ ✏

(
T̂ − 4πG ρm

)
Ψk,k

= −ϵilϵjk Ψl,k

(
T̂ − 2πG ρm

)
ψi,j (18)

ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:

3D✓ ✏
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∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵijkϵipq Ψ
(m1)
j,p

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

k,q

− 1
2

∑

m1+m2+m3=n

ϵijkϵpqr Ψ
(m1)
i,p Ψ(m2)

j,q

×
( ∂2

∂η2
+

1
2
∂
∂η

− 1
2

)
Ψ(m3)

k,r , (22)

ϵijk
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

j,k

= −
∑

m1+m2=n

ϵijk Ψ
(m1)
p,j

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

p,k . (23)

✒ ✑
2D✓ ✏

( ∂2

∂η2
+

1
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∂
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)
Ψ(n)
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= −
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m1+m2=n

ϵilϵjk Ψ
(m1)
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( ∂2

∂η2
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1
2
∂
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− 3
4

)
ψ(m2)

i,j

(24)

ϵpq
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

q,p

= −
∑

m1+m2=n

ϵpq Ψ
(m1)
k,q

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

k,p . (25)

✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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Under Einstein-de Sitter approximation:

2 Authors

in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:

3D✓ ✏
(
T̂ − 4πG ρm

)
Ψk,k

= −ϵijkϵipq Ψj,p

(
T̂ − 2πG ρm

)
ψk,q

− 1
2
ϵijkϵpqr Ψi,pΨj,q

(
T̂ − 4πG

3
ρm

)
Ψk,r,

(16)

ϵijk T̂ Ψj,k = −ϵijk Ψp,j T̂ Ψp,k. (17)✒ ✑
2D✓ ✏

(
T̂ − 4πG ρm

)
Ψk,k

= −ϵilϵjk Ψl,k

(
T̂ − 2πG ρm

)
ψi,j (18)

ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:
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1
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∂
∂η
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)
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k,q
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2

∑
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ϵijkϵpqr Ψ
(m1)
i,p Ψ(m2)
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×
( ∂2

∂η2
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1
2
∂
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2

)
Ψ(m3)

k,r , (22)
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)
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p,k . (23)

✒ ✑
2D✓ ✏
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✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:

3D✓ ✏
(
T̂ − 4πG ρm

)
Ψk,k

= −ϵijkϵipq Ψj,p

(
T̂ − 2πG ρm

)
ψk,q

− 1
2
ϵijkϵpqr Ψi,pΨj,q

(
T̂ − 4πG

3
ρm

)
Ψk,r,

(16)

ϵijk T̂ Ψj,k = −ϵijk Ψp,j T̂ Ψp,k. (17)✒ ✑
2D✓ ✏

(
T̂ − 4πG ρm

)
Ψk,k

= −ϵilϵjk Ψl,k

(
T̂ − 2πG ρm

)
ψi,j (18)

ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:
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✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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2 Authors

in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:

3D✓ ✏
(
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)
Ψk,k
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(16)

ϵijk T̂ Ψj,k = −ϵijk Ψp,j T̂ Ψp,k. (17)✒ ✑
2D✓ ✏

(
T̂ − 4πG ρm

)
Ψk,k

= −ϵilϵjk Ψl,k

(
T̂ − 2πG ρm

)
ψi,j (18)

ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:
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= −
∑

m1+m2=n

ϵijkϵipq Ψ
(m1)
j,p

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

k,q

− 1
2

∑

m1+m2+m3=n

ϵijkϵpqr Ψ
(m1)
i,p Ψ(m2)

j,q

×
( ∂2

∂η2
+

1
2
∂
∂η

− 1
2

)
Ψ(m3)

k,r , (22)

ϵijk
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

j,k

= −
∑

m1+m2=n

ϵijk Ψ
(m1)
p,j

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

p,k . (23)

✒ ✑
2D✓ ✏

( ∂2

∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵilϵjk Ψ
(m1)
l,k

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

i,j

(24)

ϵpq
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

q,p

= −
∑

m1+m2=n

ϵpq Ψ
(m1)
k,q

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

k,p . (25)

✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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With this definition, taking the divergence of Eq. (4.11) gives

∇x

(
ψ̈ + 2Hψ̇

)
= −4πGρm δm(x) (4.13)

In the above, the sources of nonlinearity are

1 + δm(x) =

∣∣∣∣
∂x

∂q

∣∣∣∣
−1

≡ 1

J
, (4.14)

∂

∂xi
=

(
∂x

∂q

)−1

ij

∂

∂qj

≡ (J−1)ij
∂

∂qj

. (4.15)

Regarding ψ as a perturbed quantity, the leading-order evaluation leads to

J =
1

6
ϵijkϵpqrJipJjqJkr ≃ 1 +∇q ·ψ, (4.16)

(J−1)ij =
1

2J
ϵjkpϵiqrJkqJpr ≃ δij +O(ψ). (4.17)

Eq. (4.13) is then rewritten at leading order with

(J−1)ij
∂

∂qj

(
ψ̈ + 2Hψ̇

)
= −4πGρm

( 1
J
− 1
)

=⇒ (∇q ·ψ).. + 2H(∇q ·ψ). − 4πGρm(∇q ·ψ) ≃ 0. (4.18)

Eq. (4.18) is nothing but the evolution equation for linear density field. Since δm ≃ −∇q ·ψ
at t→ 0, we may write the displacement field as

ψ(q; a) = −D1(a)∇qϕ(q), ∇2
qϕ(q) = δ0(q). (4.19)

Here, D1 is the linear growth factor, and δ0 is the initial density field.

A crucial point may be that the density field is not assumed to be small. Thus, it is
often said that the solution may be applied to the quasi-linear regime. Plugging Eq. (4.19)
into Eq. (4.14), we obtain

1 + δm(x) ≃
1

(1−D1 λ1)(1−D1 λ2)(1−D1 λ3)
. (4.20)

where λi is the eigenvalue of the vector ϕ,i. This illustrates how the non-sphericity of the
structure develops according to the initial condition. In particular, the above equation
implies that in the Gaussian initial condition, most of the nonlinear structure is aspherical.

Beyond Zel’dovich approximation

Zel’dovich approximation is regarded as the first-order approximation to the displace-
ment field ψ, and there is a systematic way of perturbative expansion to improve the dis-
placement field. This is the Lagrangian perturbation theory (e.g., [12, 51, 13, 14, 30, 16]).
Here, we give the basic equations for ψ, with which we can systematically construct the

' 1�rq · *
: initial density field

✓
@2

@⌘2
+

1

2

@

@⌘

◆
✏ijk 

(1T )
j,k = 0

✓
@2

@⌘2
+

1

2

@

@⌘
� 3

2

◆
 (1L)

k,k = 0

 (1) =  (1L) + (1T )

2 Authors

in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:

3D✓ ✏
(
T̂ − 4πG ρm

)
Ψk,k

= −ϵijkϵipq Ψj,p

(
T̂ − 2πG ρm

)
ψk,q

− 1
2
ϵijkϵpqr Ψi,pΨj,q

(
T̂ − 4πG

3
ρm

)
Ψk,r,

(16)

ϵijk T̂ Ψj,k = −ϵijk Ψp,j T̂ Ψp,k. (17)✒ ✑
2D✓ ✏

(
T̂ − 4πG ρm

)
Ψk,k

= −ϵilϵjk Ψl,k

(
T̂ − 2πG ρm

)
ψi,j (18)

ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:
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+
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4

)
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ϵijkϵpqr Ψ
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2

)
Ψ(m3)

k,r , (22)

ϵijk
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

j,k

= −
∑

m1+m2=n

ϵijk Ψ
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)
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✒ ✑
2D✓ ✏
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ϵpq Ψ
(m1)
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∂η2
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1
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∂
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)
Ψ(m2)
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✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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With this definition, taking the divergence of Eq. (4.11) gives

∇x

(
ψ̈ + 2Hψ̇

)
= −4πGρm δm(x) (4.13)

In the above, the sources of nonlinearity are

1 + δm(x) =

∣∣∣∣
∂x

∂q

∣∣∣∣
−1

≡ 1

J
, (4.14)

∂

∂xi
=

(
∂x

∂q

)−1

ij

∂

∂qj

≡ (J−1)ij
∂

∂qj

. (4.15)

Regarding ψ as a perturbed quantity, the leading-order evaluation leads to

J =
1

6
ϵijkϵpqrJipJjqJkr ≃ 1 +∇q ·ψ, (4.16)

(J−1)ij =
1

2J
ϵjkpϵiqrJkqJpr ≃ δij +O(ψ). (4.17)

Eq. (4.13) is then rewritten at leading order with

(J−1)ij
∂

∂qj

(
ψ̈ + 2Hψ̇

)
= −4πGρm

( 1
J
− 1
)

=⇒ (∇q ·ψ).. + 2H(∇q ·ψ). − 4πGρm(∇q ·ψ) ≃ 0. (4.18)

Eq. (4.18) is nothing but the evolution equation for linear density field. Since δm ≃ −∇q ·ψ
at t→ 0, we may write the displacement field as

ψ(q; a) = −D1(a)∇qϕ(q), ∇2
qϕ(q) = δ0(q). (4.19)

Here, D1 is the linear growth factor, and δ0 is the initial density field.

A crucial point may be that the density field is not assumed to be small. Thus, it is
often said that the solution may be applied to the quasi-linear regime. Plugging Eq. (4.19)
into Eq. (4.14), we obtain

1 + δm(x) ≃
1

(1−D1 λ1)(1−D1 λ2)(1−D1 λ3)
. (4.20)

where λi is the eigenvalue of the vector ϕ,i. This illustrates how the non-sphericity of the
structure develops according to the initial condition. In particular, the above equation
implies that in the Gaussian initial condition, most of the nonlinear structure is aspherical.

Beyond Zel’dovich approximation

Zel’dovich approximation is regarded as the first-order approximation to the displace-
ment field ψ, and there is a systematic way of perturbative expansion to improve the dis-
placement field. This is the Lagrangian perturbation theory (e.g., [12, 51, 13, 14, 30, 16]).
Here, we give the basic equations for ψ, with which we can systematically construct the
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;

43



Neyrink (’13)

10 Mark C. Neyrinck

Figure 10. Redshift-zero Eulerian locations of particles occupying a 2562 sheet of a 2563-particle ⇤CDM realization, projecting out the third dimension.
Clockwise from upper left, particle positions are determined using: a full N -body simulation; the Zel’dovich approximation; 2LPT; and the SC approximation
(12). By eye, the SC approximation gives the results closest to full gravity.

extremely underdense in the final conditions. These middling over-
densities are unlikely to produce spurious haloes detected in a 2LPT
realization, but there remains some chance of that.

What are we to conclude about the reliability of 2LPT at low
redshifts for mock galaxy catalogs? The work here is hardly an ex-
haustive study, as it considers just the single simulation analyzed
here. But for this simulation at z = 0, the population of overdense
particles that should be underdense starts to be a worry. This prob-
lem would be even more severe if �( 

lin

) were increased, popu-
lating the high- i branch of the  

2LPT,parab parabola. One way to
increase �( 

lin

) is by increasing the mass resolution (since fluctu-

ations grow on small scales in a ⇤CDM universe), so we recom-
mend caution in using 2LPT realization at high resolution and low
redshift. This is not surprising, of course; for high LPT accuracy,
�( 

lin

) should be . 1. Fortunately, to our knowledge, low-redshift
uses of 2LPT have been at lower mass resolution than this, resulting
in an appropriately low �( 

lin

).

While the SC approximation excels at predicting 1-point
statistics and a visually plausible particle distribution, unfortu-
nately it seems to have deficiencies, as well. The SC approximation
shifts the locations of nonlinear structures more than does the ZA.
This is difficult to see in Fig. 10, so we overplot the N -body and
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Figure 13. The Zel’dovich and SC panels of Fig. 10, with the full N-body results overplotted in red. While Zel’dovich gives artificially empty voids and
fuzzier haloes, it gives somewhat more accurate large-scale flows than does SC.

Figure 14. Matter power spectra in a 200 h−1 Mpc N-body simulation at z =
0, compared to power spectra of particle distributions displaced according
to various approximations.

large-scale flows, but these could be tied to ψ = −3 collapses, and
could be absent at high redshift without stream crossing.

The ‘barrier’ at ψ = −3 could be useful for halo finding in N-
body simulations. Unfortunately, it seems not straightforward to
use this barrier to halo find in a single snapshot of a simulation, but
other possibilities exist. For instance, ψ could be measured at each
time-step; if a particle ever has ψ ≤ −3, it could be tagged as a halo
particle.

It is also quite interesting to consider ways of predicting where
ψ = −3 from the initial conditions. Such considerations may even
allow analytical mass functions. Indeed, similar ideas have been
proposed using LPT (e.g. Monaco et al. 2002). Another possible
approach may be to infer Lagrangian halo boundaries from the
ψ sc(ψ lin) formula, as in the lower-left panel of Fig. 8. The true
halo contours are often smoothed versions of these contours, and

Figure 15. Fourier-space cross-correlation coefficients between the various
approximately-evolved density fields and the particle distribution as evolved
in the full N-body simulation. The solid black line is essentially the non-
linear propagator between the initial and final states; the Lagrangian cross-
correlations are higher, indicating higher accuracy.

perhaps could be obtained by a combination of mathematical mor-
phology techniques such as dilation and erosion (e.g. Serra 1983)
in Lagrangian space, as can be useful in cleaning detected void
boundaries (Platen, van de Weygaert & Jones 2007).

In conclusion, ψ , a natural density-like variable in a Lagrangian
viewpoint, seems to be a rather useful quantity, with some extra in-
formation that is not in the density itself. It is fortunate that a simple
formula gives ψ’s behaviour in voids, where dark energy is most
energetically dominant (if indeed it is a substance). To understand
dark energy, understanding the stretching of the Lagrangian mesh
in voids is likely particularly important.
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Particle trajectories in ZA
ZA 2LPT

Buchert & Ehlers (’93)
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Higher-order solutions
For specific initial condition at t0,  

Pre-collapse phase of halo formation 3

boundary condition of [0, 2π]. We give it as the first-order
Lagrangian PT solution:

3D✓ ✏
Ψ(1)(q, t0) = D1(t0)

⎛

⎝
ϵx sin qx
ϵy sin qy
ϵz sin qz

⎞

⎠ (28)

✒ ✑
2D✓ ✏

Ψ(1)(q, t0) = D1(t0)

(
ϵx sin qx
ϵy sin qy

)
(29)

✒ ✑
Note that the linear growth factor D1 = eη is defined by
the growing mode of linear perturbation satisfying (T̂ −
4πG ρm)D1 = 0.

2.2 Second order

At second order, transverse mode is not generated. Thus, to
derive the second-order displacement field, we only consider
Eqs. (22) and (24). The solutions that satisfy the curl-free
condition, ∇q × Ψ(2) = 0, become

3D✓ ✏
Ψ(2)(q, t) = D2(t)

⎛

⎝
ϵx sin qx(ϵy cos qy + ϵz cos qz)
ϵy sin qy(ϵz cos qz + ϵx cos qx)
ϵz sin qz(ϵx cos qx + ϵy cos qy)

⎞

⎠ .

(30)✒ ✑
2D✓ ✏

Ψ(2)(q, t) = D2(t)

(
ϵxϵy sin qx cos qy
ϵxϵy cos qx sin qy

)
(31)

✒ ✑
The second-order growth function D2 is obtained from

D2(t) =

∫ η

η0

dη′ GL(η, η
′)

(
−3
4
eη

′
)

= − 3
14

e2η +
3
10

eη+η0 − 3
35

e−(3/2)η+(7/2)η0 , (32)

with the quantity η0 defined by η0 = lnD1(t0).

2.3 Third order

At third order, there appears a non-vanishing contribution
to the source terms in Eqs. (23) and (25), and we have to con-
sider both the longitudinal and transverse modes. We divide

the third-order displacement field intoΨ(3) = Ψ(3L)+Ψ(3T ).
Then the results in 3D case are summarized as follows:

3D✓ ✏
Ψ(3L)(q, t) = D3(t)d

(3)(q) + E3(t) e
(3)(q); (33)

d(3) =
1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos

2 qy + ϵ2z cos
2 qz)

ϵy sin qy (ϵ
2
z cos

2 qz + ϵ2x cos
2 qx)

ϵz sin qz (ϵ
2
x cos

2 qx + ϵ2y cos
2 qy)

⎞

⎠

+
1
5

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

+
2
5

⎛

⎝
(ϵ2y + ϵ2z) ϵx sin qx
(ϵ2z + ϵ2x) ϵy sin qy
(ϵ2x + ϵ2y) ϵz sin qz

⎞

⎠+ e(3) (34)

e(3) =

⎛

⎝
2ϵxϵyϵz sin qx cos qy cos qz
2ϵxϵyϵz cos qx sin qy cos qz
2ϵxϵyϵz cos qx cos qy sin qz

⎞

⎠ . (35)

Ψ(3T )(q, t) = F3(t)f
(3)(q); (36)

f (3) =
1
10

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

− 1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos 2qy + ϵ2z cos 2qz)

ϵy sin qy (ϵ
2
z cos 2qz + ϵ2x cos 2qx)

ϵz sin qz (ϵ
2
x cos 2qx + ϵ2y cos 2qy)

⎞

⎠

(37)✒ ✑
Note that the time-independent displacement fields, d(3) and
e(3) are curl-free vectors which satisfy ∇q×d(3) = 0 = ∇q×
e(3), while the vector f (3) satisfies divergence-free condition,
i.e., ∇q · f (3) = 0.

Similarly, the third-order solutions in 2D case become

2D✓ ✏
Ψ(3L)(q, t) = D3(t) d̃

(3)
(q); (38)

d̃
(3)

=
1
5

(
ϵxϵ

2
y sin qx cos

2 qy
ϵ2xϵy sin qy cos

2 qx

)

+
1
5

(
ϵ2xϵy sin 2qx cos qy + 2ϵxϵ

2
y sin qx

ϵxϵ
2
y sin 2qy cos qx + 2ϵ2xϵy sin qy

)

(39)

Ψ(3T )(q, t) = F3(t) f̃
(3)

(q); (40)

f̃
(3)

=
1
10

(
ϵ2xϵy sin 2qx cos qy
ϵxϵ

2
y sin 2qy cos qx

)

− 1
5

(
ϵxϵ

2
y sin qx cos 2qy

ϵ2xϵy sin qy cos 2qx

)
(41)

✒ ✑
Vectors d̃

(2)
and f̃

(2)
respectively satisfy curl-free and

divergence-free conditions, i.e,. ∇q × d̃
(2)

= 0 = ∇q · f̃
(2)

.
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Figure 1 – Panneau du haut : densité projetée obtenue à la fin de la si-
mulation (c) de la Table 1. Les tranches correspondant aux plans x = 0,
y = 0 et z = 0 sont représentées. Panneau du bas : profil logarithmique de
la densité radiale ⇢(r) mesuré à di↵érent temps dans la simulation du pan-
neau de gauche (courbes en continu, pointillés et tirets). La courbe en tirets
correspond au temps dynamique représenté dans le panneau de gauche. Pour
indication, la pente �1.7 est montrée en rouge. A titre de comparaison, la
densité mesurée dans la simulation de très haute résolution (g) est représentée
par une courbe orange, à comparer directement à la courbe continue.

4

 (n)
= 0, for n � 2

We derive LPT solutions at
2nd, 3rd, and 4th order

(see Moutarde et al. ’91 for similar work, 
but up to 3rd order) 

(W/ S. Saga)
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2nd-order LPT

Pre-collapse phase of halo formation 3

boundary condition of [0, 2π]. We give it as the first-order
Lagrangian PT solution:

3D✓ ✏
Ψ(1)(q, t0) = D1(t0)

⎛

⎝
ϵx sin qx
ϵy sin qy
ϵz sin qz

⎞

⎠ (28)

✒ ✑
2D✓ ✏

Ψ(1)(q, t0) = D1(t0)

(
ϵx sin qx
ϵy sin qy

)
(29)

✒ ✑
Note that the linear growth factor D1 = eη is defined by
the growing mode of linear perturbation satisfying (T̂ −
4πG ρm)D1 = 0.

2.2 Second order

At second order, transverse mode is not generated. Thus, to
derive the second-order displacement field, we only consider
Eqs. (22) and (24). The solutions that satisfy the curl-free
condition, ∇q × Ψ(2) = 0, become

3D✓ ✏
Ψ(2)(q, t) = D2(t)

⎛

⎝
ϵx sin qx(ϵy cos qy + ϵz cos qz)
ϵy sin qy(ϵz cos qz + ϵx cos qx)
ϵz sin qz(ϵx cos qx + ϵy cos qy)

⎞

⎠ .

(30)✒ ✑
2D✓ ✏

Ψ(2)(q, t) = D2(t)

(
ϵxϵy sin qx cos qy
ϵxϵy cos qx sin qy

)
(31)

✒ ✑
The second-order growth function D2 is obtained from

D2(t) =

∫ η

η0

dη′ GL(η, η
′)

(
−3
4
eη

′
)

= − 3
14

e2η +
3
10

eη+η0 − 3
35

e−(3/2)η+(7/2)η0 , (32)

with the quantity η0 defined by η0 = lnD1(t0).

2.3 Third order

At third order, there appears a non-vanishing contribution
to the source terms in Eqs. (23) and (25), and we have to con-
sider both the longitudinal and transverse modes. We divide

the third-order displacement field intoΨ(3) = Ψ(3L)+Ψ(3T ).
Then the results in 3D case are summarized as follows:

3D✓ ✏
Ψ(3L)(q, t) = D3(t)d

(3)(q) + E3(t) e
(3)(q); (33)

d(3) =
1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos

2 qy + ϵ2z cos
2 qz)

ϵy sin qy (ϵ
2
z cos

2 qz + ϵ2x cos
2 qx)

ϵz sin qz (ϵ
2
x cos

2 qx + ϵ2y cos
2 qy)

⎞

⎠

+
1
5

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

+
2
5

⎛

⎝
(ϵ2y + ϵ2z) ϵx sin qx
(ϵ2z + ϵ2x) ϵy sin qy
(ϵ2x + ϵ2y) ϵz sin qz

⎞

⎠+ e(3) (34)

e(3) =

⎛

⎝
2ϵxϵyϵz sin qx cos qy cos qz
2ϵxϵyϵz cos qx sin qy cos qz
2ϵxϵyϵz cos qx cos qy sin qz

⎞

⎠ . (35)

Ψ(3T )(q, t) = F3(t)f
(3)(q); (36)

f (3) =
1
10

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

− 1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos 2qy + ϵ2z cos 2qz)

ϵy sin qy (ϵ
2
z cos 2qz + ϵ2x cos 2qx)

ϵz sin qz (ϵ
2
x cos 2qx + ϵ2y cos 2qy)

⎞

⎠

(37)✒ ✑
Note that the time-independent displacement fields, d(3) and
e(3) are curl-free vectors which satisfy ∇q×d(3) = 0 = ∇q×
e(3), while the vector f (3) satisfies divergence-free condition,
i.e., ∇q · f (3) = 0.

Similarly, the third-order solutions in 2D case become

2D✓ ✏
Ψ(3L)(q, t) = D3(t) d̃

(3)
(q); (38)

d̃
(3)

=
1
5

(
ϵxϵ

2
y sin qx cos

2 qy
ϵ2xϵy sin qy cos

2 qx

)

+
1
5

(
ϵ2xϵy sin 2qx cos qy + 2ϵxϵ

2
y sin qx

ϵxϵ
2
y sin 2qy cos qx + 2ϵ2xϵy sin qy

)

(39)

Ψ(3T )(q, t) = F3(t) f̃
(3)

(q); (40)

f̃
(3)

=
1
10

(
ϵ2xϵy sin 2qx cos qy
ϵxϵ

2
y sin 2qy cos qx

)

− 1
5

(
ϵxϵ

2
y sin qx cos 2qy

ϵ2xϵy sin qy cos 2qx

)
(41)

✒ ✑
Vectors d̃

(2)
and f̃

(2)
respectively satisfy curl-free and

divergence-free conditions, i.e,. ∇q × d̃
(2)

= 0 = ∇q · f̃
(2)

.
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Longitudinal part only :

Pre-collapse phase of halo formation 3

boundary condition of [0, 2π]. We give it as the first-order
Lagrangian PT solution:

3D✓ ✏
Ψ(1)(q, t0) = D1(t0)

⎛

⎝
ϵx sin qx
ϵy sin qy
ϵz sin qz

⎞

⎠ (28)

✒ ✑
2D✓ ✏

Ψ(1)(q, t0) = D1(t0)

(
ϵx sin qx
ϵy sin qy

)
(29)

✒ ✑
Note that the linear growth factor D1 = eη is defined by
the growing mode of linear perturbation satisfying (T̂ −
4πG ρm)D1 = 0.

2.2 Second order

At second order, transverse mode is not generated. Thus, to
derive the second-order displacement field, we only consider
Eqs. (22) and (24). The solutions that satisfy the curl-free
condition, ∇q × Ψ(2) = 0, become

3D✓ ✏
Ψ(2)(q, t) = D2(t)

⎛

⎝
ϵx sin qx(ϵy cos qy + ϵz cos qz)
ϵy sin qy(ϵz cos qz + ϵx cos qx)
ϵz sin qz(ϵx cos qx + ϵy cos qy)

⎞

⎠ .

(30)✒ ✑
2D✓ ✏

Ψ(2)(q, t) = D2(t)

(
ϵxϵy sin qx cos qy
ϵxϵy cos qx sin qy

)
(31)

✒ ✑
The second-order growth function D2 is obtained from

D2(t) =

∫ η

η0

dη′ GL(η, η
′)

(
−3
4
eη

′
)

= − 3
14

e2η +
3
10

eη+η0 − 3
35

e−(3/2)η+(7/2)η0 , (32)

with the quantity η0 defined by η0 = lnD1(t0).

2.3 Third order

At third order, there appears a non-vanishing contribution
to the source terms in Eqs. (23) and (25), and we have to con-
sider both the longitudinal and transverse modes. We divide

the third-order displacement field intoΨ(3) = Ψ(3L)+Ψ(3T ).
Then the results in 3D case are summarized as follows:

3D✓ ✏
Ψ(3L)(q, t) = D3(t)d

(3)(q) + E3(t) e
(3)(q); (33)

d(3) =
1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos

2 qy + ϵ2z cos
2 qz)

ϵy sin qy (ϵ
2
z cos

2 qz + ϵ2x cos
2 qx)

ϵz sin qz (ϵ
2
x cos

2 qx + ϵ2y cos
2 qy)

⎞

⎠

+
1
5

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

+
2
5

⎛

⎝
(ϵ2y + ϵ2z) ϵx sin qx
(ϵ2z + ϵ2x) ϵy sin qy
(ϵ2x + ϵ2y) ϵz sin qz

⎞

⎠+ e(3) (34)

e(3) =

⎛

⎝
2ϵxϵyϵz sin qx cos qy cos qz
2ϵxϵyϵz cos qx sin qy cos qz
2ϵxϵyϵz cos qx cos qy sin qz

⎞

⎠ . (35)

Ψ(3T )(q, t) = F3(t)f
(3)(q); (36)

f (3) =
1
10

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

− 1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos 2qy + ϵ2z cos 2qz)

ϵy sin qy (ϵ
2
z cos 2qz + ϵ2x cos 2qx)

ϵz sin qz (ϵ
2
x cos 2qx + ϵ2y cos 2qy)

⎞

⎠

(37)✒ ✑
Note that the time-independent displacement fields, d(3) and
e(3) are curl-free vectors which satisfy ∇q×d(3) = 0 = ∇q×
e(3), while the vector f (3) satisfies divergence-free condition,
i.e., ∇q · f (3) = 0.

Similarly, the third-order solutions in 2D case become

2D✓ ✏
Ψ(3L)(q, t) = D3(t) d̃

(3)
(q); (38)

d̃
(3)

=
1
5

(
ϵxϵ

2
y sin qx cos

2 qy
ϵ2xϵy sin qy cos

2 qx

)

+
1
5

(
ϵ2xϵy sin 2qx cos qy + 2ϵxϵ

2
y sin qx

ϵxϵ
2
y sin 2qy cos qx + 2ϵ2xϵy sin qy

)

(39)

Ψ(3T )(q, t) = F3(t) f̃
(3)

(q); (40)

f̃
(3)

=
1
10

(
ϵ2xϵy sin 2qx cos qy
ϵxϵ

2
y sin 2qy cos qx

)

− 1
5

(
ϵxϵ

2
y sin qx cos 2qy

ϵ2xϵy sin qy cos 2qx

)
(41)

✒ ✑
Vectors d̃

(2)
and f̃

(2)
respectively satisfy curl-free and

divergence-free conditions, i.e,. ∇q × d̃
(2)

= 0 = ∇q · f̃
(2)

.
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Pre-collapse phase of halo formation 3

boundary condition of [0, 2π]. We give it as the first-order
Lagrangian PT solution:

3D✓ ✏
Ψ(1)(q, t0) = D1(t0)

⎛

⎝
ϵx sin qx
ϵy sin qy
ϵz sin qz

⎞

⎠ (28)

✒ ✑
2D✓ ✏

Ψ(1)(q, t0) = D1(t0)

(
ϵx sin qx
ϵy sin qy

)
(29)

✒ ✑
Note that the linear growth factor D1 = eη is defined by
the growing mode of linear perturbation satisfying (T̂ −
4πG ρm)D1 = 0.

2.2 Second order

At second order, transverse mode is not generated. Thus, to
derive the second-order displacement field, we only consider
Eqs. (22) and (24). The solutions that satisfy the curl-free
condition, ∇q × Ψ(2) = 0, become

3D✓ ✏
Ψ(2)(q, t) = D2(t)

⎛

⎝
ϵx sin qx(ϵy cos qy + ϵz cos qz)
ϵy sin qy(ϵz cos qz + ϵx cos qx)
ϵz sin qz(ϵx cos qx + ϵy cos qy)

⎞

⎠ .

(30)✒ ✑
2D✓ ✏

Ψ(2)(q, t) = D2(t)

(
ϵxϵy sin qx cos qy
ϵxϵy cos qx sin qy

)
(31)

✒ ✑
The second-order growth function D2 is obtained from

D2(t) =

∫ η

η0

dη′ GL(η, η
′)

(
−3
4
eη

′
)

= − 3
14

e2η +
3
10

eη+η0 − 3
35

e−(3/2)η+(7/2)η0 , (32)

with the quantity η0 defined by η0 = lnD1(t0).

2.3 Third order

At third order, there appears a non-vanishing contribution
to the source terms in Eqs. (23) and (25), and we have to con-
sider both the longitudinal and transverse modes. We divide

the third-order displacement field intoΨ(3) = Ψ(3L)+Ψ(3T ).
Then the results in 3D case are summarized as follows:

3D✓ ✏
Ψ(3L)(q, t) = D3(t)d

(3)(q) + E3(t) e
(3)(q); (33)

d(3) =
1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos

2 qy + ϵ2z cos
2 qz)

ϵy sin qy (ϵ
2
z cos

2 qz + ϵ2x cos
2 qx)

ϵz sin qz (ϵ
2
x cos

2 qx + ϵ2y cos
2 qy)

⎞

⎠

+
1
5

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

+
2
5

⎛

⎝
(ϵ2y + ϵ2z) ϵx sin qx
(ϵ2z + ϵ2x) ϵy sin qy
(ϵ2x + ϵ2y) ϵz sin qz

⎞

⎠+ e(3) (34)

e(3) =

⎛

⎝
2ϵxϵyϵz sin qx cos qy cos qz
2ϵxϵyϵz cos qx sin qy cos qz
2ϵxϵyϵz cos qx cos qy sin qz

⎞

⎠ . (35)

Ψ(3T )(q, t) = F3(t)f
(3)(q); (36)

f (3) =
1
10

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

− 1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos 2qy + ϵ2z cos 2qz)

ϵy sin qy (ϵ
2
z cos 2qz + ϵ2x cos 2qx)

ϵz sin qz (ϵ
2
x cos 2qx + ϵ2y cos 2qy)

⎞

⎠

(37)✒ ✑
Note that the time-independent displacement fields, d(3) and
e(3) are curl-free vectors which satisfy ∇q×d(3) = 0 = ∇q×
e(3), while the vector f (3) satisfies divergence-free condition,
i.e., ∇q · f (3) = 0.

Similarly, the third-order solutions in 2D case become

2D✓ ✏
Ψ(3L)(q, t) = D3(t) d̃

(3)
(q); (38)

d̃
(3)

=
1
5

(
ϵxϵ

2
y sin qx cos

2 qy
ϵ2xϵy sin qy cos

2 qx

)

+
1
5

(
ϵ2xϵy sin 2qx cos qy + 2ϵxϵ

2
y sin qx

ϵxϵ
2
y sin 2qy cos qx + 2ϵ2xϵy sin qy

)

(39)

Ψ(3T )(q, t) = F3(t) f̃
(3)

(q); (40)

f̃
(3)

=
1
10

(
ϵ2xϵy sin 2qx cos qy
ϵxϵ

2
y sin 2qy cos qx

)

− 1
5

(
ϵxϵ

2
y sin qx cos 2qy

ϵ2xϵy sin qy cos 2qx

)
(41)

✒ ✑
Vectors d̃

(2)
and f̃

(2)
respectively satisfy curl-free and

divergence-free conditions, i.e,. ∇q × d̃
(2)

= 0 = ∇q · f̃
(2)

.
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Pre-collapse phase of halo formation 3

boundary condition of [0, 2π]. We give it as the first-order
Lagrangian PT solution:

3D✓ ✏
Ψ(1)(q, t0) = D1(t0)

⎛

⎝
ϵx sin qx
ϵy sin qy
ϵz sin qz

⎞

⎠ (28)

✒ ✑
2D✓ ✏

Ψ(1)(q, t0) = D1(t0)

(
ϵx sin qx
ϵy sin qy

)
(29)

✒ ✑
Note that the linear growth factor D1 = eη is defined by
the growing mode of linear perturbation satisfying (T̂ −
4πG ρm)D1 = 0.

2.2 Second order

At second order, transverse mode is not generated. Thus, to
derive the second-order displacement field, we only consider
Eqs. (22) and (24). The solutions that satisfy the curl-free
condition, ∇q × Ψ(2) = 0, become

3D✓ ✏
Ψ(2)(q, t) = D2(t)

⎛

⎝
ϵx sin qx(ϵy cos qy + ϵz cos qz)
ϵy sin qy(ϵz cos qz + ϵx cos qx)
ϵz sin qz(ϵx cos qx + ϵy cos qy)

⎞

⎠ .

(30)✒ ✑
2D✓ ✏

Ψ(2)(q, t) = D2(t)

(
ϵxϵy sin qx cos qy
ϵxϵy cos qx sin qy

)
(31)

✒ ✑
The second-order growth function D2 is obtained from

D2(t) =

∫ η

η0

dη′ GL(η, η
′)

(
−3
4
eη

′
)

= − 3
14

e2η +
3
10

eη+η0 − 3
35

e−(3/2)η+(7/2)η0 , (32)

with the quantity η0 defined by η0 = lnD1(t0).

2.3 Third order

At third order, there appears a non-vanishing contribution
to the source terms in Eqs. (23) and (25), and we have to con-
sider both the longitudinal and transverse modes. We divide

the third-order displacement field intoΨ(3) = Ψ(3L)+Ψ(3T ).
Then the results in 3D case are summarized as follows:

3D✓ ✏
Ψ(3L)(q, t) = D3(t)d

(3)(q) + E3(t) e
(3)(q); (33)

d(3) =
1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos

2 qy + ϵ2z cos
2 qz)

ϵy sin qy (ϵ
2
z cos

2 qz + ϵ2x cos
2 qx)

ϵz sin qz (ϵ
2
x cos

2 qx + ϵ2y cos
2 qy)

⎞

⎠

+
1
5

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

+
2
5

⎛

⎝
(ϵ2y + ϵ2z) ϵx sin qx
(ϵ2z + ϵ2x) ϵy sin qy
(ϵ2x + ϵ2y) ϵz sin qz

⎞

⎠+ e(3) (34)

e(3) =

⎛

⎝
2ϵxϵyϵz sin qx cos qy cos qz
2ϵxϵyϵz cos qx sin qy cos qz
2ϵxϵyϵz cos qx cos qy sin qz

⎞

⎠ . (35)

Ψ(3T )(q, t) = F3(t)f
(3)(q); (36)

f (3) =
1
10

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

− 1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos 2qy + ϵ2z cos 2qz)

ϵy sin qy (ϵ
2
z cos 2qz + ϵ2x cos 2qx)

ϵz sin qz (ϵ
2
x cos 2qx + ϵ2y cos 2qy)

⎞

⎠

(37)✒ ✑
Note that the time-independent displacement fields, d(3) and
e(3) are curl-free vectors which satisfy ∇q×d(3) = 0 = ∇q×
e(3), while the vector f (3) satisfies divergence-free condition,
i.e., ∇q · f (3) = 0.

Similarly, the third-order solutions in 2D case become

2D✓ ✏
Ψ(3L)(q, t) = D3(t) d̃

(3)
(q); (38)

d̃
(3)

=
1
5

(
ϵxϵ

2
y sin qx cos

2 qy
ϵ2xϵy sin qy cos

2 qx

)

+
1
5

(
ϵ2xϵy sin 2qx cos qy + 2ϵxϵ

2
y sin qx

ϵxϵ
2
y sin 2qy cos qx + 2ϵ2xϵy sin qy

)

(39)

Ψ(3T )(q, t) = F3(t) f̃
(3)

(q); (40)

f̃
(3)

=
1
10

(
ϵ2xϵy sin 2qx cos qy
ϵxϵ

2
y sin 2qy cos qx

)

− 1
5

(
ϵxϵ

2
y sin qx cos 2qy

ϵ2xϵy sin qy cos 2qx

)
(41)

✒ ✑
Vectors d̃

(2)
and f̃

(2)
respectively satisfy curl-free and

divergence-free conditions, i.e,. ∇q × d̃
(2)

= 0 = ∇q · f̃
(2)

.
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(Time-dependent) growth function:

2 Authors

in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:

3D✓ ✏
(
T̂ − 4πG ρm

)
Ψk,k

= −ϵijkϵipq Ψj,p

(
T̂ − 2πG ρm

)
ψk,q

− 1
2
ϵijkϵpqr Ψi,pΨj,q

(
T̂ − 4πG

3
ρm

)
Ψk,r,

(16)

ϵijk T̂ Ψj,k = −ϵijk Ψp,j T̂ Ψp,k. (17)✒ ✑
2D✓ ✏

(
T̂ − 4πG ρm

)
Ψk,k

= −ϵilϵjk Ψl,k

(
T̂ − 2πG ρm

)
ψi,j (18)

ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:

3D✓ ✏
( ∂2

∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵijkϵipq Ψ
(m1)
j,p

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

k,q

− 1
2

∑

m1+m2+m3=n

ϵijkϵpqr Ψ
(m1)
i,p Ψ(m2)

j,q

×
( ∂2

∂η2
+

1
2
∂
∂η

− 1
2

)
Ψ(m3)

k,r , (22)

ϵijk
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

j,k

= −
∑

m1+m2=n

ϵijk Ψ
(m1)
p,j

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

p,k . (23)

✒ ✑
2D✓ ✏

( ∂2

∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵilϵjk Ψ
(m1)
l,k

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

i,j

(24)

ϵpq
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

q,p

= −
∑

m1+m2=n

ϵpq Ψ
(m1)
k,q

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

k,p . (25)

✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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boundary condition of [0, 2π]. We give it as the first-order
Lagrangian PT solution:

3D✓ ✏
Ψ(1)(q, t0) = D1(t0)

⎛

⎝
ϵx sin qx
ϵy sin qy
ϵz sin qz

⎞

⎠ (28)

✒ ✑
2D✓ ✏

Ψ(1)(q, t0) = D1(t0)

(
ϵx sin qx
ϵy sin qy

)
(29)

✒ ✑
Note that the linear growth factor D1 = eη is defined by
the growing mode of linear perturbation satisfying (T̂ −
4πG ρm)D1 = 0.

2.2 Second order

At second order, transverse mode is not generated. Thus, to
derive the second-order displacement field, we only consider
Eqs. (22) and (24). The solutions that satisfy the curl-free
condition, ∇q × Ψ(2) = 0, become

3D✓ ✏
Ψ(2)(q, t) = D2(t)

⎛

⎝
ϵx sin qx(ϵy cos qy + ϵz cos qz)
ϵy sin qy(ϵz cos qz + ϵx cos qx)
ϵz sin qz(ϵx cos qx + ϵy cos qy)

⎞

⎠ .

(30)✒ ✑
2D✓ ✏

Ψ(2)(q, t) = D2(t)

(
ϵxϵy sin qx cos qy
ϵxϵy cos qx sin qy

)
(31)

✒ ✑
The second-order growth function D2 is obtained from

D2(t) =

∫ η

η0

dη′ GL(η, η
′)

(
−3
4
eη

′
)

= − 3
14

e2η +
3
10

eη+η0 − 3
35

e−(3/2)η+(7/2)η0 , (32)

with the quantity η0 defined by η0 = lnD1(t0).

2.3 Third order

At third order, there appears a non-vanishing contribution
to the source terms in Eqs. (23) and (25), and we have to con-
sider both the longitudinal and transverse modes. We divide

the third-order displacement field intoΨ(3) = Ψ(3L)+Ψ(3T ).
Then the results in 3D case are summarized as follows:

3D✓ ✏
Ψ(3L)(q, t) = D3(t)d

(3)(q) + E3(t) e
(3)(q); (33)

d(3) =
1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos

2 qy + ϵ2z cos
2 qz)

ϵy sin qy (ϵ
2
z cos

2 qz + ϵ2x cos
2 qx)

ϵz sin qz (ϵ
2
x cos

2 qx + ϵ2y cos
2 qy)

⎞

⎠

+
1
5

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

+
2
5

⎛

⎝
(ϵ2y + ϵ2z) ϵx sin qx
(ϵ2z + ϵ2x) ϵy sin qy
(ϵ2x + ϵ2y) ϵz sin qz

⎞

⎠+ e(3) (34)

e(3) =

⎛

⎝
2ϵxϵyϵz sin qx cos qy cos qz
2ϵxϵyϵz cos qx sin qy cos qz
2ϵxϵyϵz cos qx cos qy sin qz

⎞

⎠ . (35)

Ψ(3T )(q, t) = F3(t)f
(3)(q); (36)

f (3) =
1
10

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

− 1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos 2qy + ϵ2z cos 2qz)

ϵy sin qy (ϵ
2
z cos 2qz + ϵ2x cos 2qx)

ϵz sin qz (ϵ
2
x cos 2qx + ϵ2y cos 2qy)

⎞

⎠

(37)✒ ✑
Note that the time-independent displacement fields, d(3) and
e(3) are curl-free vectors which satisfy ∇q×d(3) = 0 = ∇q×
e(3), while the vector f (3) satisfies divergence-free condition,
i.e., ∇q · f (3) = 0.

Similarly, the third-order solutions in 2D case become

2D✓ ✏
Ψ(3L)(q, t) = D3(t) d̃

(3)
(q); (38)

d̃
(3)

=
1
5

(
ϵxϵ

2
y sin qx cos

2 qy
ϵ2xϵy sin qy cos

2 qx

)

+
1
5

(
ϵ2xϵy sin 2qx cos qy + 2ϵxϵ

2
y sin qx

ϵxϵ
2
y sin 2qy cos qx + 2ϵ2xϵy sin qy

)

(39)

Ψ(3T )(q, t) = F3(t) f̃
(3)

(q); (40)

f̃
(3)

=
1
10

(
ϵ2xϵy sin 2qx cos qy
ϵxϵ

2
y sin 2qy cos qx

)

− 1
5

(
ϵxϵ

2
y sin qx cos 2qy

ϵ2xϵy sin qy cos 2qx

)
(41)

✒ ✑
Vectors d̃

(2)
and f̃

(2)
respectively satisfy curl-free and

divergence-free conditions, i.e,. ∇q × d̃
(2)

= 0 = ∇q · f̃
(2)

.
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boundary condition of [0, 2π]. We give it as the first-order
Lagrangian PT solution:

3D✓ ✏
Ψ(1)(q, t0) = D1(t0)

⎛

⎝
ϵx sin qx
ϵy sin qy
ϵz sin qz

⎞

⎠ (28)

✒ ✑
2D✓ ✏

Ψ(1)(q, t0) = D1(t0)

(
ϵx sin qx
ϵy sin qy

)
(29)

✒ ✑
Note that the linear growth factor D1 = eη is defined by
the growing mode of linear perturbation satisfying (T̂ −
4πG ρm)D1 = 0.

2.2 Second order

At second order, transverse mode is not generated. Thus, to
derive the second-order displacement field, we only consider
Eqs. (22) and (24). The solutions that satisfy the curl-free
condition, ∇q × Ψ(2) = 0, become

3D✓ ✏
Ψ(2)(q, t) = D2(t)

⎛

⎝
ϵx sin qx(ϵy cos qy + ϵz cos qz)
ϵy sin qy(ϵz cos qz + ϵx cos qx)
ϵz sin qz(ϵx cos qx + ϵy cos qy)

⎞

⎠ .

(30)✒ ✑
2D✓ ✏

Ψ(2)(q, t) = D2(t)

(
ϵxϵy sin qx cos qy
ϵxϵy cos qx sin qy

)
(31)

✒ ✑
The second-order growth function D2 is obtained from

D2(t) =

∫ η

η0

dη′ GL(η, η
′)

(
−3
4
eη

′
)

= − 3
14

e2η +
3
10

eη+η0 − 3
35

e−(3/2)η+(7/2)η0 , (32)

with the quantity η0 defined by η0 = lnD1(t0).

2.3 Third order

At third order, there appears a non-vanishing contribution
to the source terms in Eqs. (23) and (25), and we have to con-
sider both the longitudinal and transverse modes. We divide

the third-order displacement field intoΨ(3) = Ψ(3L)+Ψ(3T ).
Then the results in 3D case are summarized as follows:

3D✓ ✏
Ψ(3L)(q, t) = D3(t)d

(3)(q) + E3(t) e
(3)(q); (33)

d(3) =
1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos

2 qy + ϵ2z cos
2 qz)

ϵy sin qy (ϵ
2
z cos

2 qz + ϵ2x cos
2 qx)

ϵz sin qz (ϵ
2
x cos

2 qx + ϵ2y cos
2 qy)

⎞

⎠

+
1
5

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

+
2
5

⎛

⎝
(ϵ2y + ϵ2z) ϵx sin qx
(ϵ2z + ϵ2x) ϵy sin qy
(ϵ2x + ϵ2y) ϵz sin qz

⎞

⎠+ e(3) (34)

e(3) =

⎛

⎝
2ϵxϵyϵz sin qx cos qy cos qz
2ϵxϵyϵz cos qx sin qy cos qz
2ϵxϵyϵz cos qx cos qy sin qz

⎞

⎠ . (35)

Ψ(3T )(q, t) = F3(t)f
(3)(q); (36)

f (3) =
1
10

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

− 1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos 2qy + ϵ2z cos 2qz)

ϵy sin qy (ϵ
2
z cos 2qz + ϵ2x cos 2qx)

ϵz sin qz (ϵ
2
x cos 2qx + ϵ2y cos 2qy)

⎞

⎠

(37)✒ ✑
Note that the time-independent displacement fields, d(3) and
e(3) are curl-free vectors which satisfy ∇q×d(3) = 0 = ∇q×
e(3), while the vector f (3) satisfies divergence-free condition,
i.e., ∇q · f (3) = 0.

Similarly, the third-order solutions in 2D case become

2D✓ ✏
Ψ(3L)(q, t) = D3(t) d̃

(3)
(q); (38)

d̃
(3)

=
1
5

(
ϵxϵ

2
y sin qx cos

2 qy
ϵ2xϵy sin qy cos

2 qx

)

+
1
5

(
ϵ2xϵy sin 2qx cos qy + 2ϵxϵ

2
y sin qx

ϵxϵ
2
y sin 2qy cos qx + 2ϵ2xϵy sin qy

)

(39)

Ψ(3T )(q, t) = F3(t) f̃
(3)

(q); (40)

f̃
(3)

=
1
10

(
ϵ2xϵy sin 2qx cos qy
ϵxϵ

2
y sin 2qy cos qx

)

− 1
5

(
ϵxϵ

2
y sin qx cos 2qy

ϵ2xϵy sin qy cos 2qx

)
(41)

✒ ✑
Vectors d̃

(2)
and f̃

(2)
respectively satisfy curl-free and

divergence-free conditions, i.e,. ∇q × d̃
(2)

= 0 = ∇q · f̃
(2)

.
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boundary condition of [0, 2π]. We give it as the first-order
Lagrangian PT solution:

3D✓ ✏
Ψ(1)(q, t0) = D1(t0)

⎛

⎝
ϵx sin qx
ϵy sin qy
ϵz sin qz

⎞

⎠ (28)

✒ ✑
2D✓ ✏

Ψ(1)(q, t0) = D1(t0)

(
ϵx sin qx
ϵy sin qy

)
(29)

✒ ✑
Note that the linear growth factor D1 = eη is defined by
the growing mode of linear perturbation satisfying (T̂ −
4πG ρm)D1 = 0.

2.2 Second order

At second order, transverse mode is not generated. Thus, to
derive the second-order displacement field, we only consider
Eqs. (22) and (24). The solutions that satisfy the curl-free
condition, ∇q × Ψ(2) = 0, become

3D✓ ✏
Ψ(2)(q, t) = D2(t)

⎛

⎝
ϵx sin qx(ϵy cos qy + ϵz cos qz)
ϵy sin qy(ϵz cos qz + ϵx cos qx)
ϵz sin qz(ϵx cos qx + ϵy cos qy)

⎞

⎠ .

(30)✒ ✑
2D✓ ✏

Ψ(2)(q, t) = D2(t)

(
ϵxϵy sin qx cos qy
ϵxϵy cos qx sin qy

)
(31)

✒ ✑
The second-order growth function D2 is obtained from

D2(t) =

∫ η

η0

dη′ GL(η, η
′)

(
−3
4
eη

′
)

= − 3
14

e2η +
3
10

eη+η0 − 3
35

e−(3/2)η+(7/2)η0 , (32)

with the quantity η0 defined by η0 = lnD1(t0).

2.3 Third order

At third order, there appears a non-vanishing contribution
to the source terms in Eqs. (23) and (25), and we have to con-
sider both the longitudinal and transverse modes. We divide

the third-order displacement field intoΨ(3) = Ψ(3L)+Ψ(3T ).
Then the results in 3D case are summarized as follows:

3D✓ ✏
Ψ(3L)(q, t) = D3(t)d

(3)(q) + E3(t) e
(3)(q); (33)

d(3) =
1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos

2 qy + ϵ2z cos
2 qz)

ϵy sin qy (ϵ
2
z cos

2 qz + ϵ2x cos
2 qx)

ϵz sin qz (ϵ
2
x cos

2 qx + ϵ2y cos
2 qy)

⎞

⎠

+
1
5

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

+
2
5

⎛

⎝
(ϵ2y + ϵ2z) ϵx sin qx
(ϵ2z + ϵ2x) ϵy sin qy
(ϵ2x + ϵ2y) ϵz sin qz

⎞

⎠+ e(3) (34)

e(3) =

⎛

⎝
2ϵxϵyϵz sin qx cos qy cos qz
2ϵxϵyϵz cos qx sin qy cos qz
2ϵxϵyϵz cos qx cos qy sin qz

⎞

⎠ . (35)

Ψ(3T )(q, t) = F3(t)f
(3)(q); (36)

f (3) =
1
10

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

− 1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos 2qy + ϵ2z cos 2qz)

ϵy sin qy (ϵ
2
z cos 2qz + ϵ2x cos 2qx)

ϵz sin qz (ϵ
2
x cos 2qx + ϵ2y cos 2qy)

⎞

⎠

(37)✒ ✑
Note that the time-independent displacement fields, d(3) and
e(3) are curl-free vectors which satisfy ∇q×d(3) = 0 = ∇q×
e(3), while the vector f (3) satisfies divergence-free condition,
i.e., ∇q · f (3) = 0.

Similarly, the third-order solutions in 2D case become

2D✓ ✏
Ψ(3L)(q, t) = D3(t) d̃

(3)
(q); (38)

d̃
(3)

=
1
5

(
ϵxϵ

2
y sin qx cos

2 qy
ϵ2xϵy sin qy cos

2 qx

)

+
1
5

(
ϵ2xϵy sin 2qx cos qy + 2ϵxϵ

2
y sin qx

ϵxϵ
2
y sin 2qy cos qx + 2ϵ2xϵy sin qy

)

(39)

Ψ(3T )(q, t) = F3(t) f̃
(3)

(q); (40)

f̃
(3)

=
1
10

(
ϵ2xϵy sin 2qx cos qy
ϵxϵ

2
y sin 2qy cos qx

)

− 1
5

(
ϵxϵ

2
y sin qx cos 2qy

ϵ2xϵy sin qy cos 2qx

)
(41)

✒ ✑
Vectors d̃

(2)
and f̃

(2)
respectively satisfy curl-free and

divergence-free conditions, i.e,. ∇q × d̃
(2)

= 0 = ∇q · f̃
(2)

.
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boundary condition of [0, 2π]. We give it as the first-order
Lagrangian PT solution:

3D✓ ✏
Ψ(1)(q, t0) = D1(t0)

⎛

⎝
ϵx sin qx
ϵy sin qy
ϵz sin qz

⎞

⎠ (28)

✒ ✑
2D✓ ✏

Ψ(1)(q, t0) = D1(t0)

(
ϵx sin qx
ϵy sin qy

)
(29)

✒ ✑
Note that the linear growth factor D1 = eη is defined by
the growing mode of linear perturbation satisfying (T̂ −
4πG ρm)D1 = 0.

2.2 Second order

At second order, transverse mode is not generated. Thus, to
derive the second-order displacement field, we only consider
Eqs. (22) and (24). The solutions that satisfy the curl-free
condition, ∇q × Ψ(2) = 0, become

3D✓ ✏
Ψ(2)(q, t) = D2(t)

⎛

⎝
ϵx sin qx(ϵy cos qy + ϵz cos qz)
ϵy sin qy(ϵz cos qz + ϵx cos qx)
ϵz sin qz(ϵx cos qx + ϵy cos qy)

⎞

⎠ .

(30)✒ ✑
2D✓ ✏

Ψ(2)(q, t) = D2(t)

(
ϵxϵy sin qx cos qy
ϵxϵy cos qx sin qy

)
(31)

✒ ✑
The second-order growth function D2 is obtained from

D2(t) =

∫ η

η0

dη′ GL(η, η
′)

(
−3
4
eη

′
)

= − 3
14

e2η +
3
10

eη+η0 − 3
35

e−(3/2)η+(7/2)η0 , (32)

with the quantity η0 defined by η0 = lnD1(t0).

2.3 Third order

At third order, there appears a non-vanishing contribution
to the source terms in Eqs. (23) and (25), and we have to con-
sider both the longitudinal and transverse modes. We divide

the third-order displacement field intoΨ(3) = Ψ(3L)+Ψ(3T ).
Then the results in 3D case are summarized as follows:

3D✓ ✏
Ψ(3L)(q, t) = D3(t)d

(3)(q) + E3(t) e
(3)(q); (33)

d(3) =
1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos

2 qy + ϵ2z cos
2 qz)

ϵy sin qy (ϵ
2
z cos

2 qz + ϵ2x cos
2 qx)

ϵz sin qz (ϵ
2
x cos

2 qx + ϵ2y cos
2 qy)

⎞

⎠

+
1
5

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

+
2
5

⎛

⎝
(ϵ2y + ϵ2z) ϵx sin qx
(ϵ2z + ϵ2x) ϵy sin qy
(ϵ2x + ϵ2y) ϵz sin qz

⎞

⎠+ e(3) (34)

e(3) =

⎛

⎝
2ϵxϵyϵz sin qx cos qy cos qz
2ϵxϵyϵz cos qx sin qy cos qz
2ϵxϵyϵz cos qx cos qy sin qz

⎞

⎠ . (35)

Ψ(3T )(q, t) = F3(t)f
(3)(q); (36)

f (3) =
1
10

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

− 1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos 2qy + ϵ2z cos 2qz)

ϵy sin qy (ϵ
2
z cos 2qz + ϵ2x cos 2qx)

ϵz sin qz (ϵ
2
x cos 2qx + ϵ2y cos 2qy)

⎞

⎠

(37)✒ ✑
Note that the time-independent displacement fields, d(3) and
e(3) are curl-free vectors which satisfy ∇q×d(3) = 0 = ∇q×
e(3), while the vector f (3) satisfies divergence-free condition,
i.e., ∇q · f (3) = 0.

Similarly, the third-order solutions in 2D case become

2D✓ ✏
Ψ(3L)(q, t) = D3(t) d̃

(3)
(q); (38)

d̃
(3)

=
1
5

(
ϵxϵ

2
y sin qx cos

2 qy
ϵ2xϵy sin qy cos

2 qx

)

+
1
5

(
ϵ2xϵy sin 2qx cos qy + 2ϵxϵ

2
y sin qx

ϵxϵ
2
y sin 2qy cos qx + 2ϵ2xϵy sin qy

)

(39)

Ψ(3T )(q, t) = F3(t) f̃
(3)

(q); (40)

f̃
(3)

=
1
10

(
ϵ2xϵy sin 2qx cos qy
ϵxϵ

2
y sin 2qy cos qx

)

− 1
5

(
ϵxϵ

2
y sin qx cos 2qy

ϵ2xϵy sin qy cos 2qx

)
(41)

✒ ✑
Vectors d̃

(2)
and f̃

(2)
respectively satisfy curl-free and

divergence-free conditions, i.e,. ∇q × d̃
(2)

= 0 = ∇q · f̃
(2)

.
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boundary condition of [0, 2π]. We give it as the first-order
Lagrangian PT solution:

3D✓ ✏
Ψ(1)(q, t0) = D1(t0)

⎛

⎝
ϵx sin qx
ϵy sin qy
ϵz sin qz

⎞

⎠ (28)

✒ ✑
2D✓ ✏

Ψ(1)(q, t0) = D1(t0)

(
ϵx sin qx
ϵy sin qy

)
(29)

✒ ✑
Note that the linear growth factor D1 = eη is defined by
the growing mode of linear perturbation satisfying (T̂ −
4πG ρm)D1 = 0.

2.2 Second order

At second order, transverse mode is not generated. Thus, to
derive the second-order displacement field, we only consider
Eqs. (22) and (24). The solutions that satisfy the curl-free
condition, ∇q × Ψ(2) = 0, become

3D✓ ✏
Ψ(2)(q, t) = D2(t)

⎛

⎝
ϵx sin qx(ϵy cos qy + ϵz cos qz)
ϵy sin qy(ϵz cos qz + ϵx cos qx)
ϵz sin qz(ϵx cos qx + ϵy cos qy)

⎞

⎠ .

(30)✒ ✑
2D✓ ✏

Ψ(2)(q, t) = D2(t)

(
ϵxϵy sin qx cos qy
ϵxϵy cos qx sin qy

)
(31)

✒ ✑
The second-order growth function D2 is obtained from

D2(t) =

∫ η

η0

dη′ GL(η, η
′)

(
−3
4
eη

′
)

= − 3
14

e2η +
3
10

eη+η0 − 3
35

e−(3/2)η+(7/2)η0 , (32)

with the quantity η0 defined by η0 = lnD1(t0).

2.3 Third order

At third order, there appears a non-vanishing contribution
to the source terms in Eqs. (23) and (25), and we have to con-
sider both the longitudinal and transverse modes. We divide

the third-order displacement field intoΨ(3) = Ψ(3L)+Ψ(3T ).
Then the results in 3D case are summarized as follows:

3D✓ ✏
Ψ(3L)(q, t) = D3(t)d

(3)(q) + E3(t) e
(3)(q); (33)

d(3) =
1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos

2 qy + ϵ2z cos
2 qz)

ϵy sin qy (ϵ
2
z cos

2 qz + ϵ2x cos
2 qx)

ϵz sin qz (ϵ
2
x cos

2 qx + ϵ2y cos
2 qy)

⎞

⎠

+
1
5

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

+
2
5

⎛

⎝
(ϵ2y + ϵ2z) ϵx sin qx
(ϵ2z + ϵ2x) ϵy sin qy
(ϵ2x + ϵ2y) ϵz sin qz

⎞

⎠+ e(3) (34)

e(3) =

⎛

⎝
2ϵxϵyϵz sin qx cos qy cos qz
2ϵxϵyϵz cos qx sin qy cos qz
2ϵxϵyϵz cos qx cos qy sin qz

⎞

⎠ . (35)

Ψ(3T )(q, t) = F3(t)f
(3)(q); (36)

f (3) =
1
10

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

− 1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos 2qy + ϵ2z cos 2qz)

ϵy sin qy (ϵ
2
z cos 2qz + ϵ2x cos 2qx)

ϵz sin qz (ϵ
2
x cos 2qx + ϵ2y cos 2qy)

⎞

⎠

(37)✒ ✑
Note that the time-independent displacement fields, d(3) and
e(3) are curl-free vectors which satisfy ∇q×d(3) = 0 = ∇q×
e(3), while the vector f (3) satisfies divergence-free condition,
i.e., ∇q · f (3) = 0.

Similarly, the third-order solutions in 2D case become

2D✓ ✏
Ψ(3L)(q, t) = D3(t) d̃

(3)
(q); (38)

d̃
(3)

=
1
5

(
ϵxϵ

2
y sin qx cos

2 qy
ϵ2xϵy sin qy cos

2 qx

)

+
1
5

(
ϵ2xϵy sin 2qx cos qy + 2ϵxϵ

2
y sin qx

ϵxϵ
2
y sin 2qy cos qx + 2ϵ2xϵy sin qy

)

(39)

Ψ(3T )(q, t) = F3(t) f̃
(3)

(q); (40)

f̃
(3)

=
1
10

(
ϵ2xϵy sin 2qx cos qy
ϵxϵ

2
y sin 2qy cos qx

)

− 1
5

(
ϵxϵ

2
y sin qx cos 2qy

ϵ2xϵy sin qy cos 2qx

)
(41)

✒ ✑
Vectors d̃

(2)
and f̃

(2)
respectively satisfy curl-free and

divergence-free conditions, i.e,. ∇q × d̃
(2)

= 0 = ∇q · f̃
(2)

.
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boundary condition of [0, 2π]. We give it as the first-order
Lagrangian PT solution:

3D✓ ✏
Ψ(1)(q, t0) = D1(t0)

⎛

⎝
ϵx sin qx
ϵy sin qy
ϵz sin qz

⎞

⎠ (28)

✒ ✑
2D✓ ✏

Ψ(1)(q, t0) = D1(t0)

(
ϵx sin qx
ϵy sin qy

)
(29)

✒ ✑
Note that the linear growth factor D1 = eη is defined by
the growing mode of linear perturbation satisfying (T̂ −
4πG ρm)D1 = 0.

2.2 Second order

At second order, transverse mode is not generated. Thus, to
derive the second-order displacement field, we only consider
Eqs. (22) and (24). The solutions that satisfy the curl-free
condition, ∇q × Ψ(2) = 0, become

3D✓ ✏
Ψ(2)(q, t) = D2(t)

⎛

⎝
ϵx sin qx(ϵy cos qy + ϵz cos qz)
ϵy sin qy(ϵz cos qz + ϵx cos qx)
ϵz sin qz(ϵx cos qx + ϵy cos qy)

⎞

⎠ .

(30)✒ ✑
2D✓ ✏

Ψ(2)(q, t) = D2(t)

(
ϵxϵy sin qx cos qy
ϵxϵy cos qx sin qy

)
(31)

✒ ✑
The second-order growth function D2 is obtained from

D2(t) =

∫ η

η0

dη′ GL(η, η
′)

(
−3
4
eη

′
)

= − 3
14

e2η +
3
10

eη+η0 − 3
35

e−(3/2)η+(7/2)η0 , (32)

with the quantity η0 defined by η0 = lnD1(t0).

2.3 Third order

At third order, there appears a non-vanishing contribution
to the source terms in Eqs. (23) and (25), and we have to con-
sider both the longitudinal and transverse modes. We divide

the third-order displacement field intoΨ(3) = Ψ(3L)+Ψ(3T ).
Then the results in 3D case are summarized as follows:

3D✓ ✏
Ψ(3L)(q, t) = D3(t)d

(3)(q) + E3(t) e
(3)(q); (33)

d(3) =
1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos

2 qy + ϵ2z cos
2 qz)

ϵy sin qy (ϵ
2
z cos

2 qz + ϵ2x cos
2 qx)

ϵz sin qz (ϵ
2
x cos

2 qx + ϵ2y cos
2 qy)

⎞

⎠

+
1
5

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

+
2
5

⎛

⎝
(ϵ2y + ϵ2z) ϵx sin qx
(ϵ2z + ϵ2x) ϵy sin qy
(ϵ2x + ϵ2y) ϵz sin qz

⎞

⎠+ e(3) (34)

e(3) =

⎛

⎝
2ϵxϵyϵz sin qx cos qy cos qz
2ϵxϵyϵz cos qx sin qy cos qz
2ϵxϵyϵz cos qx cos qy sin qz

⎞

⎠ . (35)

Ψ(3T )(q, t) = F3(t)f
(3)(q); (36)

f (3) =
1
10

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

− 1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos 2qy + ϵ2z cos 2qz)

ϵy sin qy (ϵ
2
z cos 2qz + ϵ2x cos 2qx)

ϵz sin qz (ϵ
2
x cos 2qx + ϵ2y cos 2qy)

⎞

⎠

(37)✒ ✑
Note that the time-independent displacement fields, d(3) and
e(3) are curl-free vectors which satisfy ∇q×d(3) = 0 = ∇q×
e(3), while the vector f (3) satisfies divergence-free condition,
i.e., ∇q · f (3) = 0.

Similarly, the third-order solutions in 2D case become

2D✓ ✏
Ψ(3L)(q, t) = D3(t) d̃

(3)
(q); (38)

d̃
(3)

=
1
5

(
ϵxϵ

2
y sin qx cos

2 qy
ϵ2xϵy sin qy cos

2 qx

)

+
1
5

(
ϵ2xϵy sin 2qx cos qy + 2ϵxϵ

2
y sin qx

ϵxϵ
2
y sin 2qy cos qx + 2ϵ2xϵy sin qy

)

(39)

Ψ(3T )(q, t) = F3(t) f̃
(3)

(q); (40)

f̃
(3)

=
1
10

(
ϵ2xϵy sin 2qx cos qy
ϵxϵ

2
y sin 2qy cos qx

)

− 1
5

(
ϵxϵ

2
y sin qx cos 2qy

ϵ2xϵy sin qy cos 2qx

)
(41)

✒ ✑
Vectors d̃

(2)
and f̃

(2)
respectively satisfy curl-free and

divergence-free conditions, i.e,. ∇q × d̃
(2)

= 0 = ∇q · f̃
(2)

.

MNRAS 000, 1–10 (2017)

;

Pre-collapse phase of halo formation 3

boundary condition of [0, 2π]. We give it as the first-order
Lagrangian PT solution:

3D✓ ✏
Ψ(1)(q, t0) = D1(t0)

⎛

⎝
ϵx sin qx
ϵy sin qy
ϵz sin qz

⎞

⎠ (28)

✒ ✑
2D✓ ✏

Ψ(1)(q, t0) = D1(t0)

(
ϵx sin qx
ϵy sin qy

)
(29)

✒ ✑
Note that the linear growth factor D1 = eη is defined by
the growing mode of linear perturbation satisfying (T̂ −
4πG ρm)D1 = 0.

2.2 Second order

At second order, transverse mode is not generated. Thus, to
derive the second-order displacement field, we only consider
Eqs. (22) and (24). The solutions that satisfy the curl-free
condition, ∇q × Ψ(2) = 0, become

3D✓ ✏
Ψ(2)(q, t) = D2(t)

⎛

⎝
ϵx sin qx(ϵy cos qy + ϵz cos qz)
ϵy sin qy(ϵz cos qz + ϵx cos qx)
ϵz sin qz(ϵx cos qx + ϵy cos qy)

⎞

⎠ .

(30)✒ ✑
2D✓ ✏

Ψ(2)(q, t) = D2(t)

(
ϵxϵy sin qx cos qy
ϵxϵy cos qx sin qy

)
(31)

✒ ✑
The second-order growth function D2 is obtained from

D2(t) =

∫ η

η0

dη′ GL(η, η
′)

(
−3
4
eη

′
)

= − 3
14

e2η +
3
10

eη+η0 − 3
35

e−(3/2)η+(7/2)η0 , (32)

with the quantity η0 defined by η0 = lnD1(t0).

2.3 Third order

At third order, there appears a non-vanishing contribution
to the source terms in Eqs. (23) and (25), and we have to con-
sider both the longitudinal and transverse modes. We divide

the third-order displacement field intoΨ(3) = Ψ(3L)+Ψ(3T ).
Then the results in 3D case are summarized as follows:

3D✓ ✏
Ψ(3L)(q, t) = D3(t)d

(3)(q) + E3(t) e
(3)(q); (33)

d(3) =
1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos

2 qy + ϵ2z cos
2 qz)

ϵy sin qy (ϵ
2
z cos

2 qz + ϵ2x cos
2 qx)

ϵz sin qz (ϵ
2
x cos

2 qx + ϵ2y cos
2 qy)

⎞

⎠

+
1
5

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

+
2
5

⎛

⎝
(ϵ2y + ϵ2z) ϵx sin qx
(ϵ2z + ϵ2x) ϵy sin qy
(ϵ2x + ϵ2y) ϵz sin qz

⎞

⎠+ e(3) (34)

e(3) =

⎛

⎝
2ϵxϵyϵz sin qx cos qy cos qz
2ϵxϵyϵz cos qx sin qy cos qz
2ϵxϵyϵz cos qx cos qy sin qz

⎞

⎠ . (35)

Ψ(3T )(q, t) = F3(t)f
(3)(q); (36)

f (3) =
1
10

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

− 1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos 2qy + ϵ2z cos 2qz)

ϵy sin qy (ϵ
2
z cos 2qz + ϵ2x cos 2qx)

ϵz sin qz (ϵ
2
x cos 2qx + ϵ2y cos 2qy)

⎞

⎠

(37)✒ ✑
Note that the time-independent displacement fields, d(3) and
e(3) are curl-free vectors which satisfy ∇q×d(3) = 0 = ∇q×
e(3), while the vector f (3) satisfies divergence-free condition,
i.e., ∇q · f (3) = 0.

Similarly, the third-order solutions in 2D case become

2D✓ ✏
Ψ(3L)(q, t) = D3(t) d̃

(3)
(q); (38)

d̃
(3)

=
1
5

(
ϵxϵ

2
y sin qx cos

2 qy
ϵ2xϵy sin qy cos

2 qx

)

+
1
5

(
ϵ2xϵy sin 2qx cos qy + 2ϵxϵ

2
y sin qx

ϵxϵ
2
y sin 2qy cos qx + 2ϵ2xϵy sin qy

)

(39)

Ψ(3T )(q, t) = F3(t) f̃
(3)

(q); (40)

f̃
(3)

=
1
10

(
ϵ2xϵy sin 2qx cos qy
ϵxϵ

2
y sin 2qy cos qx

)

− 1
5

(
ϵxϵ

2
y sin qx cos 2qy

ϵ2xϵy sin qy cos 2qx

)
(41)

✒ ✑
Vectors d̃

(2)
and f̃

(2)
respectively satisfy curl-free and

divergence-free conditions, i.e,. ∇q × d̃
(2)

= 0 = ∇q · f̃
(2)

.
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boundary condition of [0, 2π]. We give it as the first-order
Lagrangian PT solution:

3D✓ ✏
Ψ(1)(q, t0) = D1(t0)

⎛

⎝
ϵx sin qx
ϵy sin qy
ϵz sin qz

⎞

⎠ (28)

✒ ✑
2D✓ ✏

Ψ(1)(q, t0) = D1(t0)

(
ϵx sin qx
ϵy sin qy

)
(29)

✒ ✑
Note that the linear growth factor D1 = eη is defined by
the growing mode of linear perturbation satisfying (T̂ −
4πG ρm)D1 = 0.

2.2 Second order

At second order, transverse mode is not generated. Thus, to
derive the second-order displacement field, we only consider
Eqs. (22) and (24). The solutions that satisfy the curl-free
condition, ∇q × Ψ(2) = 0, become

3D✓ ✏
Ψ(2)(q, t) = D2(t)

⎛

⎝
ϵx sin qx(ϵy cos qy + ϵz cos qz)
ϵy sin qy(ϵz cos qz + ϵx cos qx)
ϵz sin qz(ϵx cos qx + ϵy cos qy)

⎞

⎠ .

(30)✒ ✑
2D✓ ✏

Ψ(2)(q, t) = D2(t)

(
ϵxϵy sin qx cos qy
ϵxϵy cos qx sin qy

)
(31)

✒ ✑
The second-order growth function D2 is obtained from

D2(t) =

∫ η

η0

dη′ GL(η, η
′)

(
−3
4
eη

′
)

= − 3
14

e2η +
3
10

eη+η0 − 3
35

e−(3/2)η+(7/2)η0 , (32)

with the quantity η0 defined by η0 = lnD1(t0).

2.3 Third order

At third order, there appears a non-vanishing contribution
to the source terms in Eqs. (23) and (25), and we have to con-
sider both the longitudinal and transverse modes. We divide

the third-order displacement field intoΨ(3) = Ψ(3L)+Ψ(3T ).
Then the results in 3D case are summarized as follows:

3D✓ ✏
Ψ(3L)(q, t) = D3(t)d

(3)(q) + E3(t) e
(3)(q); (33)

d(3) =
1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos

2 qy + ϵ2z cos
2 qz)

ϵy sin qy (ϵ
2
z cos

2 qz + ϵ2x cos
2 qx)

ϵz sin qz (ϵ
2
x cos

2 qx + ϵ2y cos
2 qy)

⎞

⎠

+
1
5

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

+
2
5

⎛

⎝
(ϵ2y + ϵ2z) ϵx sin qx
(ϵ2z + ϵ2x) ϵy sin qy
(ϵ2x + ϵ2y) ϵz sin qz

⎞

⎠+ e(3) (34)

e(3) =

⎛

⎝
2ϵxϵyϵz sin qx cos qy cos qz
2ϵxϵyϵz cos qx sin qy cos qz
2ϵxϵyϵz cos qx cos qy sin qz

⎞

⎠ . (35)

Ψ(3T )(q, t) = F3(t)f
(3)(q); (36)

f (3) =
1
10

⎛

⎝
ϵ2x sin 2qx (ϵy cos qy + ϵz cos qz)
ϵ2y sin 2qy (ϵz cos qz + ϵx cos qx)
ϵ2z sin 2qz (ϵx cos qx + ϵy cos qy)

⎞

⎠

− 1
5

⎛

⎝
ϵx sin qx (ϵ

2
y cos 2qy + ϵ2z cos 2qz)

ϵy sin qy (ϵ
2
z cos 2qz + ϵ2x cos 2qx)

ϵz sin qz (ϵ
2
x cos 2qx + ϵ2y cos 2qy)

⎞

⎠

(37)✒ ✑
Note that the time-independent displacement fields, d(3) and
e(3) are curl-free vectors which satisfy ∇q×d(3) = 0 = ∇q×
e(3), while the vector f (3) satisfies divergence-free condition,
i.e., ∇q · f (3) = 0.

Similarly, the third-order solutions in 2D case become

2D✓ ✏
Ψ(3L)(q, t) = D3(t) d̃

(3)
(q); (38)

d̃
(3)

=
1
5

(
ϵxϵ

2
y sin qx cos

2 qy
ϵ2xϵy sin qy cos

2 qx

)

+
1
5

(
ϵ2xϵy sin 2qx cos qy + 2ϵxϵ

2
y sin qx

ϵxϵ
2
y sin 2qy cos qx + 2ϵ2xϵy sin qy

)

(39)

Ψ(3T )(q, t) = F3(t) f̃
(3)

(q); (40)

f̃
(3)

=
1
10

(
ϵ2xϵy sin 2qx cos qy
ϵxϵ

2
y sin 2qy cos qx

)

− 1
5

(
ϵxϵ

2
y sin qx cos 2qy

ϵ2xϵy sin qy cos 2qx

)
(41)

✒ ✑
Vectors d̃

(2)
and f̃

(2)
respectively satisfy curl-free and

divergence-free conditions, i.e,. ∇q × d̃
(2)

= 0 = ∇q · f̃
(2)

.
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The solutions presented above include several growth
functions, which are computed with Green functions at
Eqs. (26) and (27) to give

D3(η) =

∫ η

η0

dη′ GL(η, η
′)
{
−3
4
D2(η

′)− D̃2(η
′)
}
eη

′

=
5
42

e3η − 9
70

e2η+η0 − 3
35

e−η/2+(7/2)η0

+
2
21

e−(3/2)η+(9/2)η0 , (42)
(

D̃2 ≡ d2D2

dη2
+

1
2
dD2

dη
− 3

4
D2

)

E3(η)

∫ η

η0

dη′ GL(η, η
′)

(
−1
2
e3η

′
)

= − 1
18

e3η +
1
10

eη+2η0 − 2
45

e−(3/2)η+(9/2)η0 , (43)

F3(t) =

∫ η

η0

dη′ GT(η, η
′)
{3
2
D2(η

′)−D2(η
′)
}
eη

′

=
1
14

e3η − 1
2
e3η0 +

3
7
e−η/2+(7/2)η0 . (44)

(
D2 ≡ d2D2

dη2
+

1
2
dD2

dη

)

3 COMPARISON TO MOUTARDE ET AL. (’91)

In this section, we compare the Lagrangian PT solu-
tions obtained in previous section with those obtained in
Moutarde et al. (1991). To do this, we first set initial time
η0 (or a(t0)) to η0 → 0 (a(t0) → 1). We then sum up all the
PT solutions up to third order, and express them as those
summarized in Appendix of Moutarde et al. (1991). In 3D
case, we obtain

3Dx(q, t) =q +D1(t)

⎛

⎝
ϵx sin qx
ϵy sin qy
ϵz sin qz

⎞

⎠

+
f2(t)
2

⎛

⎝
sin qx(ϵxϵy cos qy + ϵzϵx cos qz)
sin qy(ϵyϵz cos qz + ϵxϵy cos qx)
sin qz(ϵzϵx cos qx + ϵyϵz cos qy)

⎞

⎠

+ f3(t)

⎛

⎝
sin qx(ϵxϵ

2
y cos 2qy + ϵxϵ

2
z cos 2qz)

sin qy(ϵyϵ
2
z cos 2qz + ϵyϵ

2
x cos 2qx)

sin qz(ϵzϵ
2
x cos 2qx + ϵzϵ

2
y cos 2qy)

⎞

⎠

+ g3(t)

⎛

⎝
sin 2qx(ϵ

2
xϵy cos qy + ϵ2xϵz cos qz)

sin 2qy(ϵ
2
yϵz cos qz + ϵ2yϵx cos qx)

sin 2qz(ϵ
2
zϵx cos qx + ϵ2zϵy cos qy)

⎞

⎠

+
u3(t)
2

⎛

⎝
ϵx(ϵ

2
y + ϵ2z) sin qx

ϵy(ϵ
2
z + ϵ2x) sin qy

ϵz(ϵ
2
x + ϵ2y) sin qz

⎞

⎠

+ ω3(t)

⎛

⎝
ϵxϵyϵz sin qx cos qy cos qz
ϵxϵyϵz sin qy cos qz cos qx
ϵxϵyϵz sin qz cos qx cos qy

⎞

⎠ . (45)

Similarly, in 2D case, we have

2Dx(q, t) =q +D1(t)

(
ϵx sin qx
ϵy sin qy

)

+
f2(t)
2

(
ϵxϵy sin qx cos qy
ϵxϵy sin qy cos qx

)

+ f3(t)

(
ϵxϵ

2
y sin qx cos 2qy

ϵyϵ
2
x sin qy cos 2qx

)

+ g3(t)

(
ϵ2xϵy sin 2qx cos qy
ϵ2yϵx sin 2qy cos qx

)

+
u3(t)
2

(
ϵxϵ

2
y sin qx

ϵyϵ
2
x sin qy

)
. (46)

Here, the time-dependent functions involved in these
expressions are defined similarly to those in Moutarde et al.
(1991), which are to be compared with their results (see
Appendix of their paper):

f2(t) =
3
14

e2η +
3
10

eη − 3
35

e−(3/2)η, (47)

f3(t) = − 1
420

e3η − 9
700

e2η +
1
10

− 33
350

e−η/2 +
1

105
e−(3/2)η,

(48)

g3(t) =
13
420

e3η − 9
350

e2η − 1
20

+
9

350
e−η/2 +

2
105

e−(3/2)η,

(49)

u3(t) =
5
42

e3η − 9
70

e2η − 3
35

e−η/2 +
2
21

e−(3/2)η, (50)

ω3(t) =
8
63

e3η − 9
35

e2η +
1
5
eη − 6

35
e−η/2 +

32
315

e−(3/2)η.

(51)

Taking the Einstein-de Sitter limit (eη → a), we see that
the results mostly coincide with those in Moutarde et al.
(1991) except the function ω3 (in 3D case). The discrepancy
in ω3 appears at the longitudinal mode of displacement field
at the third order [see Eqs. (33), (34) and (35)], and in our
case, the function ω3 is related to the growth functions D3

and E3 [given at Eqs. (42) and (43)] through

ω3 = 2 (D3 + E3) . (52)

4 HIGHER-ORDER SOLUTIONS

4.1 Efficient computation for longitudinal and
transverse vectors

Going beyond higher order, the expressions for displacement
vectors, especially at scale-dependent part, become more
complex, and it would be extremely cumbersome to get the
analytic expressions for longitudinal and transverse modes,
consistently satisfying curl-free and divergence-free condi-
tions, respectively. We thus need to develop a more system-
atic and efficient way to derive higher-order solutions.

One way is to make use of the property of nonlinear
source terms. In particular, in our case with sine-wave initial
condition [Eq. (28)], the right-hand side of the recurrence
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The solutions presented above include several growth
functions, which are computed with Green functions at
Eqs. (26) and (27) to give

D3(η) =

∫ η

η0

dη′ GL(η, η
′)
{
−3
4
D2(η

′)− D̃2(η
′)
}
eη

′

=
5
42

e3η − 9
70

e2η+η0 − 3
35

e−η/2+(7/2)η0

+
2
21

e−(3/2)η+(9/2)η0 , (42)
(

D̃2 ≡ d2D2

dη2
+

1
2
dD2

dη
− 3

4
D2

)

E3(η)

∫ η

η0

dη′ GL(η, η
′)

(
−1
2
e3η

′
)

= − 1
18

e3η +
1
10

eη+2η0 − 2
45

e−(3/2)η+(9/2)η0 , (43)

F3(t) =

∫ η

η0

dη′ GT(η, η
′)
{3
2
D2(η

′)−D2(η
′)
}
eη

′

=
1
14

e3η − 1
2
e3η0 +

3
7
e−η/2+(7/2)η0 . (44)

(
D2 ≡ d2D2

dη2
+

1
2
dD2

dη

)

3 COMPARISON TO MOUTARDE ET AL. (’91)

In this section, we compare the Lagrangian PT solu-
tions obtained in previous section with those obtained in
Moutarde et al. (1991). To do this, we first set initial time
η0 (or a(t0)) to η0 → 0 (a(t0) → 1). We then sum up all the
PT solutions up to third order, and express them as those
summarized in Appendix of Moutarde et al. (1991). In 3D
case, we obtain

3Dx(q, t) =q +D1(t)

⎛

⎝
ϵx sin qx
ϵy sin qy
ϵz sin qz

⎞

⎠

+
f2(t)
2

⎛

⎝
sin qx(ϵxϵy cos qy + ϵzϵx cos qz)
sin qy(ϵyϵz cos qz + ϵxϵy cos qx)
sin qz(ϵzϵx cos qx + ϵyϵz cos qy)

⎞

⎠

+ f3(t)

⎛

⎝
sin qx(ϵxϵ

2
y cos 2qy + ϵxϵ

2
z cos 2qz)

sin qy(ϵyϵ
2
z cos 2qz + ϵyϵ

2
x cos 2qx)

sin qz(ϵzϵ
2
x cos 2qx + ϵzϵ

2
y cos 2qy)

⎞

⎠

+ g3(t)

⎛

⎝
sin 2qx(ϵ

2
xϵy cos qy + ϵ2xϵz cos qz)

sin 2qy(ϵ
2
yϵz cos qz + ϵ2yϵx cos qx)

sin 2qz(ϵ
2
zϵx cos qx + ϵ2zϵy cos qy)

⎞

⎠

+
u3(t)
2

⎛

⎝
ϵx(ϵ

2
y + ϵ2z) sin qx

ϵy(ϵ
2
z + ϵ2x) sin qy

ϵz(ϵ
2
x + ϵ2y) sin qz

⎞

⎠

+ ω3(t)

⎛

⎝
ϵxϵyϵz sin qx cos qy cos qz
ϵxϵyϵz sin qy cos qz cos qx
ϵxϵyϵz sin qz cos qx cos qy

⎞

⎠ . (45)

Similarly, in 2D case, we have

2Dx(q, t) =q +D1(t)

(
ϵx sin qx
ϵy sin qy

)

+
f2(t)
2

(
ϵxϵy sin qx cos qy
ϵxϵy sin qy cos qx

)

+ f3(t)

(
ϵxϵ

2
y sin qx cos 2qy

ϵyϵ
2
x sin qy cos 2qx

)

+ g3(t)

(
ϵ2xϵy sin 2qx cos qy
ϵ2yϵx sin 2qy cos qx

)

+
u3(t)
2

(
ϵxϵ

2
y sin qx

ϵyϵ
2
x sin qy

)
. (46)

Here, the time-dependent functions involved in these
expressions are defined similarly to those in Moutarde et al.
(1991), which are to be compared with their results (see
Appendix of their paper):

f2(t) =
3
14

e2η +
3
10

eη − 3
35

e−(3/2)η, (47)

f3(t) = − 1
420

e3η − 9
700

e2η +
1
10

− 33
350

e−η/2 +
1

105
e−(3/2)η,

(48)

g3(t) =
13
420

e3η − 9
350

e2η − 1
20

+
9

350
e−η/2 +

2
105

e−(3/2)η,

(49)

u3(t) =
5
42

e3η − 9
70

e2η − 3
35

e−η/2 +
2
21

e−(3/2)η, (50)

ω3(t) =
8
63

e3η − 9
35

e2η +
1
5
eη − 6

35
e−η/2 +

32
315

e−(3/2)η.

(51)

Taking the Einstein-de Sitter limit (eη → a), we see that
the results mostly coincide with those in Moutarde et al.
(1991) except the function ω3 (in 3D case). The discrepancy
in ω3 appears at the longitudinal mode of displacement field
at the third order [see Eqs. (33), (34) and (35)], and in our
case, the function ω3 is related to the growth functions D3

and E3 [given at Eqs. (42) and (43)] through

ω3 = 2 (D3 + E3) . (52)

4 HIGHER-ORDER SOLUTIONS

4.1 Efficient computation for longitudinal and
transverse vectors

Going beyond higher order, the expressions for displacement
vectors, especially at scale-dependent part, become more
complex, and it would be extremely cumbersome to get the
analytic expressions for longitudinal and transverse modes,
consistently satisfying curl-free and divergence-free condi-
tions, respectively. We thus need to develop a more system-
atic and efficient way to derive higher-order solutions.

One way is to make use of the property of nonlinear
source terms. In particular, in our case with sine-wave initial
condition [Eq. (28)], the right-hand side of the recurrence
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The solutions presented above include several growth
functions, which are computed with Green functions at
Eqs. (26) and (27) to give

D3(η) =

∫ η

η0

dη′ GL(η, η
′)
{
−3
4
D2(η

′)− D̃2(η
′)
}
eη

′

=
5
42

e3η − 9
70

e2η+η0 − 3
35

e−η/2+(7/2)η0

+
2
21

e−(3/2)η+(9/2)η0 , (42)
(

D̃2 ≡ d2D2

dη2
+

1
2
dD2

dη
− 3

4
D2

)

E3(η)

∫ η

η0

dη′ GL(η, η
′)

(
−1
2
e3η

′
)

= − 1
18

e3η +
1
10

eη+2η0 − 2
45

e−(3/2)η+(9/2)η0 , (43)

F3(t) =

∫ η

η0

dη′ GT(η, η
′)
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′)
}
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=
1
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e3η − 1
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e3η0 +

3
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e−η/2+(7/2)η0 . (44)

(
D2 ≡ d2D2

dη2
+

1
2
dD2

dη

)

3 COMPARISON TO MOUTARDE ET AL. (’91)

In this section, we compare the Lagrangian PT solu-
tions obtained in previous section with those obtained in
Moutarde et al. (1991). To do this, we first set initial time
η0 (or a(t0)) to η0 → 0 (a(t0) → 1). We then sum up all the
PT solutions up to third order, and express them as those
summarized in Appendix of Moutarde et al. (1991). In 3D
case, we obtain

3Dx(q, t) =q +D1(t)

⎛

⎝
ϵx sin qx
ϵy sin qy
ϵz sin qz

⎞

⎠

+
f2(t)
2

⎛

⎝
sin qx(ϵxϵy cos qy + ϵzϵx cos qz)
sin qy(ϵyϵz cos qz + ϵxϵy cos qx)
sin qz(ϵzϵx cos qx + ϵyϵz cos qy)

⎞

⎠
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⎛

⎝
sin qx(ϵxϵ

2
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⎠

+
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ϵxϵyϵz sin qz cos qx cos qy

⎞
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Similarly, in 2D case, we have
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ϵx sin qx
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)

+
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Here, the time-dependent functions involved in these
expressions are defined similarly to those in Moutarde et al.
(1991), which are to be compared with their results (see
Appendix of their paper):
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Taking the Einstein-de Sitter limit (eη → a), we see that
the results mostly coincide with those in Moutarde et al.
(1991) except the function ω3 (in 3D case). The discrepancy
in ω3 appears at the longitudinal mode of displacement field
at the third order [see Eqs. (33), (34) and (35)], and in our
case, the function ω3 is related to the growth functions D3

and E3 [given at Eqs. (42) and (43)] through

ω3 = 2 (D3 + E3) . (52)

4 HIGHER-ORDER SOLUTIONS

4.1 Efficient computation for longitudinal and
transverse vectors

Going beyond higher order, the expressions for displacement
vectors, especially at scale-dependent part, become more
complex, and it would be extremely cumbersome to get the
analytic expressions for longitudinal and transverse modes,
consistently satisfying curl-free and divergence-free condi-
tions, respectively. We thus need to develop a more system-
atic and efficient way to derive higher-order solutions.

One way is to make use of the property of nonlinear
source terms. In particular, in our case with sine-wave initial
condition [Eq. (28)], the right-hand side of the recurrence
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The solutions presented above include several growth
functions, which are computed with Green functions at
Eqs. (26) and (27) to give
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3 COMPARISON TO MOUTARDE ET AL. (’91)

In this section, we compare the Lagrangian PT solu-
tions obtained in previous section with those obtained in
Moutarde et al. (1991). To do this, we first set initial time
η0 (or a(t0)) to η0 → 0 (a(t0) → 1). We then sum up all the
PT solutions up to third order, and express them as those
summarized in Appendix of Moutarde et al. (1991). In 3D
case, we obtain

3Dx(q, t) =q +D1(t)

⎛

⎝
ϵx sin qx
ϵy sin qy
ϵz sin qz

⎞

⎠

+
f2(t)
2

⎛

⎝
sin qx(ϵxϵy cos qy + ϵzϵx cos qz)
sin qy(ϵyϵz cos qz + ϵxϵy cos qx)
sin qz(ϵzϵx cos qx + ϵyϵz cos qy)

⎞

⎠

+ f3(t)

⎛

⎝
sin qx(ϵxϵ

2
y cos 2qy + ϵxϵ

2
z cos 2qz)

sin qy(ϵyϵ
2
z cos 2qz + ϵyϵ

2
x cos 2qx)

sin qz(ϵzϵ
2
x cos 2qx + ϵzϵ

2
y cos 2qy)

⎞

⎠

+ g3(t)

⎛

⎝
sin 2qx(ϵ

2
xϵy cos qy + ϵ2xϵz cos qz)

sin 2qy(ϵ
2
yϵz cos qz + ϵ2yϵx cos qx)

sin 2qz(ϵ
2
zϵx cos qx + ϵ2zϵy cos qy)

⎞

⎠

+
u3(t)
2

⎛

⎝
ϵx(ϵ

2
y + ϵ2z) sin qx

ϵy(ϵ
2
z + ϵ2x) sin qy

ϵz(ϵ
2
x + ϵ2y) sin qz

⎞

⎠

+ ω3(t)

⎛

⎝
ϵxϵyϵz sin qx cos qy cos qz
ϵxϵyϵz sin qy cos qz cos qx
ϵxϵyϵz sin qz cos qx cos qy

⎞

⎠ . (45)

Similarly, in 2D case, we have
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Here, the time-dependent functions involved in these
expressions are defined similarly to those in Moutarde et al.
(1991), which are to be compared with their results (see
Appendix of their paper):
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Taking the Einstein-de Sitter limit (eη → a), we see that
the results mostly coincide with those in Moutarde et al.
(1991) except the function ω3 (in 3D case). The discrepancy
in ω3 appears at the longitudinal mode of displacement field
at the third order [see Eqs. (33), (34) and (35)], and in our
case, the function ω3 is related to the growth functions D3

and E3 [given at Eqs. (42) and (43)] through

ω3 = 2 (D3 + E3) . (52)

4 HIGHER-ORDER SOLUTIONS

4.1 Efficient computation for longitudinal and
transverse vectors

Going beyond higher order, the expressions for displacement
vectors, especially at scale-dependent part, become more
complex, and it would be extremely cumbersome to get the
analytic expressions for longitudinal and transverse modes,
consistently satisfying curl-free and divergence-free condi-
tions, respectively. We thus need to develop a more system-
atic and efficient way to derive higher-order solutions.

One way is to make use of the property of nonlinear
source terms. In particular, in our case with sine-wave initial
condition [Eq. (28)], the right-hand side of the recurrence
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The solutions presented above include several growth
functions, which are computed with Green functions at
Eqs. (26) and (27) to give
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Moutarde et al. (1991). To do this, we first set initial time
η0 (or a(t0)) to η0 → 0 (a(t0) → 1). We then sum up all the
PT solutions up to third order, and express them as those
summarized in Appendix of Moutarde et al. (1991). In 3D
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Similarly, in 2D case, we have
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Here, the time-dependent functions involved in these
expressions are defined similarly to those in Moutarde et al.
(1991), which are to be compared with their results (see
Appendix of their paper):
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Taking the Einstein-de Sitter limit (eη → a), we see that
the results mostly coincide with those in Moutarde et al.
(1991) except the function ω3 (in 3D case). The discrepancy
in ω3 appears at the longitudinal mode of displacement field
at the third order [see Eqs. (33), (34) and (35)], and in our
case, the function ω3 is related to the growth functions D3

and E3 [given at Eqs. (42) and (43)] through

ω3 = 2 (D3 + E3) . (52)

4 HIGHER-ORDER SOLUTIONS

4.1 Efficient computation for longitudinal and
transverse vectors

Going beyond higher order, the expressions for displacement
vectors, especially at scale-dependent part, become more
complex, and it would be extremely cumbersome to get the
analytic expressions for longitudinal and transverse modes,
consistently satisfying curl-free and divergence-free condi-
tions, respectively. We thus need to develop a more system-
atic and efficient way to derive higher-order solutions.

One way is to make use of the property of nonlinear
source terms. In particular, in our case with sine-wave initial
condition [Eq. (28)], the right-hand side of the recurrence
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The solutions presented above include several growth
functions, which are computed with Green functions at
Eqs. (26) and (27) to give
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tions obtained in previous section with those obtained in
Moutarde et al. (1991). To do this, we first set initial time
η0 (or a(t0)) to η0 → 0 (a(t0) → 1). We then sum up all the
PT solutions up to third order, and express them as those
summarized in Appendix of Moutarde et al. (1991). In 3D
case, we obtain
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Here, the time-dependent functions involved in these
expressions are defined similarly to those in Moutarde et al.
(1991), which are to be compared with their results (see
Appendix of their paper):
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Taking the Einstein-de Sitter limit (eη → a), we see that
the results mostly coincide with those in Moutarde et al.
(1991) except the function ω3 (in 3D case). The discrepancy
in ω3 appears at the longitudinal mode of displacement field
at the third order [see Eqs. (33), (34) and (35)], and in our
case, the function ω3 is related to the growth functions D3

and E3 [given at Eqs. (42) and (43)] through

ω3 = 2 (D3 + E3) . (52)

4 HIGHER-ORDER SOLUTIONS

4.1 Efficient computation for longitudinal and
transverse vectors

Going beyond higher order, the expressions for displacement
vectors, especially at scale-dependent part, become more
complex, and it would be extremely cumbersome to get the
analytic expressions for longitudinal and transverse modes,
consistently satisfying curl-free and divergence-free condi-
tions, respectively. We thus need to develop a more system-
atic and efficient way to derive higher-order solutions.

One way is to make use of the property of nonlinear
source terms. In particular, in our case with sine-wave initial
condition [Eq. (28)], the right-hand side of the recurrence
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The solutions presented above include several growth
functions, which are computed with Green functions at
Eqs. (26) and (27) to give
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2
xϵy cos qy + ϵ2xϵz cos qz)

sin 2qy(ϵ
2
yϵz cos qz + ϵ2yϵx cos qx)

sin 2qz(ϵ
2
zϵx cos qx + ϵ2zϵy cos qy)

⎞

⎠

+
u3(t)
2

⎛

⎝
ϵx(ϵ

2
y + ϵ2z) sin qx

ϵy(ϵ
2
z + ϵ2x) sin qy

ϵz(ϵ
2
x + ϵ2y) sin qz

⎞

⎠

+ ω3(t)

⎛

⎝
ϵxϵyϵz sin qx cos qy cos qz
ϵxϵyϵz sin qy cos qz cos qx
ϵxϵyϵz sin qz cos qx cos qy

⎞

⎠ . (45)

Similarly, in 2D case, we have

2Dx(q, t) =q +D1(t)

(
ϵx sin qx
ϵy sin qy

)

+
f2(t)
2

(
ϵxϵy sin qx cos qy
ϵxϵy sin qy cos qx

)

+ f3(t)

(
ϵxϵ

2
y sin qx cos 2qy

ϵyϵ
2
x sin qy cos 2qx

)

+ g3(t)

(
ϵ2xϵy sin 2qx cos qy
ϵ2yϵx sin 2qy cos qx

)

+
u3(t)
2

(
ϵxϵ

2
y sin qx

ϵyϵ
2
x sin qy

)
. (46)

Here, the time-dependent functions involved in these
expressions are defined similarly to those in Moutarde et al.
(1991), which are to be compared with their results (see
Appendix of their paper):

f2(t) =
3
14

e2η +
3
10

eη − 3
35

e−(3/2)η, (47)

f3(t) = − 1
420

e3η − 9
700

e2η +
1
10

− 33
350

e−η/2 +
1

105
e−(3/2)η,

(48)

g3(t) =
13
420

e3η − 9
350

e2η − 1
20

+
9

350
e−η/2 +

2
105

e−(3/2)η,

(49)

u3(t) =
5
42

e3η − 9
70

e2η − 3
35

e−η/2 +
2
21

e−(3/2)η, (50)

ω3(t) =
8
63

e3η − 9
35

e2η +
1
5
eη − 6

35
e−η/2 +

32
315

e−(3/2)η.

(51)

Taking the Einstein-de Sitter limit (eη → a), we see that
the results mostly coincide with those in Moutarde et al.
(1991) except the function ω3 (in 3D case). The discrepancy
in ω3 appears at the longitudinal mode of displacement field
at the third order [see Eqs. (33), (34) and (35)], and in our
case, the function ω3 is related to the growth functions D3

and E3 [given at Eqs. (42) and (43)] through

ω3 = 2 (D3 + E3) . (52)

4 HIGHER-ORDER SOLUTIONS

4.1 Efficient computation for longitudinal and
transverse vectors

Going beyond higher order, the expressions for displacement
vectors, especially at scale-dependent part, become more
complex, and it would be extremely cumbersome to get the
analytic expressions for longitudinal and transverse modes,
consistently satisfying curl-free and divergence-free condi-
tions, respectively. We thus need to develop a more system-
atic and efficient way to derive higher-order solutions.

One way is to make use of the property of nonlinear
source terms. In particular, in our case with sine-wave initial
condition [Eq. (28)], the right-hand side of the recurrence
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:

3D✓ ✏
(
T̂ − 4πG ρm

)
Ψk,k

= −ϵijkϵipq Ψj,p

(
T̂ − 2πG ρm

)
ψk,q

− 1
2
ϵijkϵpqr Ψi,pΨj,q

(
T̂ − 4πG

3
ρm

)
Ψk,r,

(16)

ϵijk T̂ Ψj,k = −ϵijk Ψp,j T̂ Ψp,k. (17)✒ ✑
2D✓ ✏

(
T̂ − 4πG ρm

)
Ψk,k

= −ϵilϵjk Ψl,k

(
T̂ − 2πG ρm

)
ψi,j (18)

ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:

3D✓ ✏
( ∂2

∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵijkϵipq Ψ
(m1)
j,p

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

k,q

− 1
2

∑

m1+m2+m3=n

ϵijkϵpqr Ψ
(m1)
i,p Ψ(m2)

j,q

×
( ∂2

∂η2
+

1
2
∂
∂η

− 1
2

)
Ψ(m3)

k,r , (22)

ϵijk
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

j,k

= −
∑

m1+m2=n

ϵijk Ψ
(m1)
p,j

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

p,k . (23)

✒ ✑
2D✓ ✏

( ∂2

∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵilϵjk Ψ
(m1)
l,k

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

i,j

(24)

ϵpq
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

q,p

= −
∑

m1+m2=n

ϵpq Ψ
(m1)
k,q

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

k,p . (25)

✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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is, the displacement field is always written like

⎛

⎝
A(qx, qy, qz : ϵx, ϵy, ϵz)
A(qz, qx, qy : ϵz, ϵx, ϵy)
A(qy, qz, qx : ϵy, ϵz, ϵx).

⎞

⎠ . (65)

Then, the fourth-order results in 3D case are

3D✓ ✏
Ψ(4L)(q, t) = D4(t)d

(4)(q) + E4(t) e
(4)(q)

+ F4(t)f
(4)(q) +G4(t) g

(4)(g)

+H4(t)h
(4)(g); (66)

d(4)x =
1
2
ϵx sin qx

(
2ϵx cos qx

(
2ϵy cos qyϵz cos qz

+ ϵ2y + ϵ2z
)
+ ϵyϵz

(
ϵy(cos(2qy) + 3) cos qz

+ ϵz cos qy(cos(2qz) + 3)
))

(67)

e(4)x =
1

100
ϵx sin qx

(
20ϵx cos qx

(
10ϵy cos qyϵz cos qz

+ ϵ2y + ϵ2y cos(2qy) + ϵ2z + ϵ2z cos(2qz)
)

+ ϵz cos(qz)
(
29ϵ2x + 3ϵ2x cos(2qx) + 150ϵ2y

+ 50ϵ2y cos(2qy) + 27ϵ2z + ϵ2z cos(2qz)
)

+ ϵy cos qy
(
29ϵ2x + 3ϵ2x cos(2qx) + 27ϵ2y

+ ϵ2y cos(2qy) + 150ϵ2z + 50ϵ2z cos(2qz)
))

(68)

f (4)
x =

1
6
ϵx sin qxϵyϵz

(
2 cos qy

(
4ϵx cos qx cos qz

+ ϵz(cos(2qz) + 3)
)
+ 2ϵy cos

2 qy cos qz

+ ϵy(cos(2qy) + 5) cos qz
)

(69)

g(4)x = − 1
50
ϵx sin qx

(
−5ϵx cos qx

(
ϵ2y cos(2qy)

+ ϵ2z cos(2qz) + ϵ2y + ϵ2z
)
+ ϵy cos qy

×
(
3ϵ2x cos(2qx) + ϵ2y cos(2qy) + 4ϵ2x + 2ϵ2y

)

+ ϵz cos qz
(
3ϵ2x cos(2qx) + ϵ2z cos(2qz)

+ 4ϵ2x + 2ϵ2z
))

(70)

h(4)
x =

1
6
ϵxϵyϵz sin qx

(
2 cos qy

(
4ϵx cos qx cos qz

+ ϵz
(
cos(2qz) + 3

))
+ 2ϵy cos

2 qy cos qz

+ ϵy
(
cos(2qy) + 5

)
cos qz

)
(71)

Ψ(4T )(q, t) = I4(t) i
(4)(q) + J4(t) j

(4)(q)

+K4(t)k
(4)(q); (72)

i(4)x =
1

150
ϵx sin qx

(
ϵy cos qy

(
100ϵxϵz cos qx cos qz

+ 3ϵ2x cos(2qx)− 9ϵ2y cos(2qy)− 50ϵ2z cos(2qz)

+ 9ϵ2x − 3ϵ2y
)
+ ϵz cos qz

(
3ϵ2x cos(2qx)− 50ϵ2y

× cos(2qy)− 9ϵ2z cos(2qz) + 9ϵ2x − 3ϵ2z
))

(73)

j(4)x =
1
3
ϵxϵyϵz sin qx

(
2ϵx cos qx cos qy cos qz

− ϵy cos(2qy) cos qz − ϵz cos qy cos(2qz)
)

(74)

k(4)
x =

1
100

ϵx sin qx
(
ϵz cos qz

(
ϵ2x cos(2qx)

− 3ϵ2z cos(2qz) + 3ϵ2x − ϵ2z
)
− ϵy cos qy

×
(
−ϵ2x cos(2qx) + 3ϵ2y cos(2qy)− 3ϵ2x + ϵ2y

))

(75)✒ ✑
We can check that setting ϵz to zero in the above ex-

pressions leads to the fourth-order solution in 2D case.MNRAS 000, 1–10 (2017)
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(70)

h(4)
x =

1
6
ϵxϵyϵz sin qx

(
2 cos qy

(
4ϵx cos qx cos qz

+ ϵz
(
cos(2qz) + 3

))
+ 2ϵy cos

2 qy cos qz

+ ϵy
(
cos(2qy) + 5

)
cos qz

)
(71)

Ψ(4T )(q, t) = I4(t) i
(4)(q) + J4(t) j

(4)(q)

+K4(t)k
(4)(q); (72)

i(4)x =
1

150
ϵx sin qx

(
ϵy cos qy

(
100ϵxϵz cos qx cos qz

+ 3ϵ2x cos(2qx)− 9ϵ2y cos(2qy)− 50ϵ2z cos(2qz)

+ 9ϵ2x − 3ϵ2y
)
+ ϵz cos qz

(
3ϵ2x cos(2qx)− 50ϵ2y

× cos(2qy)− 9ϵ2z cos(2qz) + 9ϵ2x − 3ϵ2z
))

(73)

j(4)x =
1
3
ϵxϵyϵz sin qx

(
2ϵx cos qx cos qy cos qz

− ϵy cos(2qy) cos qz − ϵz cos qy cos(2qz)
)

(74)

k(4)
x =

1
100

ϵx sin qx
(
ϵz cos qz

(
ϵ2x cos(2qx)

− 3ϵ2z cos(2qz) + 3ϵ2x − ϵ2z
)
− ϵy cos qy

×
(
−ϵ2x cos(2qx) + 3ϵ2y cos(2qy)− 3ϵ2x + ϵ2y

))

(75)✒ ✑
We can check that setting ϵz to zero in the above ex-

pressions leads to the fourth-order solution in 2D case.MNRAS 000, 1–10 (2017)

6 Authors

is, the displacement field is always written like

⎛

⎝
A(qx, qy, qz : ϵx, ϵy, ϵz)
A(qz, qx, qy : ϵz, ϵx, ϵy)
A(qy, qz, qx : ϵy, ϵz, ϵx).

⎞

⎠ . (65)

Then, the fourth-order results in 3D case are

3D✓ ✏
Ψ(4L)(q, t) = D4(t)d

(4)(q) + E4(t) e
(4)(q)

+ F4(t)f
(4)(q) +G4(t) g

(4)(g)

+H4(t)h
(4)(g); (66)

d(4)x =
1
2
ϵx sin qx

(
2ϵx cos qx

(
2ϵy cos qyϵz cos qz

+ ϵ2y + ϵ2z
)
+ ϵyϵz

(
ϵy(cos(2qy) + 3) cos qz

+ ϵz cos qy(cos(2qz) + 3)
))

(67)

e(4)x =
1

100
ϵx sin qx

(
20ϵx cos qx

(
10ϵy cos qyϵz cos qz

+ ϵ2y + ϵ2y cos(2qy) + ϵ2z + ϵ2z cos(2qz)
)

+ ϵz cos(qz)
(
29ϵ2x + 3ϵ2x cos(2qx) + 150ϵ2y

+ 50ϵ2y cos(2qy) + 27ϵ2z + ϵ2z cos(2qz)
)

+ ϵy cos qy
(
29ϵ2x + 3ϵ2x cos(2qx) + 27ϵ2y

+ ϵ2y cos(2qy) + 150ϵ2z + 50ϵ2z cos(2qz)
))

(68)

f (4)
x =

1
6
ϵx sin qxϵyϵz

(
2 cos qy

(
4ϵx cos qx cos qz

+ ϵz(cos(2qz) + 3)
)
+ 2ϵy cos

2 qy cos qz

+ ϵy(cos(2qy) + 5) cos qz
)

(69)

g(4)x = − 1
50
ϵx sin qx

(
−5ϵx cos qx

(
ϵ2y cos(2qy)

+ ϵ2z cos(2qz) + ϵ2y + ϵ2z
)
+ ϵy cos qy

×
(
3ϵ2x cos(2qx) + ϵ2y cos(2qy) + 4ϵ2x + 2ϵ2y

)

+ ϵz cos qz
(
3ϵ2x cos(2qx) + ϵ2z cos(2qz)

+ 4ϵ2x + 2ϵ2z
))

(70)

h(4)
x =

1
6
ϵxϵyϵz sin qx

(
2 cos qy

(
4ϵx cos qx cos qz

+ ϵz
(
cos(2qz) + 3

))
+ 2ϵy cos

2 qy cos qz

+ ϵy
(
cos(2qy) + 5

)
cos qz

)
(71)

Ψ(4T )(q, t) = I4(t) i
(4)(q) + J4(t) j

(4)(q)

+K4(t)k
(4)(q); (72)

i(4)x =
1

150
ϵx sin qx

(
ϵy cos qy

(
100ϵxϵz cos qx cos qz

+ 3ϵ2x cos(2qx)− 9ϵ2y cos(2qy)− 50ϵ2z cos(2qz)

+ 9ϵ2x − 3ϵ2y
)
+ ϵz cos qz

(
3ϵ2x cos(2qx)− 50ϵ2y

× cos(2qy)− 9ϵ2z cos(2qz) + 9ϵ2x − 3ϵ2z
))

(73)

j(4)x =
1
3
ϵxϵyϵz sin qx

(
2ϵx cos qx cos qy cos qz

− ϵy cos(2qy) cos qz − ϵz cos qy cos(2qz)
)

(74)

k(4)
x =

1
100

ϵx sin qx
(
ϵz cos qz

(
ϵ2x cos(2qx)

− 3ϵ2z cos(2qz) + 3ϵ2x − ϵ2z
)
− ϵy cos qy

×
(
−ϵ2x cos(2qx) + 3ϵ2y cos(2qy)− 3ϵ2x + ϵ2y

))

(75)✒ ✑
We can check that setting ϵz to zero in the above ex-

pressions leads to the fourth-order solution in 2D case.MNRAS 000, 1–10 (2017)

6 Authors

is, the displacement field is always written like

⎛

⎝
A(qx, qy, qz : ϵx, ϵy, ϵz)
A(qz, qx, qy : ϵz, ϵx, ϵy)
A(qy, qz, qx : ϵy, ϵz, ϵx).

⎞

⎠ . (65)

Then, the fourth-order results in 3D case are

3D✓ ✏
Ψ(4L)(q, t) = D4(t)d

(4)(q) + E4(t) e
(4)(q)

+ F4(t)f
(4)(q) +G4(t) g

(4)(g)

+H4(t)h
(4)(g); (66)

d(4)x =
1
2
ϵx sin qx

(
2ϵx cos qx

(
2ϵy cos qyϵz cos qz

+ ϵ2y + ϵ2z
)
+ ϵyϵz

(
ϵy(cos(2qy) + 3) cos qz

+ ϵz cos qy(cos(2qz) + 3)
))

(67)

e(4)x =
1

100
ϵx sin qx

(
20ϵx cos qx

(
10ϵy cos qyϵz cos qz

+ ϵ2y + ϵ2y cos(2qy) + ϵ2z + ϵ2z cos(2qz)
)

+ ϵz cos(qz)
(
29ϵ2x + 3ϵ2x cos(2qx) + 150ϵ2y

+ 50ϵ2y cos(2qy) + 27ϵ2z + ϵ2z cos(2qz)
)

+ ϵy cos qy
(
29ϵ2x + 3ϵ2x cos(2qx) + 27ϵ2y

+ ϵ2y cos(2qy) + 150ϵ2z + 50ϵ2z cos(2qz)
))

(68)

f (4)
x =

1
6
ϵx sin qxϵyϵz

(
2 cos qy

(
4ϵx cos qx cos qz

+ ϵz(cos(2qz) + 3)
)
+ 2ϵy cos

2 qy cos qz

+ ϵy(cos(2qy) + 5) cos qz
)

(69)

g(4)x = − 1
50
ϵx sin qx

(
−5ϵx cos qx

(
ϵ2y cos(2qy)

+ ϵ2z cos(2qz) + ϵ2y + ϵ2z
)
+ ϵy cos qy

×
(
3ϵ2x cos(2qx) + ϵ2y cos(2qy) + 4ϵ2x + 2ϵ2y

)

+ ϵz cos qz
(
3ϵ2x cos(2qx) + ϵ2z cos(2qz)

+ 4ϵ2x + 2ϵ2z
))

(70)

h(4)
x =

1
6
ϵxϵyϵz sin qx

(
2 cos qy

(
4ϵx cos qx cos qz

+ ϵz
(
cos(2qz) + 3

))
+ 2ϵy cos

2 qy cos qz

+ ϵy
(
cos(2qy) + 5

)
cos qz

)
(71)

Ψ(4T )(q, t) = I4(t) i
(4)(q) + J4(t) j

(4)(q)

+K4(t)k
(4)(q); (72)

i(4)x =
1

150
ϵx sin qx

(
ϵy cos qy

(
100ϵxϵz cos qx cos qz

+ 3ϵ2x cos(2qx)− 9ϵ2y cos(2qy)− 50ϵ2z cos(2qz)

+ 9ϵ2x − 3ϵ2y
)
+ ϵz cos qz

(
3ϵ2x cos(2qx)− 50ϵ2y

× cos(2qy)− 9ϵ2z cos(2qz) + 9ϵ2x − 3ϵ2z
))

(73)

j(4)x =
1
3
ϵxϵyϵz sin qx

(
2ϵx cos qx cos qy cos qz

− ϵy cos(2qy) cos qz − ϵz cos qy cos(2qz)
)

(74)

k(4)
x =

1
100

ϵx sin qx
(
ϵz cos qz

(
ϵ2x cos(2qx)

− 3ϵ2z cos(2qz) + 3ϵ2x − ϵ2z
)
− ϵy cos qy

×
(
−ϵ2x cos(2qx) + 3ϵ2y cos(2qy)− 3ϵ2x + ϵ2y

))

(75)✒ ✑
We can check that setting ϵz to zero in the above ex-

pressions leads to the fourth-order solution in 2D case.MNRAS 000, 1–10 (2017)

6 Authors

is, the displacement field is always written like

⎛

⎝
A(qx, qy, qz : ϵx, ϵy, ϵz)
A(qz, qx, qy : ϵz, ϵx, ϵy)
A(qy, qz, qx : ϵy, ϵz, ϵx).

⎞

⎠ . (65)

Then, the fourth-order results in 3D case are

3D✓ ✏
Ψ(4L)(q, t) = D4(t)d

(4)(q) + E4(t) e
(4)(q)

+ F4(t)f
(4)(q) +G4(t) g

(4)(g)

+H4(t)h
(4)(g); (66)

d(4)x =
1
2
ϵx sin qx

(
2ϵx cos qx

(
2ϵy cos qyϵz cos qz

+ ϵ2y + ϵ2z
)
+ ϵyϵz

(
ϵy(cos(2qy) + 3) cos qz

+ ϵz cos qy(cos(2qz) + 3)
))

(67)

e(4)x =
1

100
ϵx sin qx

(
20ϵx cos qx

(
10ϵy cos qyϵz cos qz

+ ϵ2y + ϵ2y cos(2qy) + ϵ2z + ϵ2z cos(2qz)
)

+ ϵz cos(qz)
(
29ϵ2x + 3ϵ2x cos(2qx) + 150ϵ2y

+ 50ϵ2y cos(2qy) + 27ϵ2z + ϵ2z cos(2qz)
)

+ ϵy cos qy
(
29ϵ2x + 3ϵ2x cos(2qx) + 27ϵ2y

+ ϵ2y cos(2qy) + 150ϵ2z + 50ϵ2z cos(2qz)
))

(68)

f (4)
x =

1
6
ϵx sin qxϵyϵz

(
2 cos qy

(
4ϵx cos qx cos qz

+ ϵz(cos(2qz) + 3)
)
+ 2ϵy cos

2 qy cos qz

+ ϵy(cos(2qy) + 5) cos qz
)

(69)

g(4)x = − 1
50
ϵx sin qx

(
−5ϵx cos qx

(
ϵ2y cos(2qy)

+ ϵ2z cos(2qz) + ϵ2y + ϵ2z
)
+ ϵy cos qy

×
(
3ϵ2x cos(2qx) + ϵ2y cos(2qy) + 4ϵ2x + 2ϵ2y

)

+ ϵz cos qz
(
3ϵ2x cos(2qx) + ϵ2z cos(2qz)

+ 4ϵ2x + 2ϵ2z
))

(70)

h(4)
x =

1
6
ϵxϵyϵz sin qx

(
2 cos qy

(
4ϵx cos qx cos qz

+ ϵz
(
cos(2qz) + 3

))
+ 2ϵy cos

2 qy cos qz

+ ϵy
(
cos(2qy) + 5

)
cos qz

)
(71)

Ψ(4T )(q, t) = I4(t) i
(4)(q) + J4(t) j

(4)(q)

+K4(t)k
(4)(q); (72)

i(4)x =
1

150
ϵx sin qx

(
ϵy cos qy

(
100ϵxϵz cos qx cos qz

+ 3ϵ2x cos(2qx)− 9ϵ2y cos(2qy)− 50ϵ2z cos(2qz)

+ 9ϵ2x − 3ϵ2y
)
+ ϵz cos qz

(
3ϵ2x cos(2qx)− 50ϵ2y

× cos(2qy)− 9ϵ2z cos(2qz) + 9ϵ2x − 3ϵ2z
))

(73)

j(4)x =
1
3
ϵxϵyϵz sin qx

(
2ϵx cos qx cos qy cos qz

− ϵy cos(2qy) cos qz − ϵz cos qy cos(2qz)
)

(74)

k(4)
x =

1
100

ϵx sin qx
(
ϵz cos qz

(
ϵ2x cos(2qx)

− 3ϵ2z cos(2qz) + 3ϵ2x − ϵ2z
)
− ϵy cos qy

×
(
−ϵ2x cos(2qx) + 3ϵ2y cos(2qy)− 3ϵ2x + ϵ2y

))

(75)✒ ✑
We can check that setting ϵz to zero in the above ex-

pressions leads to the fourth-order solution in 2D case.MNRAS 000, 1–10 (2017)

Longitudinal

50



4th-order LPT (x-component)

6 Authors

is, the displacement field is always written like

⎛

⎝
A(qx, qy, qz : ϵx, ϵy, ϵz)
A(qz, qx, qy : ϵz, ϵx, ϵy)
A(qy, qz, qx : ϵy, ϵz, ϵx).

⎞

⎠ . (65)

Then, the fourth-order results in 3D case are

3D✓ ✏
Ψ(4L)(q, t) = D4(t)d

(4)(q) + E4(t) e
(4)(q)

+ F4(t)f
(4)(q) +G4(t) g

(4)(g)

+H4(t)h
(4)(g); (66)

d(4)x =
1
2
ϵx sin qx

(
2ϵx cos qx

(
2ϵy cos qyϵz cos qz

+ ϵ2y + ϵ2z
)
+ ϵyϵz

(
ϵy(cos(2qy) + 3) cos qz

+ ϵz cos qy(cos(2qz) + 3)
))

(67)

e(4)x =
1

100
ϵx sin qx

(
20ϵx cos qx

(
10ϵy cos qyϵz cos qz

+ ϵ2y + ϵ2y cos(2qy) + ϵ2z + ϵ2z cos(2qz)
)

+ ϵz cos(qz)
(
29ϵ2x + 3ϵ2x cos(2qx) + 150ϵ2y

+ 50ϵ2y cos(2qy) + 27ϵ2z + ϵ2z cos(2qz)
)

+ ϵy cos qy
(
29ϵ2x + 3ϵ2x cos(2qx) + 27ϵ2y

+ ϵ2y cos(2qy) + 150ϵ2z + 50ϵ2z cos(2qz)
))

(68)

f (4)
x =

1
6
ϵx sin qxϵyϵz

(
2 cos qy

(
4ϵx cos qx cos qz

+ ϵz(cos(2qz) + 3)
)
+ 2ϵy cos

2 qy cos qz

+ ϵy(cos(2qy) + 5) cos qz
)

(69)

g(4)x = − 1
50
ϵx sin qx

(
−5ϵx cos qx

(
ϵ2y cos(2qy)

+ ϵ2z cos(2qz) + ϵ2y + ϵ2z
)
+ ϵy cos qy

×
(
3ϵ2x cos(2qx) + ϵ2y cos(2qy) + 4ϵ2x + 2ϵ2y

)

+ ϵz cos qz
(
3ϵ2x cos(2qx) + ϵ2z cos(2qz)

+ 4ϵ2x + 2ϵ2z
))

(70)

h(4)
x =

1
6
ϵxϵyϵz sin qx

(
2 cos qy

(
4ϵx cos qx cos qz

+ ϵz
(
cos(2qz) + 3

))
+ 2ϵy cos

2 qy cos qz

+ ϵy
(
cos(2qy) + 5

)
cos qz

)
(71)

Ψ(4T )(q, t) = I4(t) i
(4)(q) + J4(t) j

(4)(q)

+K4(t)k
(4)(q); (72)

i(4)x =
1

150
ϵx sin qx

(
ϵy cos qy

(
100ϵxϵz cos qx cos qz

+ 3ϵ2x cos(2qx)− 9ϵ2y cos(2qy)− 50ϵ2z cos(2qz)

+ 9ϵ2x − 3ϵ2y
)
+ ϵz cos qz

(
3ϵ2x cos(2qx)− 50ϵ2y

× cos(2qy)− 9ϵ2z cos(2qz) + 9ϵ2x − 3ϵ2z
))

(73)

j(4)x =
1
3
ϵxϵyϵz sin qx

(
2ϵx cos qx cos qy cos qz

− ϵy cos(2qy) cos qz − ϵz cos qy cos(2qz)
)

(74)

k(4)
x =

1
100

ϵx sin qx
(
ϵz cos qz

(
ϵ2x cos(2qx)

− 3ϵ2z cos(2qz) + 3ϵ2x − ϵ2z
)
− ϵy cos qy

×
(
−ϵ2x cos(2qx) + 3ϵ2y cos(2qy)− 3ϵ2x + ϵ2y

))

(75)✒ ✑
We can check that setting ϵz to zero in the above ex-

pressions leads to the fourth-order solution in 2D case.MNRAS 000, 1–10 (2017)

6 Authors

is, the displacement field is always written like

⎛

⎝
A(qx, qy, qz : ϵx, ϵy, ϵz)
A(qz, qx, qy : ϵz, ϵx, ϵy)
A(qy, qz, qx : ϵy, ϵz, ϵx).

⎞

⎠ . (65)

Then, the fourth-order results in 3D case are

3D✓ ✏
Ψ(4L)(q, t) = D4(t)d

(4)(q) + E4(t) e
(4)(q)

+ F4(t)f
(4)(q) +G4(t) g

(4)(g)

+H4(t)h
(4)(g); (66)

d(4)x =
1
2
ϵx sin qx

(
2ϵx cos qx

(
2ϵy cos qyϵz cos qz

+ ϵ2y + ϵ2z
)
+ ϵyϵz

(
ϵy(cos(2qy) + 3) cos qz

+ ϵz cos qy(cos(2qz) + 3)
))

(67)

e(4)x =
1

100
ϵx sin qx

(
20ϵx cos qx

(
10ϵy cos qyϵz cos qz

+ ϵ2y + ϵ2y cos(2qy) + ϵ2z + ϵ2z cos(2qz)
)

+ ϵz cos(qz)
(
29ϵ2x + 3ϵ2x cos(2qx) + 150ϵ2y

+ 50ϵ2y cos(2qy) + 27ϵ2z + ϵ2z cos(2qz)
)

+ ϵy cos qy
(
29ϵ2x + 3ϵ2x cos(2qx) + 27ϵ2y

+ ϵ2y cos(2qy) + 150ϵ2z + 50ϵ2z cos(2qz)
))

(68)

f (4)
x =

1
6
ϵx sin qxϵyϵz

(
2 cos qy

(
4ϵx cos qx cos qz

+ ϵz(cos(2qz) + 3)
)
+ 2ϵy cos

2 qy cos qz

+ ϵy(cos(2qy) + 5) cos qz
)

(69)

g(4)x = − 1
50
ϵx sin qx

(
−5ϵx cos qx

(
ϵ2y cos(2qy)

+ ϵ2z cos(2qz) + ϵ2y + ϵ2z
)
+ ϵy cos qy

×
(
3ϵ2x cos(2qx) + ϵ2y cos(2qy) + 4ϵ2x + 2ϵ2y

)

+ ϵz cos qz
(
3ϵ2x cos(2qx) + ϵ2z cos(2qz)

+ 4ϵ2x + 2ϵ2z
))

(70)

h(4)
x =

1
6
ϵxϵyϵz sin qx

(
2 cos qy

(
4ϵx cos qx cos qz

+ ϵz
(
cos(2qz) + 3

))
+ 2ϵy cos

2 qy cos qz

+ ϵy
(
cos(2qy) + 5

)
cos qz

)
(71)

Ψ(4T )(q, t) = I4(t) i
(4)(q) + J4(t) j

(4)(q)

+K4(t)k
(4)(q); (72)

i(4)x =
1

150
ϵx sin qx

(
ϵy cos qy

(
100ϵxϵz cos qx cos qz

+ 3ϵ2x cos(2qx)− 9ϵ2y cos(2qy)− 50ϵ2z cos(2qz)

+ 9ϵ2x − 3ϵ2y
)
+ ϵz cos qz

(
3ϵ2x cos(2qx)− 50ϵ2y

× cos(2qy)− 9ϵ2z cos(2qz) + 9ϵ2x − 3ϵ2z
))

(73)

j(4)x =
1
3
ϵxϵyϵz sin qx

(
2ϵx cos qx cos qy cos qz

− ϵy cos(2qy) cos qz − ϵz cos qy cos(2qz)
)

(74)

k(4)
x =

1
100

ϵx sin qx
(
ϵz cos qz

(
ϵ2x cos(2qx)

− 3ϵ2z cos(2qz) + 3ϵ2x − ϵ2z
)
− ϵy cos qy

×
(
−ϵ2x cos(2qx) + 3ϵ2y cos(2qy)− 3ϵ2x + ϵ2y

))

(75)✒ ✑
We can check that setting ϵz to zero in the above ex-
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Finally, the time-dependent growth functions which ap-
pear in both 2D and 3D are given below:

D4(η) =

∫ η

η0

dη′ GL(η, η
′)

{
−D̃2(η

′)
}

D2(η
′)

= − 51
4312

e4η +
1
28

e3η+η0 − 27
1400

e2η+2η0

− 3
40

eη+3η0 +
9
98

eη/2+(7/2)η0 − 9
350

e−η/2+(9/2)η0

+
2

385
e−(3/2)η+(11/2)η0 − 9

9800
e−3η+7η0 (76)

(
D̃2 ≡ d2D2

dη2
+

1
2
dD2

dη
− 3

4
D2

)

E4(η) =

∫ η

η0

dη′ GL(η, η
′)

{
−D3(η

′) eη
′}

= − 5
66

e4η +
1
14

e3η+η0 +
2
21

e−η/2+(9/2)η0

− 1
11

e−(3/2)η+(11/2)η0 (77)
(

D3 ≡ d2D3

dη2
+

1
2
dD3

dη

)

F4(η) =

∫ η

η0

dη′ GL(η, η
′)

{
−E3(η

′) eη
′}

=
7

198
e4η − 3

70
e2η+2η0 − 2

45
e−η/2+(9/2)η0

+
4
77

e−(3/2)η+(11/2)η0 (78)
(

E3 ≡ d2E3

dη2
+

1
2
dE3

dη

)

G4(η) =

∫ η

η0

dη′ GL(η, η
′)

{
−F3(η

′) eη
′}

= − 1
22

e4η +
1
10

eη+3η0 − 3
55

e−(3/2)η+(11/2)η0 (79)
(

F3 ≡ d2F3

dη2
+

1
2
dF3

dη

)

H4(η) =

∫ η

η0

dη′ GT(η, η
′)

{
−1
2
D2(η

′)

}
e2η

′

=
13
308

e4η − 1
20

e3η+η0 +
1
10

eη+3η0

− 9
70

eη/2+(7/2)η0 +
2
55

e−(3/2)η+(11/2)η0 (80)
(

D2 ≡ d2D2

dη2
+

1
2
dD2

dη
+

3
2
D2

)

I4(η) =

∫ η

η0

dη′ GT(η, η
′)

{
−D3(η

′)
}
eη

′

= − 5
84

e4η +
3
70

e3η+η0 − 9
35

e(1/2)η+(7/2)η0

+
3
4
e4η0 − 10

21
e−η/2+(9/2)η0 (81)

(
D3 ≡ d2D3

dη2
+

1
2
dD3

dη
− 3

2
D3

)

J4(η) =

∫ η

η0

dη′ GT(η, η
′)

{
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4.3 Fifth order

At fifth order, the resultant expressions become lengthy,
and we present below only the 2D results in x-component.
The 3D results will be separately given in Mathematica file.
Note that similar to the 3D case shown in Eq. (65), the y-
component of the 2D results can be reconstructed from a
cyclic permutation of the x-component.
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Ẽ3 ≡ d2E3

dη2
+

1
2
dE3

dη
− 3

2
E3

)

K4(η) =

∫ η

η0

dη′ GT(η, η
′)

{
−F 3(η

′)
}
eη

′

= − 1
28

e4η − 1
2
eη+3η0 +

9
7
e(1/2)η+(7/2)η0

− 3
4
e4η0 (83)
(

F 3 ≡ d2F3

dη2
+

1
2
dF3

dη
− 3

2
F3

)

4.3 Fifth order

At fifth order, the resultant expressions become lengthy,
and we present below only the 2D results in x-component.
The 3D results will be separately given in Mathematica file.
Note that similar to the 3D case shown in Eq. (65), the y-
component of the 2D results can be reconstructed from a
cyclic permutation of the x-component.

MNRAS 000, 1–10 (2017)

Pre-collapse phase of halo formation 7

Finally, the time-dependent growth functions which ap-
pear in both 2D and 3D are given below:

D4(η) =

∫ η

η0

dη′ GL(η, η
′)

{
−D̃2(η

′)
}

D2(η
′)

= − 51
4312

e4η +
1
28

e3η+η0 − 27
1400

e2η+2η0

− 3
40

eη+3η0 +
9
98

eη/2+(7/2)η0 − 9
350

e−η/2+(9/2)η0

+
2

385
e−(3/2)η+(11/2)η0 − 9

9800
e−3η+7η0 (76)

(
D̃2 ≡ d2D2

dη2
+

1
2
dD2

dη
− 3

4
D2

)

E4(η) =

∫ η

η0

dη′ GL(η, η
′)

{
−D3(η

′) eη
′}

= − 5
66

e4η +
1
14

e3η+η0 +
2
21

e−η/2+(9/2)η0

− 1
11

e−(3/2)η+(11/2)η0 (77)
(

D3 ≡ d2D3

dη2
+

1
2
dD3

dη

)

F4(η) =

∫ η

η0

dη′ GL(η, η
′)

{
−E3(η

′) eη
′}

=
7

198
e4η − 3

70
e2η+2η0 − 2

45
e−η/2+(9/2)η0

+
4
77

e−(3/2)η+(11/2)η0 (78)
(

E3 ≡ d2E3

dη2
+

1
2
dE3

dη

)

G4(η) =

∫ η

η0

dη′ GL(η, η
′)

{
−F3(η

′) eη
′}

= − 1
22

e4η +
1
10

eη+3η0 − 3
55

e−(3/2)η+(11/2)η0 (79)
(

F3 ≡ d2F3

dη2
+

1
2
dF3

dη

)

H4(η) =

∫ η

η0

dη′ GT(η, η
′)

{
−1
2
D2(η

′)

}
e2η

′

=
13
308

e4η − 1
20

e3η+η0 +
1
10

eη+3η0

− 9
70

eη/2+(7/2)η0 +
2
55

e−(3/2)η+(11/2)η0 (80)
(

D2 ≡ d2D2

dη2
+

1
2
dD2

dη
+

3
2
D2

)

I4(η) =

∫ η

η0

dη′ GT(η, η
′)

{
−D3(η

′)
}
eη

′

= − 5
84

e4η +
3
70

e3η+η0 − 9
35

e(1/2)η+(7/2)η0

+
3
4
e4η0 − 10

21
e−η/2+(9/2)η0 (81)

(
D3 ≡ d2D3

dη2
+

1
2
dD3

dη
− 3

2
D3

)

J4(η) =

∫ η

η0

dη′ GT(η, η
′)

{
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Ẽ3 ≡ d2E3

dη2
+

1
2
dE3

dη
− 3

2
E3

)

K4(η) =

∫ η

η0

dη′ GT(η, η
′)

{
−F 3(η

′)
}
eη

′

= − 1
28

e4η − 1
2
eη+3η0 +

9
7
e(1/2)η+(7/2)η0

− 3
4
e4η0 (83)
(

F 3 ≡ d2F3

dη2
+

1
2
dF3

dη
− 3

2
F3

)

4.3 Fifth order

At fifth order, the resultant expressions become lengthy,
and we present below only the 2D results in x-component.
The 3D results will be separately given in Mathematica file.
Note that similar to the 3D case shown in Eq. (65), the y-
component of the 2D results can be reconstructed from a
cyclic permutation of the x-component.

MNRAS 000, 1–10 (2017)

Pre-collapse phase of halo formation 7

Finally, the time-dependent growth functions which ap-
pear in both 2D and 3D are given below:

D4(η) =

∫ η

η0

dη′ GL(η, η
′)

{
−D̃2(η

′)
}

D2(η
′)

= − 51
4312

e4η +
1
28

e3η+η0 − 27
1400

e2η+2η0

− 3
40

eη+3η0 +
9
98

eη/2+(7/2)η0 − 9
350

e−η/2+(9/2)η0

+
2

385
e−(3/2)η+(11/2)η0 − 9

9800
e−3η+7η0 (76)

(
D̃2 ≡ d2D2

dη2
+

1
2
dD2

dη
− 3

4
D2

)

E4(η) =

∫ η

η0

dη′ GL(η, η
′)

{
−D3(η

′) eη
′}

= − 5
66

e4η +
1
14

e3η+η0 +
2
21

e−η/2+(9/2)η0

− 1
11

e−(3/2)η+(11/2)η0 (77)
(

D3 ≡ d2D3

dη2
+

1
2
dD3

dη

)

F4(η) =

∫ η

η0

dη′ GL(η, η
′)

{
−E3(η

′) eη
′}

=
7

198
e4η − 3

70
e2η+2η0 − 2

45
e−η/2+(9/2)η0

+
4
77

e−(3/2)η+(11/2)η0 (78)
(

E3 ≡ d2E3

dη2
+

1
2
dE3

dη

)

G4(η) =

∫ η

η0

dη′ GL(η, η
′)

{
−F3(η

′) eη
′}

= − 1
22

e4η +
1
10

eη+3η0 − 3
55

e−(3/2)η+(11/2)η0 (79)
(

F3 ≡ d2F3

dη2
+

1
2
dF3

dη

)

H4(η) =

∫ η

η0

dη′ GT(η, η
′)

{
−1
2
D2(η

′)

}
e2η

′

=
13
308

e4η − 1
20

e3η+η0 +
1
10

eη+3η0

− 9
70

eη/2+(7/2)η0 +
2
55

e−(3/2)η+(11/2)η0 (80)
(

D2 ≡ d2D2

dη2
+

1
2
dD2

dη
+

3
2
D2

)

I4(η) =

∫ η

η0

dη′ GT(η, η
′)

{
−D3(η

′)
}
eη

′

= − 5
84

e4η +
3
70

e3η+η0 − 9
35

e(1/2)η+(7/2)η0

+
3
4
e4η0 − 10

21
e−η/2+(9/2)η0 (81)

(
D3 ≡ d2D3

dη2
+

1
2
dD3

dη
− 3

2
D3

)

J4(η) =

∫ η

η0

dη′ GT(η, η
′)

{
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Ẽ3 ≡ d2E3

dη2
+

1
2
dE3

dη
− 3

2
E3

)

K4(η) =

∫ η

η0

dη′ GT(η, η
′)

{
−F 3(η

′)
}
eη

′

= − 1
28

e4η − 1
2
eη+3η0 +

9
7
e(1/2)η+(7/2)η0

− 3
4
e4η0 (83)
(

F 3 ≡ d2F3

dη2
+

1
2
dF3

dη
− 3

2
F3

)

4.3 Fifth order

At fifth order, the resultant expressions become lengthy,
and we present below only the 2D results in x-component.
The 3D results will be separately given in Mathematica file.
Note that similar to the 3D case shown in Eq. (65), the y-
component of the 2D results can be reconstructed from a
cyclic permutation of the x-component.

MNRAS 000, 1–10 (2017)

Pre-collapse phase of halo formation 7

Finally, the time-dependent growth functions which ap-
pear in both 2D and 3D are given below:

D4(η) =

∫ η

η0

dη′ GL(η, η
′)

{
−D̃2(η

′)
}

D2(η
′)

= − 51
4312

e4η +
1
28

e3η+η0 − 27
1400

e2η+2η0

− 3
40

eη+3η0 +
9
98

eη/2+(7/2)η0 − 9
350

e−η/2+(9/2)η0

+
2

385
e−(3/2)η+(11/2)η0 − 9

9800
e−3η+7η0 (76)

(
D̃2 ≡ d2D2

dη2
+

1
2
dD2

dη
− 3

4
D2

)

E4(η) =

∫ η

η0

dη′ GL(η, η
′)

{
−D3(η

′) eη
′}

= − 5
66

e4η +
1
14

e3η+η0 +
2
21

e−η/2+(9/2)η0

− 1
11

e−(3/2)η+(11/2)η0 (77)
(

D3 ≡ d2D3

dη2
+

1
2
dD3

dη

)

F4(η) =

∫ η

η0

dη′ GL(η, η
′)

{
−E3(η

′) eη
′}

=
7

198
e4η − 3

70
e2η+2η0 − 2

45
e−η/2+(9/2)η0

+
4
77

e−(3/2)η+(11/2)η0 (78)
(

E3 ≡ d2E3

dη2
+

1
2
dE3

dη

)

G4(η) =

∫ η

η0

dη′ GL(η, η
′)

{
−F3(η

′) eη
′}

= − 1
22

e4η +
1
10

eη+3η0 − 3
55

e−(3/2)η+(11/2)η0 (79)
(

F3 ≡ d2F3

dη2
+

1
2
dF3

dη

)

H4(η) =

∫ η

η0

dη′ GT(η, η
′)

{
−1
2
D2(η

′)

}
e2η

′

=
13
308

e4η − 1
20

e3η+η0 +
1
10

eη+3η0

− 9
70

eη/2+(7/2)η0 +
2
55

e−(3/2)η+(11/2)η0 (80)
(

D2 ≡ d2D2

dη2
+

1
2
dD2

dη
+

3
2
D2

)

I4(η) =

∫ η

η0

dη′ GT(η, η
′)

{
−D3(η

′)
}
eη

′

= − 5
84

e4η +
3
70

e3η+η0 − 9
35

e(1/2)η+(7/2)η0

+
3
4
e4η0 − 10

21
e−η/2+(9/2)η0 (81)

(
D3 ≡ d2D3

dη2
+

1
2
dD3

dη
− 3

2
D3

)

J4(η) =

∫ η

η0

dη′ GT(η, η
′)

{
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2 Authors

in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:

3D✓ ✏
(
T̂ − 4πG ρm

)
Ψk,k

= −ϵijkϵipq Ψj,p

(
T̂ − 2πG ρm

)
ψk,q

− 1
2
ϵijkϵpqr Ψi,pΨj,q

(
T̂ − 4πG

3
ρm

)
Ψk,r,

(16)

ϵijk T̂ Ψj,k = −ϵijk Ψp,j T̂ Ψp,k. (17)✒ ✑
2D✓ ✏

(
T̂ − 4πG ρm

)
Ψk,k

= −ϵilϵjk Ψl,k

(
T̂ − 2πG ρm

)
ψi,j (18)

ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:

3D✓ ✏
( ∂2

∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵijkϵipq Ψ
(m1)
j,p

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

k,q

− 1
2

∑

m1+m2+m3=n

ϵijkϵpqr Ψ
(m1)
i,p Ψ(m2)

j,q

×
( ∂2

∂η2
+

1
2
∂
∂η

− 1
2

)
Ψ(m3)

k,r , (22)

ϵijk
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

j,k

= −
∑

m1+m2=n

ϵijk Ψ
(m1)
p,j

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

p,k . (23)

✒ ✑
2D✓ ✏

( ∂2

∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵilϵjk Ψ
(m1)
l,k

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

i,j

(24)

ϵpq
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

q,p

= −
∑

m1+m2=n

ϵpq Ψ
(m1)
k,q

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

k,p . (25)

✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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Comparison with Vlasov simulation
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Comparison with Vlasov simulation
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Comparison with Vlasov simulation

Shell crossing !
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Comparison with Vlasov simulation
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Vlasov simulation
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Summary
Perturbation theory (PT) of large-scale structure has been 
developed as a precision tool, but it needs to be renovated

✓ UV issue in single-stream PT:

✓ Response function:

✓  Post-collapse PT with adaptive smoothing in 1D: 

Characterizing nature of mode coupling

Novel scheme beyond shell crossing

Stay tuned, and 
do not stick to Effective-field-theory approach !

Do not go to 3-loop !

✓  Roadmap to 3D:  pre-collapse evolution from LPT and 
Vlasov simulation
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