非一様宇宙の観測

赤方偏移空間歪み

赤方偏移空間

観測者が定義する空間は‘実際’の空間とは違う

特殊相対論の最低次の効果（i．e．，v／c＜＜1）
赤方偏移空間 （共動系）

$$
\vec{s}=\vec{r}+\frac{1+z}{H(z)}(\vec{v} \cdot \hat{z}) \hat{z}
$$

銀河の特異速度

観測者の視線方向

－ハッブルダイアグラムに見られ るバラツキの原因
－ 2 点相関関数・パワースペクト ルでは系統的効果として効く

Redshift-space distortions (RSD)

Dark matter in N -body simulations (by T. Nishimichi)

~100Mpc/h?

^ observer's line-of-sight direction

RSD in SDSS－II main galaxies

色は銀河の年齢

> 青い: 若い赤い: 古い

Anisotropic correlation function

Anderson et al.('l3)

BOSS DRII, CMASS samples

 700,000gals @ $0.43<z<0.7$

Multipole expansion

BOSS DR9

Anisotropic power spectrum

BOSS DRI2

Alam et al. ('I6)

Anisotropic power spectrum

BOSS DRI2

$$
\begin{array}{r}
P\left(k_{\|}, k_{\perp}\right)=\sum_{\ell: \text { even }} P_{\ell}(k) \mathcal{P}_{\ell}\left(k_{\|} / k\right) \\
\quad ; k=\left(k_{\|}^{2}+k_{\perp}^{2}\right)^{1 / 2}
\end{array}
$$

Beutler et al. ('I6)

カイザー公式

Kaiser（＇87）

赤方偏移空間 の密度場

$$
\delta^{(\mathrm{S})}(s)=\left|\frac{\partial s}{\partial x}\right|^{-1}\{1+\delta(s)\}-1
$$

$$
\simeq \delta(\boldsymbol{r})-\frac{(1+z)}{H(z)} \partial_{z} v_{z} \quad \text { (線形近似) }
$$

質量密度の保存 $\left\{1+\delta^{(s)}(s)\right\} d^{3} s$

$$
=\{1+\delta(r)\} d^{3} r
$$連続の式 ：$\dot{\delta}+\frac{1}{a} \nabla \cdot \boldsymbol{v} \simeq 0$ （渦なし）

$$
\delta^{(\mathrm{S})}(\boldsymbol{k})=\left(1+\mu_{k}^{2} \frac{d}{d \ln a}\right) \delta(\boldsymbol{k}) ; \quad \mu_{k} \equiv \hat{\boldsymbol{k}} \cdot \hat{z}
$$

$コ ヒ ー ム ン ト ~ 。 ~$視綡频向落下運動

視線方向に沿って密度場
の振幅超過

重力のプローブ

カイザー

$$
\delta^{(\mathrm{S})}(\boldsymbol{k})=\left(1+f \mu_{k}^{2}\right) \delta(\boldsymbol{k}) ; \quad f \equiv \frac{d \ln D_{+}^{\text {㤃 }}}{d \ln a}
$$

線形成長因子公式

「率は重力の性質によって変わりうる

しかも

> カイザー公式は重力理論とは無関係に成り立つ

宇宙論的大スケールで重力理論（相対論）を検証する手段

- ヘCDMモデルの中で未だ検証されていない仮定
- 加速膨張の起源に迫る手がかり
e．g，Linder（＇08）；Guzzo et al．（＇08）；Yamamoto et al．（＇08）；Percival \＆White（09）

宇宙論的大スケールにおける重力

銀河 銀河団 銀河のクラスタリング CMB高密度

小スケール
（～kpc）

構造形成の修正

スカラー自由度による
第5の力の発現
－加速膨張
修正重力を記述する理論的枠組みは十分すぎるほど発展した： f（R）重力，DGP，ホルンデスキー，ビヨンドホルンデスキー．．．

相対論のテスト

相対論（ 1 CDM）が正しいと仮定して構築した理論テンプ レートを観測データと比較して，正しく成長率が求まるか？

最近のデータ（BOSS DRI2）でも新しいRSD公式が使われたが，相対論からの有意なずれは見つかっていない（Beutler，Seo，Saito et al．＇16）

高赤方偏移での制限

z～1．4 で2800個の輝線銀河を用いた RSD観惻（線形理論でよくフィット）

Okumura et al．（＇I6）

幾何学的歪み
 （アルコック－パチンスキー効果）

Geometric distortions (Alcock-Paczynski effect)

Cosmological distortions caused by apparent mismatch of underlying cosmological models

\longrightarrow can generate higher multipole moments of anisotropies
Using the standard ruler,

$$
H(z) \& D A(z) \text { can be measured simultaneously }
$$

An evolution free test for non-zero cosmological constant

Charles Alcock

The Institute for Advanced Study, Princeton, New Jersey 08450

Bohdan Paczyński*

Department of Astronomy, University of California at Berkeley, Berkeley, California 94720 and Princeton University Observatory, Princeton, New Jersey 08540

The cosmological constant has recently been questioned because of difficulties in fitting the standard $\Lambda=0$ cosmological models to observational data ${ }^{1,2}$. We propose here a cosmological test that is a sensitive estimator of Λ. This test is unusual in that it involves no correction for evolutionary effects. We present here the idealised conception of the method, and hint at the statistical problem that its realisation entails.

Consider a collection of test objects emitting radiation containing spectral lines (so that redshifts may be determined), which are distributed on the surface of a sphere. (Any spherically symmetric, bounded distribution will do; this idealisation is for convenience only.) Let the sphere expand with the local

$$
\begin{equation*}
\sum_{+1}(x)=\sin x, \sum_{-1}(x)=\sinh x \tag{5}
\end{equation*}
$$

In the case $k=0$,

$$
\begin{equation*}
\frac{\Delta z}{z \Delta \theta}=z^{-1}\left\{1-\Omega_{0}+\Omega_{0}(1+z)^{3}\right\}^{1 / 2} \int_{1}^{1+z} \mathrm{~d} y\left\{1-\Omega_{0}+\Omega_{0} y^{3}\right\}^{-1 / 2} \tag{6}
\end{equation*}
$$

For the 'conventional' cosmologies where $\Lambda=0$ there is the simple expression,

$$
\begin{equation*}
\frac{\Delta z}{z \Delta \theta}=\frac{\left(1+2 q_{0} z\right)^{1 / 2}}{q_{0}^{2} z}\left\{q_{0} z+\left(q_{0}-1\right)\left(\left(1+2 q_{0} z\right)^{1 / 2}-1\right)\right\} \tag{7}
\end{equation*}
$$

Numerical evaluation of equation (7) shows that $\Delta z /(z \Delta \theta)$ is not a powerful estimator of q_{0} in the $\Lambda=0$ case-there is only 11% variation of $\Delta z /(z \Delta \theta)$ between $q_{0}=0$ and $q_{0}=1$ at $z=2$. However, the general expressions (4) and (6) show great variations of $\Delta z /(z \Delta \theta)$ with the parameters. This is shown in Fig. 1.

Early studies before detection of BAOs:

- Ryden ('95)
shape of void
- Ballinger, Peacock \& Heavens ('96)
- Matsubara \& Suto ('96); Magira, Jing \& Suto ('98)

Baryon acoustic oscillations

- Characteristic scale of primeval baryon-photon fluid (~I50Mpc) imprinted on $\mathrm{P}(\mathrm{k})$ or $\xi(\mathrm{r})$
- Can be used as standard ruler to estimate distance to galaxies

Impact of RSD \& A-P effects

Sensitivity of clustering anisotropies to DA, H \& f

Obs. data:SDSS-II DR7 LRG

Oka et al.('I3) modified

Cosmological constraints

Cosmological constraints

Compilation of other observations

Planck 2015 results. XIII

（弱い）重カレンズ効果

重カレンズ効果

星や銀河•銀河団などの重い天体の重力場によって光が曲げら れる現象 \rightarrow 強い重カレンズ，弱い重カレンズに大別

強い重力レンズ：多重像，増光（減光）がみえる弱い重カレンズ：像の歪みがみえる

（強い）

重力レンズ効果"スマイリー"

$$
\begin{gathered}
\text { アインシュタイン } \\
\text { の十字架 }
\end{gathered}
$$

Abell 1689

wikipedia

http：／／hubblesite．org／gallery／album／exotic／gravitational＿lens／

弱い重カレンズ効果

背景銀河の歪みから手前の見えない天体（ダー クマターハロー）の性質を探ることができる

ダークマターなし

銀河のイ
メージの歪み
https：／／en．m．wikipedia．org／wiki／Weak＿gravitational＿lensing

＂弾丸＂＂銀河団

高温がス

重カレンズ観測で見つかつった質量密集領域
(ダータマターの証拠)
http：／／www．nasa．gov／multimedia／imagegallery／image＿feature＿I｜63．html

コスミックシア（Cosmic shear）

手前に存在する宇宙大規模構造が作る（弱い）重カレンズ効果により，遠方の背景銀河のイメージが歪む現象

銀河の歪み具合（楕円率）

－幾何学的重み ×密度ゆらぎの振幅

イメージの歪みの空間相関から，宇宙大規模構造のもつ宇宙論的情報を引き出せる \rightarrow 精密宇宙論の基本観測量

Subaru HSC lyear result

Ellipticity of each object ：$\quad e=\left(e_{1}, e_{2}\right)=\frac{1-(b / a)^{2}}{1+(b / a)^{2}}(\cos 2 \phi, \sin 2 \phi)$

Cosmic shear statistics ：theory

＂Convergence field＂（or Eモード）（平坦宇宙の場合）

$$
\kappa(\vec{\theta})=\frac{3}{2} \Omega_{\mathrm{m}} \frac{H_{0}^{2}}{c^{2}} \int_{0}^{\chi_{\infty}} d \chi_{s} n\left(\chi_{s}\right) \int_{0}^{\chi_{s}} d \chi \frac{\chi\left(\chi_{s}-\chi\right)}{\chi_{s}} \frac{\delta(\vec{\theta}, \chi)}{a(\chi)}
$$

背景銀河の レンズカーネル 質量分布
（共動）動径距離 ：

$$
\chi(z)=\int_{0}^{z} \frac{c d z}{H(z)}
$$

いろんな赤方偏移からの寄与が混じる（projection effect）

Cosmic shear power spectrum

Multipole $(\ell \sim \pi / \theta)$

bin number	z range	$z_{\text {med }}$	N_{g}	$n_{\mathrm{g}}\left[\operatorname{arcmin}^{-2}\right]$
1	$0.3-0.6$	0.446	2842635	5.9
2	$0.6-0.9$	0.724	2848777	5.9
3	$0.9-1.2$	1.010	2103995	4.3
4	$1.2-1.5$	1.300	1185335	2.4
All	$0.3-1.5$	0.809	8980742	18.5

Auto- \& cross power

 spectrum between multiple photo-z bins (lensing tomography)$$
\begin{gathered}
C_{\ell}=\frac{1}{2 \ell+1} \sum_{m=-\ell}^{\ell}\left|e_{\ell m}\right|^{2} \\
\left(e(\vec{\theta})=\sum_{\ell, m} e_{\ell m} Y_{\ell m}(\vec{\theta})\right)
\end{gathered}
$$

Hikage et al. (arXiv: I809.09|48)

Cosmological constraint

Hikage et al. (arXiv: 1809.09|48)

HSCデータが支持する宇宙

（シミュレーション）

プランク衛星が支持する宇宙

クレジット：東京大学，Kavli IPMU 西道啓博特任助教提供）

相対論的効果による歪み

相対論的効果

大規模銀河サーベイによる高精度統計デー夕は，
従来不可能だった新しい相対論効果の検出を可能にする

従来の赤方偏移空間ゆがみに加え，

$$
\begin{aligned}
& \text { 横ドップラー効果 } \\
& \text { 重力赤方偏移効果 } \\
& \text { 積分ザックス-ヴオルフェ効果 } \\
& \text { 弱重カレンズ効果 } \\
& \text { 光円錐効果 } \\
& \text { シャピロ時間遅延効果 }
\end{aligned}
$$

Yoo，Fitzpatrick \＆Zaldarriaga（＇09）； McDonald（＇09）；Yoo（＇IO），Challinor \＆Lewis（＇II）；Bonvin \＆Durrer（＇II）

観測空間とは何か？

我々は観測量を本当に理解しているか？

摂動入りのフリードマン宇宙における光の経路を考える：

$$
d s^{2}=\left[-\left(1+2 \Psi / c^{2}\right)(c d t)^{2}+a^{2}(t)\left(1+2 \Phi / c^{2}\right) \delta_{i j} d x^{i} d x^{j}\right]
$$

天体から観測者までを結ぶ光の測地線を解く：
Null geodesic ：$\quad \frac{d k^{a}}{d \lambda}+\Gamma_{b c}^{a} k^{b} k^{c}=0 \quad k^{a} k_{a}=0 \quad k^{a}=\frac{d x^{a}}{d \lambda}$
Redshift ：$\quad 1+z=\frac{\left(k_{a} u^{a}\right)_{\mathrm{S}}}{\left(k_{a} u^{a}\right)_{\mathrm{O}}} \quad u^{a} \quad \begin{gathered}\text { Observer／source＇s } \\ \text { 4－velocity }\end{gathered}$

（相対論的）赤方偏移空間

（光で見た）観測者からの銀河の位置

E．g．，Challinor \＆Lewis（＇II）

$$
\boldsymbol{s}=\boldsymbol{x}+\boldsymbol{n}\left\{\frac{c}{H} \delta z-\frac{1}{c^{2}} \int_{0}^{\chi\left(z_{\mathrm{obs}}\right)} d \chi^{\prime}(\Psi-\Phi)\right\}-\chi\left(z_{\mathrm{obs}}\right) \boldsymbol{\alpha}
$$

n ：視線方向（単位ベクトル）
$\chi:$ 共動距離
重力レンズ効果による光の折れ曲り：

特殊•一般相対論的な光のエネルギーシフト

赤方偏移

For rest－frame observer

$$
z=z_{\mathrm{obs}}-\delta z
$$

横ドップラー

$$
\delta z=\left(1+z_{\text {obs }}\right)\left\{\frac{\boldsymbol{n} \cdot \boldsymbol{v}_{\mathrm{s}}}{c}-\frac{\Psi_{\mathrm{s}}}{c^{2}}+\frac{1}{2} \frac{v_{\mathrm{s}}^{2}}{c^{2}}-\frac{1}{c^{2}} \int_{t_{\mathrm{s}}}^{t_{\mathrm{o}}} d t^{\prime}(\dot{\Psi}-\dot{\Phi})\right\}
$$

オーダ一評価

$$
\begin{array}{cll}
\text { 効果 } & \frac{\delta z}{1+z} & {[\mathrm{~km} / \mathrm{s}]} \\
\hline \begin{array}{c}
\text { Standard RSD } \\
(\text { 古典ドップラー) }
\end{array} & \mathrm{O}\left(>10^{-3}\right) & \mathrm{O}\left(>10^{2}\right) \\
\text { 重力赤方偏移 } & \mathrm{O}\left(10^{-5}\right) & \mathrm{O}(\mathrm{I}) \\
\text { 横ドップラー } & \mathrm{O}\left(10^{-5}\right) & \mathrm{O}(1) \\
\text { 積分ザックス-ヴォルフェ } & \mathrm{O}\left(<10^{-5}\right) & \mathrm{O}(<1)
\end{array}
$$

e．g．，Cai et al．（＇ 16 ）；Sakuma et al．（＇ 17 ）

重力レンズの曲がり角
シャピロ時間遅延
$\mathrm{O}\left(10^{-3}\right) \mathrm{rad} \sim \mathrm{O}(\mathrm{I})$ arcmin
（コヒーレンス：few deg or ell～100）
O（I）Mpc
（コヒーレンス： 100 deg or ell～2）
e．g．，Hu \＆Cooray（＇OI）；Lewis \＆Challinor（＇06）
ダークマター・ハロー分布のスナップショット

- 光円錐上の重力ポテンシャルデータを保存
- 光の測地線方程式を観測者から天体（八ロー）に向し て逆解きする（ただし $\Phi=\Psi$ を仮定）
\longrightarrow ゆがんだ天球面の位置 \＆赤方偏移：
弱場近似の下で考えられる

$$
1+z=\frac{\left(g_{\mu \nu} k^{\mu} u^{\nu}\right)_{\mathrm{s}}}{\left(g_{\mu \nu} k^{\mu} u^{\nu}\right)_{\mathrm{o}}}
$$相対論的効果全てが入る

k^{μ} ：null 4－vector $\quad u^{\mu}$ ：observer＇s or source＇s 4－vector
http：／／www．prouet－horizon．fr／

density＿full＿realspace
ボックスサイズ 656Mpc／h の結果（z＝0．04－0．I）
Vauref
Color

Fig．courtesy：Yann Rasera，based on the data by Michel－Andres Breton
density_full_redshiftspacealleffects

Fig. courtesy:Yann Rasera, based on the data by Michel-Andres Breton

density_zoom2_realspace


```
density_RSDonly
```


density_allrelativisticeffects

差分をとった時の相対的寄与

，

相対論的な線形摂動論

e．g．，Bonvin \＆Durrer（＇II）
従来の RSD（カイザ一効果）magnification bias ignored $\Delta(\mathbf{n}, z)=b \delta-2 \Phi+\Psi-\frac{1}{\mathcal{H}} \partial_{r}(\mathbf{n} \cdot \mathbf{v})-\left(\frac{2}{r \mathcal{H}}+\frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}}\right) \mathbf{n} \cdot \mathbf{v}+\frac{\dot{\Phi}}{\mathcal{H}}+\frac{1}{\mathcal{H}}\left(\partial_{r} \Psi+\mathcal{H} \mathbf{n} \cdot \mathbf{v}+\mathbf{n} \cdot \dot{\mathbf{v}}\right)$

$$
+\frac{1}{r} \int_{0}^{r} d r^{\prime}\left[2-\frac{r-r^{\prime}}{r^{\prime}} \Delta_{\Omega}\right](\Phi+\Psi)+\left(\frac{2}{r \mathcal{H}}+\frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}}\right)\left(\Psi+\int_{0}^{r}(\dot{\Psi}+\dot{\Phi}) d r^{\prime}\right) .
$$

$\delta:$ 共動ゲージにおける密度ゆらぎ
相関関数に双極子的非対称性
\boldsymbol{n} ：（広角度）視線方向
（•）：共形時間微分
双極子的非等方性の一部は相対論的効果によって生み出される （i．e．，重力赤方偏移）

相関関数の双極子非対称性

異なる質量同士の八ローの相関関数
（質量： $4.5 \times 10^{13} \& 2.6 \times 10^{12} \mathrm{Msur}_{\text {su }} / \mathrm{h}$ ）
（5，400，000個）
（400，000個）
より大きなカタログを作成
－4096＾3 個のダークマター粒子
－ $2.625 \mathrm{Gpc} / \mathrm{h}$ ボックス （ $\mathrm{z}<0.46$ ）
RayGalGroupSims （will be public）

全ての相対論効果を考慮

相関関数の双極子非等方性•2

異なる質量同士の八ローの相関関数

 （質量： $4.5 \times 10^{13} \& 2.6 \times 10^{12} \mathrm{M}_{\text {sun }} / \mathrm{h}$ ）

重力赤方偏移の検出？

シェル推定量

Croft（＇I3）

$$
z_{\mathrm{g}}^{\text {shell }}\left(r^{\prime}\right)=\frac{\int_{r^{\prime}}^{r^{\prime}+\Delta r^{\prime}} H r_{\|}\left[1+\xi\left(r_{\perp}, r_{\|}\right)\right] r^{2} \mathrm{~d} r}{\int_{r^{\prime}}^{r^{\prime}+\Delta r^{\prime}}\left[1+\xi\left(r_{\perp}, r_{\|}\right)\right] r^{2} \mathrm{~d} r}
$$

明るい・暗いの 2 サンプルで相関全てを組み合わせて2．7бレベル での検出（Alam et al．＇ 17 ）
（銀河団を用いた検出例は Woitak et al．’II）

まとめ

宇宙の大規模構造観測に現れる「ゆがみ」を使った宇宙論

赤方偏移空間ゆがみ ：銀河の特異速度場に由来する銀河のクラスタ リングの非等方性 \rightarrow ゆらぎの重力的成長のプローブ

幾何学的ゆがみ：銀河の位置を共動座標に変換する時に生じるみか けの非等方性 \rightarrow BAOを使って加速膨張を精密診断

- 暗黒エネルギー・修正重力理論に対する制限
- 一般相対論のテスト

相対論的ゆがみ ：相対論的効果による新たな効果 \rightarrow 新しい宇宙論 のプローブ •相対論的観測効果を入れたシミュレーション
－相関関数に現れる非対称性（双極子成分）

まとめ

宇宙の大規模構造観測に現れる「ゆがみ」を使った宇宙論

赤方偏移空間ゆがみ \rightarrow ゆらぎの重力的成長のプローブ
銀河の特異速度場に由来する銀河のクラスタリングの非等方性幾何学的ゆがみ \rightarrow BAOをものさしにして加速膨張を精密診断銀河の位置を共動座標に変換する時に生じるみかけの非等方性

- 暗黒エネルギー・修正重力理論に対する制限
- 一般相対論のテスト

相対論的ゆがみ ：相対論的効果による新たな効果（新しいプロ一ブ？）

- 相対論的観測効果を入れたシミュレーション
- 相関関数に現れる非対称性（双極子成分）

