

Atsushi Taruya

(Yukawa Institute for Theoretical Physics)

Yukawa Institute for Theoretical Physics

Started in 1952 after Prof. H.Yukawa got Nobel physics prize
Research institute at Kyoto University (~ 30 faculty members):
High energy physics, Nuclear physics, Astrophyics \& cosmology, Condensed matter physics, Quantum information physics

Promoting workshops/conferences on various topics related to fundamental physics and hosting domestic \& overseas researchers

Plan of talk

The intrinsic alignment (IA) of galaxies as a novel probe of precision cosmology

Introduction \& motivation
Modeling intrinsic alignment signals
Forecast for cosmological constraints
Summary

Refs.

> T. Okumura \& A. Taruya \& T. Nishimichi, MNRAS 494, 694-702 ('20)
A. Taruya \& T. Okumura, ApJL 891, L42 ('20)
T. Okumura \& A. Taruya, MNRAS 493, LI24-LI 28 ('20)

Concordant picture of the Universe

Lambda cold dark matter ((CDM) model

Minimal model characterized by 6 parameters
Model describes both cosmic expansion and structure formation over 13.8 billion years

Unresolved issues

Success of minimal model does not imply model is convincing
Mysterious components
Dark matter
Dark energy (late-time cosmic acceleration)
Untested hypotheses
Cosmic inflation
General relativity on cosmological scales
Gaussianity of primordial fluctuations
Tensions
Discrepancy of Planck \wedge CDM model parameters with those obtained from other observations ($\mathrm{H}_{0}, \mathrm{~S}_{8}, \ldots$)

Large-scale structure

Large-scale matter inhomogeneities over Mpc~Gpc scales evolved under the influence of gravity \& cosmic expansion

Its statistical nature carries rich cosmological information

Using (mainly) galaxies as a tracer of LSS,

\checkmark Photometric/imaging surveys
(angular position + galaxy shape)
\checkmark Spectroscopic surveys (angular position + redshift)

Weak lensing effect

Baryon acoustic oscillation (BAO)
Redshift-space distortions (RSD)

A quick review of BAO \& RSD

* BAO: characteristic oscillatory feature of primeval baryonphoton fluid imprinted on galaxy clustering pattern at $\sim 100 \mathrm{Mpc}$

\rightarrow used as a standard ruler to measure
$d_{\mathrm{A}}(z) \& H(z)$

Alam et al. ('16)
Alam et al. ('16)

* RSD: distortions of galaxy line-of-sight positions due to peculiar velocity of galaxies Strength of RSD (anisotropies) $\propto f \sigma_{8}(z)$
\rightarrow cosmological test of gravity
Structure growth

Constraints from BAO \& RSD

Alam et al. ('20)

Cosmological constraints

Alam et al. ('20)
arXiv:2007.0899|
Dark energy equation-of-state

$$
P_{\mathrm{DE}}=w \rho_{\mathrm{DE}}
$$

Hubble parameter

Ongoing/upcoming surveys

From stage III to stage IV-class surveys (ground \& space)

Improving cosmological constraints

Toward a better cosmological constraints, without conducting extra surveys

Pushing available Fourier modes to a larger value $k_{\max } \nearrow$ (small scales)
Theoretical modeling far beyond linear regime is challenging
Using technique/method that maximizes cosmological information :
Combining several statistics such as bispectrum

Cross correlating multiple data set, also utilizing the information that has been abandoned

Improving cosmological constraints

Toward a better cosmological constraints, without conducting extra surveys

Pushing available Fourier modes to a larger value $k_{\max } \nearrow$ (small scales)

Focus of this talk

Intrinsic alignment (IA) of galaxies as a cosmological probe

BAO
Primordial gravitational waves
Primordial non-Gaussianity

Faltenbacher et al. ('I2), Chisari \&
Dvorkin ('I3), Okumura et al. ('19),
Schmidt \& Jeong ('I2), Schmidt et al. ('I2),
Kogai et al. ('I8, '20), Akitsu et al.('20)

Here, we particularly focus on
statistical properties of 3 D correlations (BAO \& RSD) \& cosmological information

Intrinsic alignment (IA) of galaxy

Projected shape of observed galaxies/dark matter halos
In general, galaxy/halo has elliptical shape, aligned to some directions:

Quadrupole moment of galaxy image

$$
q_{i j}^{\mathrm{obs}} \equiv \frac{\int d^{2} \boldsymbol{\theta} I_{\mathrm{obs}}(\boldsymbol{\theta}) \stackrel{\theta_{i} \theta_{j}}{ } \quad \text { intensity }}{\int d^{2} \boldsymbol{\theta} I_{\mathrm{obs}}(\boldsymbol{\theta})} \quad(i, j=1,2)
$$

Ellipticity : $\quad \epsilon_{+} \equiv \frac{q_{11}^{\mathrm{obs}}-q_{22}^{\mathrm{obs}}}{q_{11}^{\mathrm{obs}}+q_{22}^{\mathrm{obs}}}, \quad \epsilon_{\times} \equiv \frac{2 q_{12}^{\mathrm{obs}}}{q_{11}^{\mathrm{obs}}+q_{22}^{\mathrm{obs}}}$

Intrinsic alignment (IA) of galaxy

Ellipticity of distant galaxy is induced by the gravitational lensing of foreground large-scale structure :
$\epsilon_{a} \simeq \gamma_{a}^{\mathrm{I}}+2 g_{a} ; \quad g_{a} \equiv \frac{\gamma_{a}}{1-\kappa}(\ll 1)$
$(a=+$ or $\times) \quad$ Reduced shear

IALensing

Gravitational lensing induces non-zero spatial correlation
\longrightarrow A clue to detect lensing signal
However,
IA can have non-zero spatial correlation (contaminant of lensing measurement)

Troxel \& Ishak ('I 5) Joachimi et al. ('l5)

Intrinsic alignment (IA) correlation

3D spatial correlation of luminous red galaxy (LRG) samples angular position (2D) + redshirt + shape

Early type
$\left\langle\gamma_{+}^{\mathrm{I}} \gamma_{+}^{\mathrm{I}}\right\rangle$ (II correlation)

Okumura, Jing \& Li ('09)

Measured result resembles the halo ellipticity correlation in N -body simulations (solid \& dashed lines)

Intrinsic alignment (IA) correlation

Behaviors of IA correlation crucially depend on galaxy type

IA in hydrodynamical simulations

IA in hydrodynamical simulations

Gl correlation (power spectrum)

Blue: star-forming 'galaxy' Red: quiescent 'galaxy'
biue seems to de ranaomıy oriented

Mechanisms of IA correlation

Tidally induced alignment
aligned along the tidal field induced by large-scale structure

Spin-induced alignment

aligned along the acquired angular momentum direction

Cosmology with IA

Tidally-induced IAs look promising and measuring these can have a potential to improve cosmological constraints

Relevant surveys:

Done BOSS † LOWZ $(z \sim 0.3)$ \& CMASS $(z \sim 0.5)$
Done eBOSS* LRG $(0.6 \leq z \leq 1)$
Ongoing DESI ${ }^{\star}$ LRG $(0.6 \leq z \leq 1.2) \dagger$ Baryon Oscillation Spectroscopic Survey
*extended Baryon Oscillation Spectroscopic Survey

* Dark Energy Survey Instrument
- How well one can model/predict IA correlations ?

GI \& II correlations: $\left\langle\delta_{g} \gamma_{a}^{\mathrm{I}}\right\rangle,\left\langle\gamma_{a}^{\mathrm{I}} \gamma_{b}^{\mathrm{I}}\right\rangle \quad(a, b=+, x)$

- Combining IAs with conventional GG correlation, how well one can improve the cosmological constraints ?

Linear alignment (LA) model

For cosmological purpose,
modeling IA of early-type galaxies is a crucial Ist step

A model for tidally-induced IA (Catelan et al.'01, Hirata \& Seljak '04)

$$
\left(\gamma_{+}^{\mathrm{I}}, \gamma_{x}^{\mathrm{I}}\right) \propto-\left(\nabla_{x}^{2}-\nabla_{y}^{2}, 2 \nabla_{x} \nabla_{y}\right) \Phi \quad \begin{gathered}
\text { Gravitational } \\
\text { potential }
\end{gathered}
$$

In galaxy redshift surveys, one can measure 3D spatial correlation

IA statistics in 3D

II correlation
 $$
\xi_{a b} \equiv\left\langle\gamma_{a}^{\mathrm{I}}\left(\boldsymbol{x}_{1}\right) \gamma_{b}^{\mathrm{I}}\left(\boldsymbol{x}_{2}\right)\right\rangle
$$

Gl correlation

$$
\xi_{\mathrm{g}, a} \equiv\left\langle\delta_{\mathrm{g}}\left(\boldsymbol{x}_{1}\right) \gamma_{a}^{1}\left(\boldsymbol{x}_{2}\right)\right\rangle
$$

$$
(a, b=+, \times)
$$

With the IA defined by projected shape, their correlation becomes anisotropic along line of sight, characterized as a function of $\left(r_{\|}, r_{\perp}\right)$

Anisotropic GI \& II correlations

Okumura \& AT ('20)
Anisotropic correlations characterized as function of $\left(r_{\perp}, r_{\|}\right)$

Analytical formulas

Okumura \& AT ('20)

Gl correlation

$$
\begin{array}{ll}
\text { correlation } \\
\xi_{\mathrm{g}+}^{R}(\mathbf{r})=\widetilde{C}_{1} b_{\mathrm{g}} \cos (2 \phi)\left(1-\mu^{2}\right) \Xi_{\delta \delta, 2}^{(0)}(r) & \text { Real space }
\end{array} \begin{aligned}
& \mu \equiv r_{\|} / r \\
& \phi \text { :azimuthal angle in } \vec{r}_{\perp}
\end{aligned}
$$

Linear growth

Il correlation

factor

Redshift space

$$
\begin{aligned}
\xi_{+}(\mathbf{r}) & =\frac{8}{105} \widetilde{C}_{1}^{2}\left[7 \mathcal{P}_{0}(\mu) \Xi_{\delta \delta, 0}^{(0)}(r)+10 \mathcal{P}_{2}(\mu) \Xi_{\delta \delta, 2}^{(0)}(r)+3 \mathcal{P}_{4}(\mu) \Xi_{\delta \delta, 4}^{(0)}(r)\right] \\
\xi_{-}(\mathbf{r}) & =\widetilde{C}_{1}^{2} \cos (4 \phi)\left(1-\mu^{2}\right)^{2} \Xi_{\delta \delta, 4}^{(0)}(r) r \\
& =\frac{8}{105} \widetilde{C}_{1}^{2} \cos (4 \phi)\left[7 \mathcal{P}_{0}(\mu)+10 \mathcal{P}_{2}(\mu)+3 \mathcal{P}_{4}(\mu)\right] \Xi_{\delta \delta, 4}^{(0)}(r)
\end{aligned}
$$

$$
\Xi_{X Y, \ell}^{(n)}(r)=(a H f)^{n} \int_{0}^{\infty} \frac{k^{2-n} \mathrm{~d} k}{2 \pi^{2}} P_{X Y}(k) j_{\ell}(k r) \quad \mathcal{P}_{\ell}(\mu) \text { :Legendre polynomials }
$$

Testing LA model predictions

Okumura, AT \& Nishimichi ('20)
GI \& II correlations measured @ z=0.3 from (sub-)halo catalog in N -body simulations

$$
M_{\mathrm{h}} \geq 10^{13} h^{-1} M_{\odot}
$$

Solid contours: LA model prediction

Testing LA model predictions

Okumura, AT \& Nishimichi ('20)
Real space
Multipole
expansion

$$
\xi(\boldsymbol{r})=\Sigma_{\ell} \xi_{\ell}(r) \mathscr{P}_{\ell}\left(r_{\|} / r\right)
$$

dashed: LA model with non-linear $\mathrm{P}(\mathrm{k})$,
dotted: LA model with linear $P(k)$

Testing LA model predictions

Okumura, AT \& Nishimichi ('20)
Redshift space
Multipole
expansion

$$
\xi(\boldsymbol{r})=\Sigma_{\ell} \xi_{\ell}(r) \mathscr{P}_{\ell}\left(r_{\|} / r\right)
$$

dashed : LA model with non-linear $P(k)$, dotted: LA model with linear $P(k)$

Geometric \& dynamical constraints

RSD \& BAO can be measured from $\mathrm{Gl} \&$ II correlations

Expected constraints using large-scale info. at $k \leq 0.1 h \mathrm{Mpc}^{-1}$

GG: galaxy clustering
II: IA statistics
GG+Gl+II : both combined

AT \& Okumura ('20) arXiv:200I. 05962

Fisher forecast

AT \& Okumura ('20)
BAO \& RSD measurements from BOSS (finished) \& DESI (upcoming)

Fisher forecast

AT \& Okumura ('20)
Synergy between DESI (spec-z) and subaru-HSC (shape info.)

Summary

The intrinsic alignment (IA) of galaxies as a novel probe of precision cosmology
The IA for late-type galaxies can be an ideal tracer of large-scale tidal fields

* Linear alignment (LA) model
- provide simple analytical formulas for IA correlations (GI \& II)
- quantitatively explain anisotropies inherent in 3D correlations
\longrightarrow BAO \& RSD can be measured
* Forecast study of cosmological constraints
suggests combining GG with Gl \& II gives an improvement
Observing IA delivers beneficial information, worth for further study

