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Plan of talk
Describing observed large-scale structure in 

precision cosmology

Large-scale structure

Redshift-space distortions (RSD)

Modeling and analyzing RSD  

Beyond RSD
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Large-scale structure
Matter inhomogeneity over Giga parsec scales

• Provide a wealth of cosmological information

• Is key observations in post-Planck precision cosmology  

Origin of cosmic acceleration, nature of dark sectors, …

has evolved from tiny fluctuations (most likely seeded by inflation) 
under influence of cosmic expansion and gravity

1000 Mpc =3*10^9 light years

=

is dominated by hypothetical invisible objects (i.e., cold dark matter)
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Timeline of the Universe
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Observing large-scale structure

Sloan Digital Sky Survey 
@ APO (New Mexico)

Blanco telescope 
@ CTIO (Chile)

Very Large Telescope (Chile)

3.6m

4m

8.2m

Canada-France-Hawaii 
Telescope (Hawaii)

Subaru Telescope (Hawaii)

8.2m

2.5m

http://subarutelescope.org/Information/Download/DImage/index.html
http://www.sdss.org/instruments/

http://www.cfht.hawaii.edu/en/news/CFHT30/#wallpaper
http://www.darkenergysurvey.org/DECam/index.shtml

https://en.wikipedia.org/wiki/Very_Large_Telescope

Intensive use of telescope is necessary
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Great Debate (1920)
H. Shapley & H. Curtis

Nature of spiral nebulae (i.e., galaxies), and size of the universe

wikipedia

distance (indicator)

Milkyway galaxy is entirety of the known universe

M31 (Andromeda)

(e.g., Andromeda is part of our galaxy)
Shapley

Curtis  Andromeda and other such "nebulae" are separate 
galaxies, or "island universes" 

Crucial to measure 

(but non-trivial issue in cosmology)
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Redshift

SDSS SkyServer

Nearby galaxy

Distant galaxy

Ca H & K OIII HβNa Mg 

A key to probe 3D view of large-scale structure

Distant galaxies looks redder than nearby galaxies
due to cosmic expansion

wavelength
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Redshift

SDSS SkyServer

Nearby galaxy

Distant galaxy

Ca H & K OIII HβNa Mg 

A key to probe 3D view of large-scale structure

Distant galaxies looks redder than nearby galaxies
due to cosmic expansion

wavelength

z=0.1462

E.Hubble

G. Lemaitre

recession ‘velocity’ distance to galaxy
(= light velocity x redshift ) Hubble parameter

v = H d
Hubble law

Redshift 
parameter z = ��/�

v = H d
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Dawn of systematic surveys
CfA galaxy redshift survey

Las Campanas redshift survey

de Lapparant, Geller & Huchra (’86)

Shectmann et al. (’96)

South

12434 galaxies

North

11263 galaxies
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variety of galaxy surveys, including the CfA et al.(Vogeley
et al. SSRS Gott, & da Costa1992 ; Park 1994), (Park, 1992 ;

Costa et al. IRAS 1.2 Jy et al.da 1994b), (Fisher 1993),
IRAS QDOT Kaiser, & Peacock and(Feldman, 1994),
APM (Baugh & Efstathiou surveys. In brief, the1993, 1994)
power spectra of these surveys have appeared inconsistent
with predictions of the ““ standard ÏÏ biased cold dark matter
(CDM) model of structure formation with )

0
h \ 0.5

et al. while an unbiased(Blumenthal 1984), )
0
h B 0.2

model with more large-scale power agrees better with the
observations (e.g., Costa et al. (We express theda 1994b).
Hubble constant as km s~1 Mpc~1, and willH

0
\ 100 h

use h \ 1 unless otherwise indicated.) In this paper we
present the power spectrum for galaxy samples drawn from
the Las Campanas Redshift Survey (LCRS), an optically
selected survey of 23,697 galaxies with an average redshift
z\ 0.1. The large sample size and extent of our survey
allow us to examine the power spectrum up to wavelengths
of B400 h~1 Mpc, and to provide measurements indepen-
dent of previous results for the purpose of comparing
against cosmological models. In particular, measurements
of the power spectrum on the largest scales j Z 100 h~1

Mpc are especially interesting, as we expect the power spec-
trum to peak there and begin its turnover toward the pri-
mordial spectrum constrained by COBE and other
microwave background observations. The precise ampli-
tude and shape of the power spectrum on large scales will
provide important clues in discriminating among cosmo-
logical models.

A detailed description of the Las Campanas survey is
given in et al. and additional particularsShectman (1996),
may be found in Shectman et al. (1992, 1995), Tucker (1994),

et al. and et al. Here we brieÑyLin (1996), Oemler (1993).
describe the main survey parameters. The survey geometry
is that of six ““ slices ÏÏ (declination by right1¡.5 ] 80¡
ascension), three each in the north and south galactic caps.

shows the LCRS galaxy distribution and clearlyFigure 1
illustrates the striking pattern of clusters, Ðlaments, walls
and voids that is present. The Ðrst 20% of the data was
obtained using a 50 object Ðber-optic spectrograph, and the
remaining 80% of the data was taken with a 112 object
system. The nominal isophotal magnitude limits for the 50
Ðber data were 16.0 π m\ 17.3 (““ hybrid ÏÏ Kron-Cousins R
magnitudes), and an additional cut was applied that
excluded the lowest 20% of galaxies by central surface
brightness. For the 112 Ðber data, the nominal magnitude
limits were 15.0 π m\ 17.7, with exclusion of just the
lowest 4%È9% of galaxies by surface brightness. The survey
photometric limits were chosen so that there would be typi-
cally more targets per Ðeld than available Ðbers, and we
selected targets at random among those that met the selec-
tion criteria. The survey slices were built up by observing

Ðelds, one at a time, with a maximum of 50 or 1121¡.5 ] 1¡.5
galaxies observed per Ðeld. Because we generally do not
reobserve any of our Ðelds, we must keep track of the vari-
able Ðeld-to-Ðeld sampling fractions f in our subsequent
statistical analyses. The average sampling fraction is 70%
for the 112 Ðber data and 58% for the 50 Ðber data. Also,
mechanical constraints prevent two object Ðbers in a single
spectroscopic Ðeld from approaching closer than 55A, intro-
ducing an additional geometric selection e†ect. We will Ðnd
below that the various sampling, photometric, and geomet-
ric selection e†ects in our survey do not signiÐcantly a†ect
the power spectrum results.

FIG. 1.ÈLCRS galaxy distribution in the northern and southern galac-
tic caps.

In we detail our power spectrum estimation tech-° 2
niques and verify them on N-body simulations. In we° 3
present the power spectra of magnitude-limited samples of
Las Campanas galaxies, and compare our results to the
power spectra derived from other redshift surveys. In we° 4
compute the power spectrum for volume-limited samples of
Las Campanas galaxies and test for luminosity bias in the
survey. In we compare our power spectrum results° 5
against those from N-body simulations. We will then focus
on the large-scale linear power spectrum, relate our results
to the COBE DMR constraints, and compare against the
predictions of several classes of CDM models. We sum-
marize our results in Note that a complementary° 6.
analysis of the two-dimensional LCRS power spectrum has
already been carried out et al. more on this(Landy 1996 ;
below), and the derivation of the closely related two-point
correlation function of LCRS galaxies is described in

and et al.Tucker (1994) Tucker (1996).

2. ESTIMATING THE POWER SPECTRUM

The power spectrum estimation technique used here has
been described by various authorsÈin particular see Fisher
et al. et al. and et al.(1993), Feldman (1994), Park

we detail the method below. The most impor-(1994)Èand
tant di†erence is that the LCRS consists of six essentially
two-dimensional ““ slices,ÏÏ so that we need to account for
““ convolution ÏÏ e†ects caused by the survey geometry in
order to calculate the power spectrum properly. These con-
volution e†ects are also evaluated below.

11,263 galaxies
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http://www.mpa-garching.mpg.de/131601/hl201506

Yellow：SDSS-II main
Red：SDSS-II LRG

White：SDSS-III CMASS

Redshift

6 G yrs
(look back time)

(finished in 2014)

Earth
(observer)

A slice of galaxy & quasar 3D map 
by Sloan Digital Sky Survey III

As of 2011
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A section of 3D map

http://www.sdss.org/press-releases/astronomers-map-a-record-
breaking-1-2-million-galaxies-to-study-the-properties-of-dark-energy/

120,000 galaxies
redshift
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Baryon acoustic oscillations (BAO)
• Characteristic scale of primeval baryon-photon fluid (~150Mpc)

(⇔ acoustic signal in CMB anisotropies)

7

FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also

14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p

C
ii

for the power spectrum and the rms error calculated
from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc

�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥B
m

(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, k

n

, equally spaced in 0 < k < 2hMpc

�1,
to the central wavenumbers of the observed bandpowers k

i

:

P (k
i

)fit =

X

n

W (k
i

, k
n

)P (k
n

)m �W (k
i

, 0). (33)

The final term W (k
i

, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

B
m

= (BCAMB � 1)e�k

2⌃2
nl/2

+ 1, (34)

where the damping scale ⌃

nl

is a fitted parameter. We assume
a Gaussian prior on ⌃

nl

with width ±2h�1
Mpc, centred on

8.24h�1
Mpc for pre-reconstruction fits and 4.47h�1

Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.

c
� 2011 RAS, MNRAS 000, 2–33

BAO in SDSS-III BOSS galaxies 21

Figure 15. As Figure 15, but for the DR11 LOWZ correlation function
transformed as defined by Eq. 46 with a = 0.39 and b = 0.04. As before,
these error bars are nearly independent, with a worst case of 12 per cent
and an r.m.s. of 3.4 per cent in the off-diagonal elements of the reduced
covariance matrix.

Figure 16. The CMASS BAO feature in the measured reconstructed power
spectrum of each of the BOSS data releases, DR9, DR10, and DR11. The
data are displayed with points and error-bars and the best-fit model is dis-
played with the curves. Both are divided by the best-fit smooth model. We
note that a finer binning was used in the DR9 analysis.

noted that transformations based on the symmetric square root of
the Fisher matrix had surprisingly compact support for their power
spectrum analysis. When we formed this matrix for the DR11
CMASS correlation function, we found that the first and second
off-diagonal terms are nearly constant and that subsequent off-
diagonals are small. This suggests that a basis transform of the pen-
tadiagonal form

X(si) =
xi � a (xi�1

+ xi+1

)� b (xi�2

+ xi+2

)

1� 2a� 2b
(46)

will approach a diagonal form. Here, xi = s2i ⇠0(si) and si is the

Figure 17. The BAO feature in the measured power spectrum of the DR11
reconstructed CMASS (top) and LOWZ (bottom) data. The data are dis-
played with black circles and the best-fit model is displayed with the curve.
Both are divided by the best-fit smooth model.

bin center of measurement bin i. We introduce the 1 � 2a � 2b
factor so as to normalize X such that it returns X = x for constant
x. For the first two and last two bins, the terms beyond the end of
the range are omitted and the normalization adjusted accordingly.

We find that for DR11 CMASS after reconstruction, values
of a = 0.3 and b = 0.1 sharply reduce the covariances between
the bins. The reduced covariance matrices for ⇠(r) and X(r) are
shown in Figure 13. The bins near the edge of the range retain some
covariances, but the off-diagonal terms of the central 10⇥ 10 sub-
matrix of the reduced covariance matrix have a mean and r.m.s. of
0.008 ± 0.044, with a worst value of 0.11. For display purposes,
this is a good approximation to a diagonal covariance matrix, yet
the definition of X(s) is well localized and easy to state. For com-
parison, the reduced covariance matrix of s2⇠

0

has typical first off-
diagonals values of 0.8 and second off-diagonals values of 0.6.

We display this function in Figure 14. One must also trans-
form the theory to the new estimator: we show the best-fit BAO
models with and without broadband marginalization, as well as the
best-fit non-BAO model without broadband marginalization. The
presence of the BAO is clear, but now the error bars are representa-
tive. For example, the significance of the detection as measured by
the ��2 of the best-fit BAO model to the best-fit non-BAO model
is 69.5 using only the diagonal of the covariance matrix of X , as
opposed to 74 with the full covariance matrix. We do not use this
transformation when fitting models, but we offer it as a pedagogical
view.

The same result is shown for DR11 LOWZ post-
reconstruction in Figure 15. Here we use a = 0.39 and b = 0.04.
The level of the off-diagonal terms is similarly reduced, with an
r.m.s. of 3.4 per cent and a worst value of 12 per cent.

It is expected that the best values of a and b will depend on
the data set, since data with more shot noise will have covariance
matrices of the correlation function that are more diagonally dom-
inant. Similarly, the choice of a pentadiagonal form may depend

c� 2014 RAS, MNRAS 000, 2–38

BOSS DR9
(SDSS-III)

k [h Mpc  ]-1

P(
k)

 [
(h

  M
pc

)^
3]

-1

Anderson et al. (’13)

DR9

DR10

DR11

• Can be used as standard ruler to measure distance at high-z 
(theoretical prior) →probe of cosmic expansion
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Geometric distortions
Unlocking potential power of BAO

Distortions of galaxy clustering caused by apparent mismatch 
of underlying cosmological models

�r� = DA(z)� �

�r|| = c� z/H(z)

observer

(��, �z)

can generate anisotropies in the galaxy clustering 
(higher multipole moments)

H(z) & DA(z) 
Using BAO as standard ruler,

can be measured simultaneously
12



Redshift-space distortions (RSD)

Anisotropic clustering in CMASS galaxies 5

r
σ
 (Mpc/h)

r π
 (

Mp
c/

h)

−100 −50 0 50 100

−100

−50

0

50

100

r
σ
 (Mpc/h)

r π
 (
Mp
c/
h)

 

 

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

Figure 3. Left panel: Two-dimensional correlation function of CMASS galaxies (color) compared with the best fit model described in Section 6.1 (black lines).
Contours of equal ξ are shown at [0.6, 0.2, 0.1, 0.05, 0.02, 0]. Right panel: Smaller-scale two-dimensional clustering. We show model contours at [0.14, 0.05,
0.01, 0]. The value of ξ0 at the minimum separation bin in our analysis is shown as the innermost contour. The µ ≈ 1 “finger-of-god” effects are small on the
scales we use in this analysis.

in Figure 4. The effective redshift of weighted pairs of galaxies in
our sample is z = 0.57, with negligible scale dependence for the
range of interest in this paper. For the purposes of constraining cos-
mological models, we will interpret our measurements as being at
z = 0.57.

3.2 Covariance Matrices

The matrix describing the expected covariance of our measure-
ments of ξℓ(s) in bins of redshift space separation depends in linear
theory only on the underlying linear matter power spectrum, the
bias of the galaxies, the shot-noise (often assumed Poisson) and the
geometry of the survey. We use 600 mock galaxy catalogs, based
on Lagrangian perturbation theory (LPT) and described in detail in
Manera et al. (2012), to estimate the covariance matrix of our mea-
surements. We compute ξℓ(si) for each mock in exactly the same
way as from the data (Sec. 3.1) and estimate the covariance matrix
as

Cℓ1ℓ2i j =
1

599

600∑

k=1

(
ξkℓ1 (si) −  ξℓ1 (si)

) (
ξkℓ2 (s j) −  ξℓ2 (s j)

)
, (7)

where ξkℓ (si) is the monopole (ℓ = 0) or quadrupole (ℓ = 2) correla-
tion function for pairs in the ith separation bin in the kth mock.  ξℓ(s)
is the mean value over all 600 mocks. The shape and amplitude of
the average two-dimensional correlation function computed from
the mocks is a good match to the measured correlation function
of the CMASS galaxies; see Manera et al. (2012) and Ross et al.
(2012) for more detailed comparisons. The square roots of the di-
agonal elements of our covariance matrix are shown as the error-
bars accompanying our measurements in Fig. 4. We will examine
the off-diagonal terms in the covariance matrix via the correlation

matrix, or “reduced covariance matrix”, defined as

Cℓ1ℓ2,red
i j = Cℓ1ℓ2i j /

√
Cℓ1ℓ1ii Cℓ2ℓ2j j , (8)

where the division sign denotes a term by term division.
In Figure 5 we compare selected slices of our mock covari-

ance matrix (points) to a simplified prediction from linear theory
(solid lines) that assumes a constant number density  n = 3 × 10−4

(h−1 Mpc)−3 and neglects the effects of survey geometry (see, e.g.,
Tegmark 1997). Xu et al. (2012) performed a detailed compari-
son of linear theory predictions with measurements from the Las
Damas SDSS-II LRG mock catalogs (McBride et al. prep), and
showed that a modified version of the linear theory covariance with
a few extra parameters provides a good description of the N-body
based covariances for ξ0(s). The same seems to be true here as
well. The mock catalogs show a deviation from the naive linear
theory prediction for ξ2(s) on small scales; a direct consequence is
that our errors on quantities dependent on the quadrupole are larger
than a simple Fisher analysis would indicate. We verify that the
same qualitative behavior is seen for the diagonal elements of the
quadrupole covariance matrix in our smaller set of N-body simu-
lations used to calibrate the model correlation function. This com-
parison suggests that the LPT-based mocks are not underestimating
the errors on ξ2, though more N-body simulations (and an account-
ing of survey geometry) would be required for a detailed check of
the LPT-based mocks.

The lower panels of Figure 5 compare the reduced covari-
ance matrix to linear theory, where we have scaled the Cred

i j pre-
diction from linear theory down by a constant, ci. This compar-
ison demonstrates that the scale dependences of the off-diagonal
terms in the covariance matrix are described well by linear the-
ory, but that the nonlinear evolution captured by the LPT mocks
can be parametrized simply as an additional diagonal term. Finally,

c⃝ 0000 RAS, MNRAS 000, 1–1
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Reid et al. (’12)
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Redshift-space distortions (RSD)

BOSS anisotropic clustering 3

et al. (2012), who measured the RSD and AP simultaneously in
the BOSS CMASS DR9 sample, achieving a 15 per cent mea-
surement of growth, 2.8 per cent measurement of angular diame-
ter distance, and 4.6 per cent measurement of the expansion rate
at z = 0.57. Using these estimates Samushia et al. (2013) derived
strong constraints on modified theories of gravity (MG) and DE
model parameters. In this paper we perform a similar analysis on
the CMASS DR11 sample, which covers roughly three times the
volume of DR9.

This paper is organised as follows. In section 2 we describe
the data used in the analysis. Section 3 explains how the two-
dimensional correlation function is estimated from the data. Sec-
tion 4 shows how we derive the estimates of the covariance ma-
trix for our measurements. In section 5 we describe the theoretical
model used to fit the data. Section 6 presents and discusses our
main results – the estimates of growth rate, distance-redshift rela-
tionship and the expansion rate from the measurements. Section 7
uses these estimates to constrain parameters in the ⇤CDM model
assuming General Relativity (⇤CDM-GR) and possible deviations
from this standard model. We conclude and discuss our results in
section 8.

Our measurements require the adoption of a cosmological
model in order to convert angles and redshifts into comoving dis-
tances. As in Anderson et al. (2013) we adopt a spatially-flat
⇤CDM cosmology with ⌦m = 0.274 and h = 0.7 for this purpose.
For ease of comparison across analyses, we follow Anderson et al.
(2013) and also report our distance constraints relative to a model
with ⌦m = 0.274, h = 0.7, and ⌦bh2 = 0.0224, for which the BAO
scale rd = 149.31 Mpc.

2 THE DATA

The SDSS-III project (Eisenstein et al. 2011) uses a dedicated 2.5-
m Sloan telescope (Gunn et al. 2013) to perform spectroscopic
follow-up of targets selected from images made using a now-retired
drift-scanning mosaic CCD camera (Gunn et al. 2006) that imaged
the sky in five photometric bands (Fukugita et al. 1996) to a limit-
ing magnitude of r ' 22.5. The BOSS (Dawson et al. 2013) is the
part of SDSS-III that will measure spectra for 1.5 million galaxies
and 160.000 quasars over a quarter of the sky.

We use the DR11 CMASS sample of galaxies (Anderson et al.
2013; Smee et al. 2013; Bolton et al. 2012). This lies in the redshift
range of 0.43 < z < 0.70 and consists of 690826 galaxies covering
8498 square degrees (effective volume of 6.0 Gpc3).

Figure 1 shows the redshift distribution of galaxies in our
sample. The number density is of order of 10�4 peaking at n̄ '
4 ⇥ 10�4h3 Mpc�3.

3 THE MEASUREMENTS

We measure the correlation function of galaxies in the CMASS
sample defined as the ensemble average of the product of over-
densities in the galaxy field separated by a certain distance r

⇠(r) ⌘ h�g(r0)�g(r0 + r)i. (4)

The overdensity as a function of r is given by

�g(r) =
ng(r) � n̄g(r)

n̄g(r)
, (5)

where n̄g(r) is expected average density of galaxies at a position r
and ng(r) is an observed number density.

Figure 1. The number density of CMASS DR11 galaxies in redshift bins
of �z = 0.01 in northern and southern Galactic hemispheres, computed
assuming our fiducial cosmology.

Figure 2. The two-dimensional correlation function of DR11 sample mea-
sured in bins of 1h�1 ⇥ 1h�1 Mpc2. We use first two Legendre multipoles of
the correlation function in our study rather than the two-dimensional corre-
lation function displayed here.

We estimate the correlation function using the Landy-Szalay
minimum-variance estimator (Landy & Szalay 1993)

⇠̂(�ri) =
DD(�ri) � 2DR(�ri) + RR(�ri)

RR(�ri)
, (6)

where DD(�ri) is the weighted number of galaxy pairs whose sep-
aration falls within the �ri bin, RR(�ri) is number of similar pairs
in the random catalogue and DR(�ri) is the number of cross-pairs
between the galaxies and the objects in the random catalogue.

Figure 2 shows the two-dimensional correlation function of
DR11 sample measured in bins of 1h�1⇥1h�1 Mpc2. Both the “BAO
ridge” (a ring of local maxima at approximately 100h�1 Mpc) and
the RSD signal (LOS “squashing” of the correlation function) are
detectable by eye.

The random catalogue is constructed by populating the vol-
ume covered by galaxies with random points with zero correlation.
We use a random catalogue that has 50 times the density of galaxies
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Figure 5. The measured pre-reconstruction correlation function (left) and power spectrum (middle) in the directions perpendicular and parallel to the line of
sight, shown for the NGC only in the redshift range 0.50 < z < 0.75. In each panel, the color scale shows the data and the contours show the prediction of the
best-fit model. The anisotropy of the contours seen in both plots reflects a combination of RSD and the AP effect, and holds most of the information used to
separately constrain DM (z)/rd, H(z)rd, and f�8. The BAO ring can be seen in two dimensions on the correlation function plot. To more clearly show the
anisotropic BAO ring in the power spectrum, the right panel plots the two-dimensional power-spectrum divided by the best-fit smooth component. The wiggles
seen in this panel are analogous to the oscillations seen in the top left panel of Fig 3.

Table 4. Summary table of pre-reconstruction full-shape constraints on the parameter combinations DM ⇥

�
rd,fid/rd

�
, H⇥

�
rd/rd,fid

�
, and f�8(z) derived

in the supporting papers for each of our three overlapping redshift bins

Measurement redshift Satpathy et al. Beutler et al. (b) Grieb et al. Sánchez et al.
⇠(s) multipoles P (k) multipoles P (k) wedges ⇠(s) wedges

DM ⇥

�
rd,fid/rd

�
[Mpc] z = 0.38 1476 ± 33 1549 ± 41 1525 ± 25 1501 ± 27

DM ⇥

�
rd,fid/rd

�
[Mpc] z = 0.51 1985 ± 41 2015 ± 53 1990 ± 32 2010 ± 30

DM ⇥

�
rd,fid/rd

�
[Mpc] z = 0.61 2287 ± 54 2270 ± 57 2281 ± 43 2286 ± 37

H ⇥

�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.38 79.3 ± 3.3 82.5 ± 3.2 81.2 ± 2.3 82.5 ± 2.4

H ⇥

�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.51 88.3 ± 4.1 88.4 ± 4.1 87.0 ± 2.4 90.2 ± 2.5

H ⇥

�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.61 99.5 ± 4.4 97.0 ± 4.0 94.9 ± 2.5 97.3 ± 2.7

f�8 z = 0.38 0.430 ± 0.054 0.479 ± 0.054 0.498 ± 0.045 0.468 ± 0.053
f�8 z = 0.51 0.452 ± 0.058 0.454 ± 0.051 0.448 ± 0.038 0.470 ± 0.042
f�8 z = 0.61 0.456 ± 0.052 0.409 ± 0.044 0.409 ± 0.041 0.440 ± 0.039

ods is consistent with what we observe in mocks (see Section 7.2
and Fig. 10). In all cases the µ-wedges analyses give significantly
tighter constraints than the multipole analyses, in both configura-
tion space and Fourier space. The consensus constraints, described
in §8.2 below, are slightly tighter than those of the individual wedge
analyses. At all three redshifts and for all three quantities, mapping
distance, expansion rate, and the growth of structure, the 68% con-
fidence contour for the consensus results overlaps the 68% confi-
dence contour derived from Planck 2015 data assuming a ⇤CDM
cosmology. We illustrate the combination of these full shape results
with the post-reconstruction BAO results in Fig. 11 below.
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Figure 1. The black dots in the plots of this figure represent monopole (⌅ ) and quadrupole (•) for BOSS DR12 galaxy sample evaluated
at di↵erent values of s. The error bars are obtained from the diagonal elements of the covariance matrices corresponding to mocks in the
three redshift bins. The red and the blue lines denote the best fit models of monopole and quadrupole of the galaxy data. The analysis
assumes a fitting range 25 h�1Mpc s  150 h�1Mpc with a bin size of 5 h�1Mpc.

di↵erent approaches for the full-shape analyses analysis of
the BOSS DR12 combined galaxy sample (Alam et al. 2016):

(i) In this work, we use multipoles obtained from
anisotropic two-point galaxy correlation functions to ana-
lyze the DR12 data. Details of the approach used for our
analysis are given in section 4.

(ii) Sánchez et al. (2016a) present an analysis of the BOSS
DR12 combined galaxy sample using wedges obtained from
anisotropic two-point correlation functions.

(iii) The methodology presented in Beutler et al. (2016a)
for the analysis of DR12 galaxy data employs multipoles
obtained from anisotropic power spectrum.

(iv) Grieb et al. (2016) use an analysis based on wedges
from anisotropic power spectrum in their investigation of
the BOSS DR12 galaxy data.

3.2 Mock Galaxy Catalogs

We use the Multi-Dark Patchy (MD-P) mock catalogs (Ki-
taura et al. 2014, 2015) as an essential statistical tool
and as a precursor to the analysis of the SDSS III DR12
combined galaxy dataset. These mock catalogs require the
generation of accurate reference catalogs. For these MD-P
mock catalogs, the reference catalogs are extracted from
one of the BigMultiDark cosmological N-body simulations
(Klypin et al. 2014) which uses gadget-2 (Springel 2005)
with 38403 particles in a volume of (2.5 h�1Mpc)3. These
simulations are based on a ⇤CDM cosmology of H0 =
67.77 km.s�1.Mpc�1, ⌦m = 0.307115, ⌦b = 0.048206, ns =
0.9611 and �8 = 0.8288.

In a manner akin to the division of the BOSS DR12 data
into redshift bins, the MD-P mock catalogs that we use are
segregated into three redshift bins with e↵ective redshifts
of ze↵ = 0.38 (bin1 ), 0.51 (bin2 ) and 0.61 (bin3 ). In each
redshift bin we use 997 mocks in our analysis. The primary
purpose of the use of the MD-P mocks is to assist in the
formulation of covariance matrices for the di↵erent bins of
the galaxy dataset and to mimic the statistics of the same.
We discuss more about the use of the MD-P mocks to obtain
covariance matrices in sections 4.1 and 4.2.

4 ANALYSIS

In this section, we outline the methodology that we have
used in our analysis of the MultiDark-Patchy (MD-P) mock
catalogs and the BOSS DR12 dataset in the three redshift
bins. We sketch the steps that we employ in analyzing the
positions of galaxies to obtain multipoles (⇠0(r) and ⇠2(r))
from two-point correlation functions (⇠(r)). We also dis-
cuss the computation of covariance matrices from MD-P
mock catalogs. We conclude by shedding light on the use
of Markov Chain Monte Carlo (MCMC) in chosen param-
eter spaces for the MD-P mocks and the SDSS III galaxy
dataset to obtain a handle on the variation of di↵erent RSD
and BAO parameters.

4.1 The two-point galaxy correlation function

In the fiducial cosmology ⌦m = 0.31, H0 = 0.676, ⌦⇤ =
0.69, ⌦bh

2 = 0.022 and �8 = 0.80, we map redshift and
celestial coordinates (↵, �) to the position of a galaxy in
three dimensional space. We use the Landy-Szalay estimator
(Landy & Szalay 1993) to obtain the two-point correlation
function ⇠̂(s) for a given galaxy sample.

⇠̂LS(s, µ) =
DD(s, µ)� 2DR(s, µ) +RR(s, µ)

RR(s, µ)
(6)

Here µ = cos ✓ (where ✓ is the angle between the line of
sight and the radial distances), DD(s, µ) is the pair count
of galaxies with separation s and orientation µ, DR(s, µ)
is the cross-pair counts between the galaxies and a random
distribution, and RR(s, µ) is the number of pairs for a ran-
dom distribution. The Landy-Szalay estimator has only a
second order bias caused by finite sample e↵ects. The per-
formance of the Landy-Szalay estimator has been proved to
be better than other comparable two point correlation func-
tions at large scales (Pons-Bordeŕıa et al. 1999; Kerscher et
al. 2000). In the measurement of the two-point correlation
function, each galaxy pair is weighted by wtot. More details
of the weighting scheme that we use can be found in sec-
tion 3.1.

The use of two dimensional two-point correlation func-
tions (⇠̂(s, µ)) will lead to a large number of bins (due to
the presence of two dimensions). To fit a two-dimensional
two-point correlation function directly, we will need to con-

MNRAS 000, 1–15 (2016)
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(Two-point) correlation function = counting many galaxy pairs

→ exhibit anisotropies of galaxy clustering
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Redshift of galaxy is not a perfect distance indicator
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Redshift space

Redshift space
(comoving)

Real space

�s = �r +
1 + z

H(z)
(�v · ẑ) ẑ

observer’s line-of-sight

As a leading-order relativistic effect (i.e.,              )v/c ⌧ 1

This complicates the interpretation of galaxy clustering data…

Redshift-space distortions

Kaiser Effect
large-scale coherent motion
→ enhancement of clustering

Finger-of-God Effect
small-scale random motion 
→ suppression of clustering

z-space r-space

peculiar velocity

streaming model

r-space

e.g., Scoccimarro’04

vel. divergence: vel. dispersion: σv

k⊥

k||

μ = 0

μ = 1

Redshift-space distortions

Kaiser Effect
large-scale coherent motion
→ enhancement of clustering

Finger-of-God Effect
small-scale random motion 
→ suppression of clustering

z-space r-space

peculiar velocity

streaming model

r-space

e.g., Scoccimarro’04

z-space

vel. divergence: vel. dispersion: σv

k⊥

k||

μ = 0

μ = 1

N-body simulation
(by T.Nishimichi)

observer’s line-of-sight

Real space Redshift space

We may need to reconsider what is the observed space: 

Fingers-of-God effect
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Kaiser formula
Kaiser (‘87)

�(S)(s) ' �(r)� (1 + z)

H(z)
@zvz

(Kaiser ’87)Linear approximation

Eq. of continuity : �̇ +
1

a
r · v ' 0

µk ⌘ k̂ · ẑ;

Fourier 
transform

Observer

Coherent infall

Quadrupole 
anisotropy

Line-of-sight Apparent enhancement
along line-of-sight 

{1 + �(S)(s)}d3s = {1 + �(r)}d3r

>0

�(S)(k) =

✓
1 + µ2

k
d

d ln a

◆
�(k)

Redshift-space 
density field
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RSD as a probe of gravity
Linear growth 

factor

scale factor

Kaiser 
formula

how the nature of gravity affects the growth of structure

e.g., Linder (’08); Guzzo et al. (’08); Yamamoto et al. (’08); Percival & White (’09)

This Kaiser formula holds irrespective of gravity theory

;

This parameter tells us

Importantly,

probe of gravity (general relativity) on cosmological scales

�(S)(k) = (1 + f µ2
k) �(k) f ⌘ d lnD+

d ln a

•Untested hypothesis in ΛCDM model

•Hint for cosmic acceleration

19



Gravity on cosmological scalesThe Astrophysical Journal, 784:90 (27pp), 2014 April 1 Okabe et al.

Figure 5. X-ray surface brightness distribution in the 0.1–2.4 keV band from
ROSAT X-ray satellite. The contours of the mass map are overlaid with
FWHM = 8.′3, taking into account the LSS lensing model. The contour level
starts at 1σ and increases in steps of 1σ .
(A color version of this figure is available in the online journal.)

the model does not perfectly describe the full LSS lensing
effect. Three other peaks associated with the known background
objects (Table 2) are detected with the above conditions. One is
the background object “I” and two peaks are around the object
“F” (see Figure 3). These objects are likely to be groups because
the lensing signals are stronger than what is expected from the
luminosity of a single galaxy. Furthermore, there is a possibility
that background groups are accidentally superimposed with
cluster subhalos, giving a systematic bias on mass estimates
of subhalos. This point is discussed in Section 3.4.1.

Next, we measure the model-independent projected masses
(Clowe et al. 2000, see also Appendix C) for shear-selected
subhalo candidates. This measurement has several important
advantages. First, a large number of background galaxies are
available, because a projected mass within a circular aperture
radius is computed by integrating source galaxies outside the
radius. The measured projected mass is a cumulative function
of radius. Thus, this approach suppresses the random noise
relevant to the intrinsic ellipticity, compared to a tangential
distortion profile, which averages the tangential component
of all background galaxies residing in radial bins. Second,
since the measurement subtracts the background mass density

surrounding subhalos, the contribution of the main cluster
mass distribution to subhalo masses is excluded. Third, the
mass density of subhalos is expected to be close to zero
outside of the tidal radius, and the measured aperture mass
corresponds to the subhalo mass itself. If the mass density
profile follows the universal NFW profile (Navarro et al. 1996,
1997) without any truncation radii, the aperture mass is higher
than the spherical one (Okabe et al. 2010b). As expected from
tidal destruction, the radial profile of the projected mass is
saturated outside the truncation radii, rt. We measure projected
masses for all the candidates. Since the smoothing kernel for
the mass reconstructions gives rise to centroid uncertainties of
the candidates, we determine the central position by choosing
maximal lensing signals within a 8.′ × 8.′ box where the center
is aligned with the map peak position. For accurate mass
measurements of subhalos with a variety of sizes, it is important
to explore truncation radii where the projected mass profile is
saturated. We systematically compute projected mass profiles
by changing the background annulus and then statistically
determining the truncation radii. Here, the inner radius changes
from 0.′7 to 14.′5 in steps of 0.′2 and the width is fixed at 3.′. The
projected mass M2D is computed from saturated values, taking
into account the error covariance matrix. The measurement
method is detailed in Appendix C. The same analysis was
repeated for different background widths which showed that the
result does not significantly change. Mass measurements used a
considerably large number of source galaxies (4×103–2×104).
The number is comparable or less than that for main clusters at
z ∼ 0.2 (e.g., Okabe et al. 2010b) for which the background
number densities are ng ∼ 5–20 (arcmin−2). Less massive
subhalos which are detected inside more massive ones should
be excluded in order to avoid double-counting these subhalos.
We count the ith subhalo using two conditions of the radius
rt,i > rt,j and the subhalo mass M2D,i > M2D,j (i ̸= j ). The
number of candidates is then reduced from 49 to 39 using this
procedure. As mentioned above, the LSS model fails to fully
explain the lensing signals of background systems, especially on
group scales. Furthermore, since there is a possibility to detect
mass structures behind the cluster, we conservatively select the
candidates hosting spectroscopically identified member galaxies
within their truncation radii as the cluster subhalos. Having
applied these limitations, 32 peaks are identified as dark matter
subhalos. Three candidates are associated with the background
systems (Table 2). Four candidates have no optical counter:
they are located around ∼70.′ in the south-east direction and the
north-west direction, respectively.

These 32 subhalos are labeled by integers, in the order of
right ascension. The resulting subhalo masses, M2D, range
from ∼2 × 1012 h−1 M⊙ to ∼5 × 1013 h−1 M⊙ (Table 3).
As shown in Figure 6, the radial profiles of the projected mass
clearly show saturation at some outer radii. The subhalos are
widely distributed from the northeast to the southwest in the sky
(Figure 3). Interestingly, the direction connecting between the
Coma cluster and A1367 which are parts of the Coma superclus-
ter (Gregory & Thompson 1978) agrees roughly with the sub-
halo distributions. Several massive subhalos are associated with
well-known, spectroscopically identified groups in the cluster
(e.g., Mellier et al. 1988; Adami et al. 2005). Galaxies or groups
associated with subhalos are summarized with references in
Table 3. The cD galaxies, NGC 4874 and NGC 4889, are as-
sociated with subhalos “21” and “24,” respectively. The mean
mass ratio reported in this paper compared to the previous pa-
per for overlapping subhalos is ⟨Mnew/Mold⟩ = 1.02 ± 0.54.
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Beyond Kaiser formula
Testing gravity with RSD needs a further investigation

Due to nonlinear nature of mapping from real to redshift spaces,

applicable range of linear theory is severely limited

tions including the small corrections tend to oversmear the
acoustic feature, leading to a small discrepancy shown in
Fig. 5.

Another source for the discrepancies may come from the
effect of finite-mode sampling caused by the finite box size
of the N-body simulations. As advocated by Refs. [25,55],
due to the finite number of Fourier modes, the matter
power spectrum measured from N-body simulations may
not agree well with the predictions of linear theory nor
standard PT even at very large scales, and tends to system-
atically deviate from them.While we follow and extend the
procedure of Ref. [25] to correct this effect in redshift
space, it relies on the leading-order calculations of standard
PT, and the correction for finite-mode sampling has been
restricted to the low-k modes, k & 0:1h Mpc!1 [34].
Hence, the high-k modes of the power spectrum plotted
here may be affected by the effect of finite-mode sampling,
and it would be significant for higher-multipole spectra
because of its small amplitude. This might still be serious
even with the 30 independent N-body simulations.

Perhaps, the best way to remedy these discrepancies at
low-z is both to apply the improved PT treatment to the
corrections A and B, and to consider the higher-order
contributions for correcting the effect of finite-mode sam-
pling over the relevant range of BAOs. The complete
analysis along this line needs some progress and is beyond
the scope of this paper. Nevertheless, it should be stressed
that the model given by Eq. (18) captures several important
aspects of redshift distortion, and even the present treat-
ment with standard PT calculations of the corrections A
and B can provide a better description for power spectra. In
Fig. 7, we plot the fitted values of the velocity dispersion

obtained from the new predictions shown in Fig. 5. The
redshift dependence of the fitted results roughly matches
physical intuition, and is rather consistent with the linear-
theory prediction. This is contrasted to the cases neglecting
the corrections (see Fig. 3).
As another significance, we plot in Fig. 8 the

quadrupole-to-monopole ratios for redshift-space power
spectra. The new model predictions using standard and
improved PT calculations (solid and dashed lines) are
compared with those neglecting the corrections A and B

(dot-dashed lines). The amplitude of the ratio PðSÞ
2 =PðSÞ

0
basically reflects the strength of the clustering anisotropies,
and is proportional to ð4f=3þ 4f2=7Þ=ð1þ 2f=3þ f2=5Þ
in the limit k ! 0 (e.g., [1,3,43]). One noticeable point is
that the N-body results for the quadrupole-to-monopole
ratio do exhibit oscillatory behavior, and the model includ-
ing the corrections (18) reproduces the N-body trends
fairly well. On the other hand, the phenomenological
model neglecting the corrections generally predicts the

smooth scale dependence of the ratio PðSÞ
2 =PðSÞ

0 , and thus
it fails to reproduce the oscillatory feature. Since this
oscillation originates from the acoustic feature in BAOs,

FIG. 7 (color online). Same as in Fig. 3, but here we adopt the
new model of redshift distortion in estimating !v. The filled
triangles and circles are the results obtained from predictions
based on standard PT and improved PT calculations, respectively
(see dashed and solid lines in Fig. 5).

FIG. 8 (color online). Quadrupole-to-monopole ratios for the

redshift-space power spectrum, PðSÞ
2 ðkÞ=PðSÞ

0 ðkÞ, given at z ¼ 3,
2, 1, and 0.5 (from top to bottom). Solid and dashed lines,
respectively, represent the predictions based on the new model
of redshift distortion combining improved PT and standard PT
calculation to estimate the three different power spectra P"",
P"#, and P##. Dot-dashed lines are the results based on the
phenomenological model neglecting the corrections, which cor-
respond to solid lines in Fig. 2 (i.e., nonlinear PKaiser þ
Gaussian, DFoG). The vertical arrows indicate the maximum
wave number k1% for standard PT (left, green) and improved
PT (right, magenta).
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and B can provide a better description for power spectra. In
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P"#, and P##. Dot-dashed lines are the results based on the
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Gaussian, DFoG). The vertical arrows indicate the maximum
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PT (right, magenta).
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tions including the small corrections tend to oversmear the
acoustic feature, leading to a small discrepancy shown in
Fig. 5.

Another source for the discrepancies may come from the
effect of finite-mode sampling caused by the finite box size
of the N-body simulations. As advocated by Refs. [25,55],
due to the finite number of Fourier modes, the matter
power spectrum measured from N-body simulations may
not agree well with the predictions of linear theory nor
standard PT even at very large scales, and tends to system-
atically deviate from them.While we follow and extend the
procedure of Ref. [25] to correct this effect in redshift
space, it relies on the leading-order calculations of standard
PT, and the correction for finite-mode sampling has been
restricted to the low-k modes, k & 0:1h Mpc!1 [34].
Hence, the high-k modes of the power spectrum plotted
here may be affected by the effect of finite-mode sampling,
and it would be significant for higher-multipole spectra
because of its small amplitude. This might still be serious
even with the 30 independent N-body simulations.

Perhaps, the best way to remedy these discrepancies at
low-z is both to apply the improved PT treatment to the
corrections A and B, and to consider the higher-order
contributions for correcting the effect of finite-mode sam-
pling over the relevant range of BAOs. The complete
analysis along this line needs some progress and is beyond
the scope of this paper. Nevertheless, it should be stressed
that the model given by Eq. (18) captures several important
aspects of redshift distortion, and even the present treat-
ment with standard PT calculations of the corrections A
and B can provide a better description for power spectra. In
Fig. 7, we plot the fitted values of the velocity dispersion

obtained from the new predictions shown in Fig. 5. The
redshift dependence of the fitted results roughly matches
physical intuition, and is rather consistent with the linear-
theory prediction. This is contrasted to the cases neglecting
the corrections (see Fig. 3).
As another significance, we plot in Fig. 8 the

quadrupole-to-monopole ratios for redshift-space power
spectra. The new model predictions using standard and
improved PT calculations (solid and dashed lines) are
compared with those neglecting the corrections A and B

(dot-dashed lines). The amplitude of the ratio PðSÞ
2 =PðSÞ

0
basically reflects the strength of the clustering anisotropies,
and is proportional to ð4f=3þ 4f2=7Þ=ð1þ 2f=3þ f2=5Þ
in the limit k ! 0 (e.g., [1,3,43]). One noticeable point is
that the N-body results for the quadrupole-to-monopole
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ing the corrections (18) reproduces the N-body trends
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Beyond Kaiser formula
Testing gravity with RSD needs a further improvement & renovation

•Limitation of linear Kaiser formula

Due to nonlinear nature of mapping from real to redshift spaces,

applicable range of linear theory is severely limited

•Difficulty in model-independent test of gravity

in a wide class of modified models
Beyond linear regime, nonlinear fifth force comes to play
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Perturbation theory: reloaded
On-going (upcoming) galaxy surveys (will) uncover gigantic volume
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Figure 9: The power spectrum of the dark matter distribution in the Millennium Simulation at various
epochs (blue lines). The gray lines show the power spectrum predicted for linear growth, while the dashed
line denotes the shot-noise limit expected if the simulation particles are a Poisson sampling from a smooth
underlying density field. In practice, the sampling is significantly sub-Poisson at early times and in low
density regions, but approaches the Poisson limit in nonlinear structures. Shot-noise subtraction allows us
to probe the spectrum slightly beyond the Poisson limit. Fluctuations around the linear input spectrum on
the largest scales are due to the small number of modes sampled at these wavelengths and the Rayleigh
distribution of individual mode amplitudes assumed in setting up the initial conditions. To indicate the bin
sizes and expected sample variance on these large scales, we have included symbols and error bars in the
z= 0 estimates. On smaller scales, the statistical error bars are negligibly small.
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Figure 9: The power spectrum of the dark matter distribution in the Millennium Simulation at various
epochs (blue lines). The gray lines show the power spectrum predicted for linear growth, while the dashed
line denotes the shot-noise limit expected if the simulation particles are a Poisson sampling from a smooth
underlying density field. In practice, the sampling is significantly sub-Poisson at early times and in low
density regions, but approaches the Poisson limit in nonlinear structures. Shot-noise subtraction allows us
to probe the spectrum slightly beyond the Poisson limit. Fluctuations around the linear input spectrum on
the largest scales are due to the small number of modes sampled at these wavelengths and the Rayleigh
distribution of individual mode amplitudes assumed in setting up the initial conditions. To indicate the bin
sizes and expected sample variance on these large scales, we have included symbols and error bars in the
z= 0 estimates. On smaller scales, the statistical error bars are negligibly small.
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by T. Nishimichi
30 runs

Linear theory

Perturbative approach (� = �1 + �2 + �3 + · · ·) is supposed to work well
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New formula for RSD

P (S)(k) =
⇤

d3x eik·x
�
e�ikµ �uz {�(r)�⌅zuz(r)} {�(r⇤)�⌅zuz(r⇤)}

⇥
+f +f

+A(k, µ) + B(k, µ)
�

P (S)(k, µ) = e�(kµf⇤v)2
�
P��(k)� 2fµ2P�⇥(k) + f2µ4P⇥⇥(k)

Next-to-leading order corrections

Perturbation theory formula

Exact expression AT, Nishimichi & Saito (’10)

Rewriting it in terms of cumulants, and applying low-
k expansion, while keeping non-perturbative factor

x = r � r

0

�uz ⌘ uz(r)� uz(r
0)

(bispectrum & power spec. squared)

P (S)(k, µ) = (1 + f µ2)2P��(k)(c.f.) Linear Kaiser formula: 

: velocity-divergence field✓ (⇠ �)
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Performance of new formula
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Performance of new formula
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new formula

Recovery of f(z)

2 parameter fit to N-body data: f and σv

✓ streaming model
• seams OK only at kmax<0.1h/Mpc
• typically ~5% underestimate of f

✓ TNS model
• gives unbiased estimate of f
• up to kmax ~ 0.2 h/Mpc
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Blind fit to halo catalogs in simulation 
for different mass of halos

by Nishimichi
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Consistency test of GR

(Beutler, Seo, Saito et al. ’16)

Assuming underlying theory of gravity is GR, PT-based template 
is compared with observations 

Formula has been also used for latest BOSS data (DR12), and no strong 
evidence for deviation from GR has been found

Redshift

New formula for 
RSD used

Oka, Saito, Nishimichi, 
AT & Yamamoto (’14)

Planck Collaboration: Cosmological parameters

with HST. As a result, the MW solutions for H0 are unstable
(see Appendix A of E14). The LMC solution is sensitive to the
metallicity dependence of the Cepheid period-luminosity rela-
tion which is poorly constrained by the R11 data. Furthermore,
the estimate in Eq. (30) is based on a di↵erential measurement
comparing HST photometry of Cepheids in NGC 4258 with
those in SNe host galaxies. It is therefore less prone to pho-
tometric systematics, such as crowding corrections, than is the
LMC+MW estimate of Eq. (31). It is for these reasons that we
have adopted the prior of Eq. (30) in preference to using the
LMC and MW distance anchors.19

Direct measurements of the Hubble constant have a long and
sometimes contentious history (see e.g., Tammann et al. 2008).
The controversy continues to this day and one can find “high”
values (e.g., H0 = (74.3 ± 2.6) km s�1Mpc�1, Freedman et al.
2012) and “low” values (e.g., H0 = (63.7 ± 2.3) km s�1Mpc�1,
Tammann & Reindl 2013) in the literature. The key point that we
wish to make is that the Planck only estimates of Eqs. (21) and
(27), and the Planck+BAO estimate of Eq. (28) all have small
errors and are consistent. If a persuasive case can be made that
a direct measurement of H0 conflicts with these estimates, then
this will be strong evidence for additional physics beyond the
base ⇤CDM model.

Finally, we note that in a recent analysis Bennett et al. (2014)
derive a “concordance” value of H0 = (69.6±0.7) km s�1Mpc�1

for base ⇤CDM by combining WMAP9+SPT+ACT+BAO
with a slightly revised version of the R11 H0 value (73.0 ±
2.4 km s�1Mpc�1). The Bennett et al. (2014) central value for
H0 di↵ers from the Planck value of Eq. (28) by nearly 3 % (or
2.5�). The reason for this di↵erence is that the Planck data are
in tension with the Story et al. (2013) SPT data (as discussed in
Appendix B of PCP13; note that the tension is increased with the
Planck full mission data) and with the revised R11 H0 determi-
nation. Both tensions drive the Bennett et al. (2014) value of H0
away from the Planck solution.

5.5. Additional data

5.5.1. Redshift space distortions

Transverse versus line-of-sight anisotropies in the redshift-space
clustering of galaxies induced by peculiar motions can, poten-
tially, provide a powerful way of constraining the growth rate
of structure. A number of studies of redshift space distortions
(RSD) have been conducted to measure the parameter combina-
tion f�8(z), where for models with scale-independent growth

f (z) =
d ln D
d ln a

, (32)

and D is the linear growth rate of matter fluctuations. Note that
the parameter combination f�8 is insensitive to di↵erences be-
tween the clustering of galaxies and dark matter, i.e., to galaxy
bias (Song & Percival 2009). In the base ⇤CDM cosmology, the
growth factor f (z) is well approximated as f (z) = ⌦m(z)0.545.

19As this paper was nearing completion, results from the Nearby
Supernova Factory have been presented that indicate a correlation be-
tween the peak brightness of Type Ia SNe and the local star-formation
rate (Rigault et al. 2014). These authors argue that this correlation in-
troduces a systematic bias of ⇠ 1.8 km s�1Mpc�1 in the SNe/Cepheid
distance scale measurement of H0 . For example, according to these
authors, the estimate of Eq. 30 should be lowered to H0 = (68.8 ±
3.3) km s�1Mpc�1, a downward shift of ⇠ 0.5�. Clearly, further work
needs to be done to assess the important of such a bias on the distance
scale. It is ignored in the rest of this paper.
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Fig. 16. Constraints on the growth rate of fluctuations from
various redshift surveys in the base ⇤CDM model: green star
(6dFGRS, Beutler et al. 2012); purple square (SDSS MGS,
Howlett et al. 2014); cyan cross (SDSS LRG, Oka et al. 2014);
red triangle (BOSS LOWZ survey, Chuang et al. 2013); large red
circle (BOSS CMASS, as analysed by Samushia et al. 2014);
blue circles (WiggleZ, Blake et al. 2012); and green diamond
(VIPERS, de la Torre et al. 2013). The points with dashed red
error bars (o↵set for clarity) correspond to alternative analy-
ses of BOSS CMASS from Beutler et al. (2014b, small circle)
and Chuang et al. (2013, small square). The BOSS CMASS
points are based on the same data set and are therefore not in-
dependent. The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ⇤CDM model. Where available
(for SDSS MGS and BOSS CMASS), we have plotted condi-
tional constraints on f�8 assuming a Planck⇤CDM background
cosmology. The WiggleZ points are plotted conditional on the
mean Planck cosmology prediction for FAP (evaluated using the
covariance between f�8 and FAP given in Blake et al. (2012)).
The 6dFGS point is at su�ciently low redshift that it is insensi-
tive to the cosmology.

More directly, in linear theory the quadrupole of the redshift-
space clustering anisotropy actually probes the density-velocity
correlation power spectrum, and we therefore define

f�8(z) ⌘
h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (33)

as an approximate proxy for the quantity actually being mea-
sured. Here �(vd)

8 measures the smoothed density-velocity corre-
lation and is defined analogously to�8 ⌘ �(dd)

8 , but using the cor-
relation power spectrum Pvd(k), where v = �r · vN/H and vN is
the Newtonian-gauge (peculiar) velocity of the baryons and dark
matter, and d is the total matter density perturbation. This defi-
nition assumes that the observed galaxies follow the flow of the
cold matter, not including massive neutrino velocity e↵ects. For
models close to ⇤CDM, where the growth is nearly scale inde-
pendent, it is equivalent to defining f�8 in terms of the growth of
the baryon+CDM density perturbations (excluding neutrinos).

The use of RSD as a measure of the growth of structure is
still under active development and is considerably more di�cult
than measuring the positions of BAO features. Firstly, adopt-
ing the wrong fiducial cosmology can induce an anisotropy in
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PT in modified gravity models

Poisson eq.

E.O.M for 
BD scalar

1
a2
⇥2⌅ = 4⇥ G ⇤m � � 1

2a2
⇥2⇧

(3 + 2⌅BD)
1
a2
⇤2⇧ = 8⇥ G ⇤m � � I(⇧)

��

�t
+

1
a
� · [(1 + �) v] = 0

Euler eq.

Continuity eq.

• Matter sector : (Standard) fluid system
• Gravity sector:  Theory looks like Brans-Dicke (BD) gravity 

on sub-horizon scales

Model-dependent

Koyama, AT & Hiramatsu (’09)

�BD = 0

In f(R) gravity, 

�fR ; fR �
d f(R)

dR
� = �fR

BD scalar

nonlinear potential

��a(k)�b(k’)� = (2�)3�D(k + k’)Pab(k)��a(k)�b(k’)� = (2�)3�D(k + k’)Pab(k)�a �
�

�
�

�
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a + · · ·
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�t
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1
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Performance of PT template
GR�

f(R)�

|fR,0| = 10�4

h"p://icosmology.info/Nbody_Simula8on.html

GR

f(R) gravity

Matter power 
spectrum

Resummed PT

GR

f(R) gravity

(this work)

z=0.5

z=1

AT, Nishimichi, Bernardeau et al. (’15); AT (’16)

k3/2 P (k)

f(R) � �16� G �� + |fR,0| R2
0

R

f(R) gravity 
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28



Test against mock simulations

GR-based template
scale-dept. linear growth rate 

in f(R) gravity

how well one can constrain the parameter, |fR,0|, in N-body data ?

through

P (GR)
� (k; f)

Consistently incorporating the modified gravity effects into 
theoretical template greatly improves the parameter constraints

10

FIG. 7: Two-dimensional error contours derived from MCMC analysis, fixing the maximum wavenumber to kmax =
0.15 h Mpc−1. Left panel shows the results derived from the PT template calculated in f(R) gravity. The three different
contours represent the cases with the PT template with and without A and B terms (magenta, green), and with A and B
calculated in GR (blue), which are also shown in Fig. 6. On the other hand, in right panel, the results are shown for the
PT template calculated in GR. In GR, the power spectrum template can be written as functions of k, µ, and the linear
growth rate f , i.e., P (S)(k, µ; f). Here, incorporating the linear growth rate of the f(R) gravity into the GR-based template,
we derive the constraints on |fR,0| and σv, depicted as contour with orange color. The contour with magenta color is the
result taking account of the scale-dependent relative growth by introducing gravity bias, δn-body,F4(k) = b(k) δPT,GR(k) with
b(k) = (1 + A2 k2)/(1 + A1 k) and marginalizing over the nuisance parameters A1 and A2 [see Eq. (23) ].

for an unbiased estimation of |fR,0|, we need to addition-
ally incorporate the effect of gravity bias, that accounts
for the relative difference of the clustering amplitude be-
tween GR and f(R) gravity, into the PT template. The
contour with magenta color is the results taking account
of this gravity bias, simply assuming the following rela-
tion:

δn-body,F4(k) = b(k) δPT,GR(k); b(k) =
1 + A2 k2

1 + A1 k
,

(23)

where δn-body,F4 is the density field in N -body simula-
tion, whilst δGR is the density field for the PT calcula-
tion. The function b(k) characterizes the scale-dependent
growth relative to the GR prediction, and we adopt here
the functional form similar to those frequently used to
model the galaxy bias (e.g., [65, 66]). Allowing the pa-
rameters A1 and A2 to float, the result marginally repro-
duces the fiducial value of |fR,0|, and the goodness-of-fit
quantified by χ2

red is improved. With the increased num-
ber of free parameters, however, constraining power is
significantly reduced, and the size of error contour indeed
becomes large (c.f. left panel of Fig. 7). This proves that
the heterogeneous PT template is insufficient to tightly
constrain the model parameter of modified gravity, and
a full PT modeling taking proper account of the mod-
ified gravity is required for unlocking the full power of
precision RSD measurement.

B. Model-independent detection of a small
deviation from GR

Consider next the model-independent test of GR, and
discuss how well we can characterize or detect the scale
dependence of the linear growth rate, f . Here, for illus-
trative purpose, we examine the two simple cases. One is
to divide the power spectrum data into several wavenum-
ber bins, and in each bin, we try to estimate f to see a
possible deviation from spatially homogeneous f . The
other case is to assume a specific functional form of f ,
and to constrain its parameters. In both cases, similar to
the analysis shown in right panel of Fig. 7, we adopt the
GR-based PT template with the improved model of RSD,
and take account of the gravity bias in Eq. (23). We then
fit the template to the monopole and quadrupole power
spectra at z = 1 measured from N -body simulations of
f(R) gravity with |fR,0| = 10−4.

Fig. 8 shows the result of MCMC analysis for the
binned linear growth rate, where we set kmax =
0.15 h Mpc−1, and divide the power spectrum data into
three equal bins. Solid line represents the linear growth
rate of the f(R) gravity, while the vertical errorbars
of the binned results indicate the 1-σ statistical uncer-
tainty derived from the MCMC analysis, marginalized
over other nuisance parameters. Note that number of
free parameters is 6. The best-fit value of f in each bin
is close to the fiducial value, but slightly away from lin-
ear theory prediction except for the central bin. As a

k_max=0.15h/Mpc

Template based on f(R) gravity

|     

Free parameters : |fR,0|, �v

1-σ error:  cosmic variance 
limited survey of 10(Gpc/h)^3

104 |fR,0|
fiducial 
value

Combining PT template with new formula of RSD, 
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Consistent modified gravity analysis

7

FIG. 4: The measured constraints on fR0

, and their robustness to various tests, are presented. The measured likelihood function
appears in the top panels and the measured di↵erence of �2 is in the bottom panels. (Left panel) Results marginalizing over
the scale independent growth rate G

⇥

are shown by the black solid curve, while the constraints fixing G
⇥

= 0.46, given by
the Planck concordance ⇤CDM model, are blue dashed curves. The results for fR0

do not depend appreciably on the scale
independent behavior. (Right panel) The results also do not depend significantly on whether the initial power spectrum P (k)
used matches the Planck (black solid) or WMAP9 (black dashed) model. The blue dotted curve represents the results from
analyzing galaxy clustering from ⇤ CDM mock catalogues, verifying that |fR0

| ! 0 is recovered in this case.

The redshift-space two-dimensional correlation func-
tion ⇠(�,⇡) of the BOSS DR11 galaxies was computed
using the standard Landy-Szalay estimator [39]. In the
computation of this estimator we used a random point
catalogue that constitutes an unclustered but observa-
tionally representative sample of the BOSS CMASS sur-
vey and contains ⇠ 50 times as many randoms as we have
galaxies.

The covariance matrix was obtained from 600 mock
catalogues based on second-order Lagrangian perturba-
tion theory (2LPT) [40, 41]. The mocks reproduce
the same survey geometry and number density as the
CMASS galaxy sample. We obtain the covariance ma-
trix using the same treatment presented in our previous
works [10, 11].

We calculate the correlation function in 225 bins
spaced by 10h�1 Mpc in the range 0 < �,⇡ <
150h�1 Mpc. However, at small scales, if the non–
perturbative e↵ect of FoG is underestimated, then the
residual squeezing can be misinterpreted as a variation
in G

✓

or indeed f
R0

. We expect the FoG e↵ect to be in-
creasingly important at smaller scales, and so these mea-
surements may be at risk of misestimation. We therefore
impose a conservative cut on the measurements, exclud-
ing �

cut

< 40h�1 Mpc and s
cut

< 50h�1 Mpc [10]. In-
deed, [10] showed that cosmological parameter bias be-

gan to occur at smaller scales. This reduces the number
of measurement bins in � and ⇡ to N

bins

= 163.

B. Tests of theoretical templates

When the conservative cut–o↵ scales of �
cut

=
40h�1 Mpc and s

cut

= 50h�1 Mpc are used for the anal-
ysis, the e↵ective range of scale in Fourier space becomes
k < 0.1Mpc�1. The power spectra of ⇤CDM and f(R)
gravity models are presented in this range of scale in
Fig. 1. There are no observable deviations from ⇤CDM
for log |f

R0

| <⇠ �6. This implies that f(R) gravity models
with log |f

R0

| <⇠ �6 are e↵ectively equivalent to ⇤CDM
in this analysis. We take a uniform prior on log |f

R0

|
between �7 and �3.
We first test our pipeline of analysis by checking

whether it is possible to recover the ⇤CDM limit
log |f

R0

| <⇠ �6 using the mock catalogues based on
⇤CDM. We use the 611 CMASS mock catalogues to
measure central values of ⇠(�,⇡) and fit our theoretical
f(R) templates to the observed correlation function. The
measured likelifood function of log |f

R0

| is presented as
a blue dotted curve in the right panel of Fig. 4. The
best fit log f

R0

indeed lies within the ⇤CDM limit of
log |f

R0

| <⇠ �6. There are no mock galaxy catalogues
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We first test our pipeline of analysis by checking

whether it is possible to recover the ⇤CDM limit
log |f

R0

| <⇠ �6 using the mock catalogues based on
⇤CDM. We use the 611 CMASS mock catalogues to
measure central values of ⇠(�,⇡) and fit our theoretical
f(R) templates to the observed correlation function. The
measured likelifood function of log |f

R0

| is presented as
a blue dotted curve in the right panel of Fig. 4. The
best fit log f

R0

indeed lies within the ⇤CDM limit of
log |f

R0

| <⇠ �6. There are no mock galaxy catalogues

Y-S.Song,  AT, Linder, Koyama et al. (’15)

|fR,0| < 8� 10�4 (2�)

6

the correlation function ⇠(�,⇡) using a ⇤CDM template
and replace the growth function D�

+

or growth rate D⇥

+

by that in f(R) gravity with |f
R0

| = 3.2 ⇥ 10�5 and
|f

R0

| = 3.0⇥ 10�4.
For the scale dependent growth function D�

+

, the vari-
ation of ⇠(�,⇡) with a small |f

R0

| = 3.2⇥ 10�5 is similar
to the case of a scale independent enhancement of the
growth function studied in [9]. Peak points on the BAO
ring represented by a thick black solid curve in Fig. 2
move coherently along the circle in an anti–clockwise di-
rection. The blue dashed contours in the left panel of
Fig.2 represent this variation. However, ⇠(�,⇡) with a
larger |f

R0

| = 3.0⇥ 10�4 varies di↵erently from the scale
independent case. Peak points on the BAO ring remain
the same, while minima of BAO are deepened, shown as
blue dotted contours in the same panel.

Next, we consider the variation of ⇠(�,⇡) due to the
scale dependent growth rate D✓

+

. In the case of the scale
independent growth rate, if G

⇥

increases or decreases,
the anisotropic e↵ects from higher order moments are
visible in the plot of ⇠(�,⇡) with the BAO peak points
moving clockwise or anti-clockwise along the circle de-
pending on the location of the peaks. The blue dashed
contours in the right panel of Fig. 2 represent the vari-
ation of ⇠(�,⇡) with �D⇥

+

for |f
R0

| = 3.2 ⇥ 10�5 and
|f

R0

| = 3.0 ⇥ 10�4. For |f
R0

| = 3.0 ⇥ 10�4, we can see
that the peak positions are ‘squeezed’ along the BAO
ring.

Having shown the individual e↵ects of a scale depen-
dent growth function and growth rate on the correlation
function, we now present the correlation function ⇠(�,⇡)
in f(R) gravity models. In Fig. 3, the correlation function
with |f

R0

| = 3.2⇥10�5 and |f
R0

| = 3.0⇥10�4 are plotted
as black dashed and black dotted contours, respectively.
There is no variation of ⇠(�,⇡) up to |f

R0

| <⇠ 10�6, and
the correlation function is e↵ectively equivalent to that
of ⇤CDM. When |f

R0

| increases to |f
R0

| ⇠ 10�4, we
observe the deviation of ⇠(�,⇡) from ⇤CDM and this de-
viation can be understood as the combined e↵ect of the
scale dependent growth function and growth rate shown
in Fig. 2.

III. METHODOLOGY AND RESULTS

The observed clustering of galaxies in redshift space
not only probes the density and velocity fields, i.e. the
growth and gravity as discussed in the previous section,
but also provides a useful tool to determine both the
transverse and radial distances by exploiting the Alcock–
Paczyński e↵ect and the BAO scale. In galaxy redshift
surveys, each galaxy is located by its angular coordinates
and redshift. However, the correlation function, ⇠(�,⇡),
is measured in comoving distances. Therefore a fiducial
cosmological model is required for conversion into comov-
ing space. We use the best fit ⇤CDM universe to Planck
2013 data. The conversion depends on the transverse
and radial distances involving D

A

and H�1. Instead of

FIG. 3: The best fit correlation function ⇠(�,⇡) of ⇤CDM
(black solid unfilled contours) and the correlation function of
f(R) gravity models with |fR0

| = 3.2 ⇥ 10�5 (black dashed
unfilled contours) and 3.0 ⇥ 10�4 (dotted unfilled contours).
The blue filled contours represent the measured ⇠(�,⇡) from
the DR11 CMASS data. The levels of contours are given
by (�0.001, 0.002, 0.005, 0.016, 0.05) from the outer to inner
contours.

recreating the measured correlation function in comoving
distances for each di↵erent model, we create the fiducial
maps from the theoretical correlation function by rescal-
ing the transverse and radial distances usingD

A

andH�1

and fit them to the observed correlation function. There-
fore, when we fit the measured ⇠(�,⇡), the two distance
parameters of (D

A

, H�1) are added to the structure for-
mation parameter set of {G

�

, G
⇥

,�
p

, |f
R0

|,�
p

} discussed
in Sec. II B.

A. Measured ⇠(�,⇡) using DR11

Our measurements are based on those previously pre-
sented in [11] which follows a similar procedure to [10].
Briefly, in our analysis we utilise data release DR11 of

the Baryon Oscillation Spectroscopic Survey [BOSS; 32–
34] which is part of the larger Sloan Digital Sky Survey
[SDSS; 35, 36] program. From DR11 we focus our anal-
ysis on the Constant Stellar Mass Sample (CMASS) [37],
which contains 690,826 galaxies and covers the redshift
range z = 0.43 � 0.7 over a sky area of ⇠8,500 square
degrees with an e↵ective volume of V

e↵

⇠ 6.0Gpc3. The
CMASS galaxy sample is composed primarily of bright,
central galaxies, resulting in a highly biased (b ⇠ 2) se-
lection of mass tracers [38].

ΛCDM
|fR,0| = 3.2� 10�5

|fR,0| = 3.0� 10�4

correlation function

Application of PT template to observations:

Geometric distortions marginalized

Likelihood

f(R) � �16� G �� + |fR,0| R2
0

R

Baryon Oscillation Spectroscopic Survey (BOSS),  DR11
(690,000 galaxies @ z=0.57)

104 |fR,0|

best-fit
1σ

s? [Mpc]

s k
[M

p
c]
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Comparison with other obs.

-7

-5

-4

-2

0

Solar 
system

Dwarf 
galaxy

Coma 
cluster

Cluster 
abundance

Cluster 
stack

Clustering 
ratio

CMBRSD

log10 |fR,0|

Small scale Large scale

f(R) � �16� G �� + |fR,0| R2
0

R

Upper bound (2σ)

GR

base on 
Wilcox et al. (’15)

A broad parameter range is still allowed at large scales (>50Mpc)

50-150 Mpc/h
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Short summary 

So far, consistent with

General relativity

• constraint on gravity is still weak at large scales

But,

hint of modified gravity ? → future obs.

RSD effect of large-scale structure can be used to probe gravity on 
cosmological scales, and test has been made with development of 
analytical tools

(Lambda CDM model)

• measured ‘f ’ is systematically smaller than ΛCDM predictions
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Upcoming/on-going projects
Multi-purpose ground- & space-based experiments

Euclid (2020)

WFIRST
(2024++)

space

space

LSST
(2022++)

DES (2013~)

DESI
(2018+)

eBOSS (2014~)

HETDEX (2016+)

SuMIRe 
(2014~)

subaru
33



Narrowing constraints in future

Hashimoto, Rasera 
& AT (’17)

Standard PT tree

New 1-loop
Equilateral shape

Combination of bispectrum will tighten 
the constraint or improve the test

(by more than factor of two)
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Figure 5. Upper : expected 1σ constraint on the linear growth rate f(z), assuming DESI. The results
are estimated using both the power spectrum and bispectrum. Dotted and dash curves represent f(z)
with w = −1.05 and −0.95 respectively, and red long dash curve represents f(z) with DGP model.
Lower : the fractional errors of f . Meaning of the line types are the same as in figure 1.

Figure 6. Upper : the expected error on nuisance parameter characterizing the damping scales of the
FoG effect, σp(z). The results are presented assuming DESI-like experiment. Lower : the fractional
errors of σp(z). Meaning of the line types are the same as in figure 1.
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Beyond redshift-space distortions
An improved statistical precision of gigantic galaxy survey,

will open up a new window to detect  general relativistic effects  

On top of redshift-space distortions, 

(Integrated) Sachs-Wolfe effect

Weak gravitational lensing effect

Gravitational redshift

Shapiro time-delay

Light-cone effect

Bonvin & Durrer (’11)Yoo (’10),
Yoo, Fitzpatrick & Zaldarriaga (’09)

http://www.roe.ac.uk/~heymans/website_images/Gravitational-lensing-galaxyApril12_2010-1024x768.jpg

wikipedia http://physicsworld.com
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Real space

observer

density_full_realspace

Fig. courtesy:Yann Rasera, based on 
the data by Michel-Andres Breton

36



Including all 
GR effects

observer

density_full_redshiftspacealleffects

Fig. courtesy:Yann Rasera, based on 
the data by Michel-Andres Breton
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Real space

density_zoom2_realspace
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‘Standard’ 
redshift space

Wide angle RSD & 
light-cone effects

density_RSDonly
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density_allrelativisticeffects

All relativistic 
effects included

‘Observed’ 
redshift space
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density_zoom2_integrated_contrib

Lensing & 
ISW effects
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density_zoom2_potential_contrib

Gravitational 
redshift
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density_zoom2_transversedoppler_contrib

Transverse 
Doppler effect
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Signature of new relativistic effect

Gravitational redshift 1989

Figure 4. Top panels: the cluster-mass correlation functions in GRedshift space (left-hand panel), in peculiar velocity space (RSD) (middle panels) and the sum
of the two (right-hand panel) for haloes with the mass M > 5 × 1013 M⊙ h−1. In the left-hand panel, no peculiar velocities are added and the GRedshift signal
has been amplified by 100 times for better visualization. In the right-hand panel, the GRedshift distortion is much smaller than that from peculiar velocities
and it is difficult to see the difference it produces relative to the middle panel. Middle panels: examples of histograms of the particle distributions (from the
top panels) along the LOS direction, π, at different projected distances, σ , from the cluster centres. Dotted lines are the best-fitting models (equation 21) to
the solid lines. The offsets of the fitted peaks from the centre are interpreted as the GRedshift signal. Bottom panels: the best-fitting values for the offsets from
the centre shown in the middle row. Subtracting the curve on the right from the one in the middle yields the solid curve on the left, which is the velocity space
version of the GRedshift signal. The dashed curve on the left is the real space version. The non-zero values in the middle panel are due to sample variance.

MNRAS 468, 1981–1993 (2017)

TotalRSDGravitational redshift

cluster-mass cross-correlation function
Gravitational redshift induces dipole anisotropies in 

Cai, Kaiser, Cole & Frenk (’17)
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Summary
Describing observed large-scale structure in precision cosmology

redshift-space distortions and beyond

Redshift-space distortions as a probe of gravity

Modeling RSD from perturbation theory

Testing and constraining gravity from SDSS data

General relativistic effects on large-scale structure

Future observations will be able to not only demonstrate a 
precision test of gravity, but also open a new window

More fun for precision cosmology !
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