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Granular materials and jamming transition
I

= Dissipative, athermal, no equilibrium state
= Nonequilibrium steady state under external driving

s Emergence of rigidity at ¢ > ¢, for disordered
materials due to mechanical contact
(granules, colloids, emulsions, foams, ...)

= Critical scaling behavior (stress, pressure, granular
temperature, ...)
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Jamming vs. glass transitions
I

= Relaxation of the density-density correlation
= Glass: 2-step relaxation (cage effect)

= Jamming: 1-step relaxation
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Theoretical approach

L
= Kinetic theory for inelastic spheres (Garzo,Dufty,1999)

= breaks down at © > 0.5 (Chialvo,Sundaresan,2013)
see also (Mitarai,Nakanishi,2007)
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Aim of the study / Contents

= Aim of the study

= Construct a microscopic theory valid in the dense
regime up to the jamming point

= Contents
= Microscopic model
= Steady-state distribution function
= Steady-state temperature
= MD simulation
= Shear stress, temperature
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= dissipation function
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Microscopic model
I

= Equation of motion

. = BE LA AT
Tt

pi = F+FY _5(py, 0,07 ¢ K

F =[e]S " 0(d — rij)(d — r45)74;
| j#i

b o ¢ :@(d — 1ij) (Pij - Tig) Tij
j#i

= hormal contact forces
=« elastic : linear spring
= dissipative : viscous
= no thermal noises
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Steady-state distribution function

I
= Approximate expression NS

= Derived from Liouville eq.
= Relaxation time approximation
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= Depends only on Tss = (34
= Constitutes of “canonical term” + “correction”
= Tgs . determined by the energy balance
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Relaxation time
N

= Relaxation time 7.
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Steady-state temperature

L
= Steady-state condition (energy balance)

(HT)) = =3V (72y(D))gg — 2 (R(D)) g = 0

= Energy dissipation rate

<R(P)>ss ~ <R(1){F)>SS = g A I'sswe(Tss)

= Retain only the leading canonical term = check later



Steady-state temperature

B
s Shear stress

<&Iy(r)>55 = —TrelYfssV" <&$y(r)&my(r)>eq

~ —Fain TisS(p),

= Approximate 4-body correlation by a product of 2-body
correlations
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= MD simulation
= Shear stress, temperature



MD simulation

Frictionless grains

Uniform shear (SLLOD + Lees-Edwards b.c.)
Units

= Mass : m, length: d, time: (m/k)V?
Parameters

= N =2000, At*=0.01, €=0.018375 (¢=0.96)
= 0.50<0<0.66, ¥ =10"210"* 10"
Procedure

= Initial thermalization (% = 0, FV®) = 0)
= Switch on shear & dissipation

= Start measurement of the stress after the relaxation
of T(z‘.) — Zi\il pg;(z‘.)Q/(SNm)
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Shear stress

(02y(T))gg = ¥’

SS
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= Liquid branch: OK, solid branch: NG
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Shear viscosity
L

' = — {02y (T))gg /(7V Tss+) = n*3g0()? ~ (95 — )~

hard-core limit
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= Agrees well in the hard-core limit
= Exponent = -2 “in average”

= Cross-over at ¢=0.62 for MD

I
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Granular temperature

T3s = ¥*n*go(p) ~ (7 —9) 7"
hard-core limit
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= Relatively poor agreement
= Cross-over at ¢=0.62 for MD

KS and H.Hayakawa, PRL 115, 098001 (2015)
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Discussions
e

= Problem
= IS the relaxation time coincident to the collision time ?

<Gmy(r))gs ~ TrelVPOssV <GIy(F(O))eg(F(O))>eq
(@2y(D)ss = 3055V [ dt (0207 O)

(ny(F(t))JIy(I‘(O)))eq ~ <me(r(0))g$y(r(0))>eq o Teci

= We measure the stress-stress time correlation function
by MD simulation
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= MD simulation

= Relaxation time



Relaxation time

L
= Stress time correlation function (MD)
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= Independent of the density
= Determined by the contact duration time

I
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= MD simulation

= Dissipation function



Dissipation function
I

= Check the approximation (MD)

(RD)) = (ROM)) = VTN T8
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®
= Dissipation is determined by the collision time



Dissipation function
I

= Check the approximation (MD)

(RD)) = (ROM)) = VTN T8
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= Approximation is valid for e=0.96
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Summary

B
= The theory for sheared granular materials is based

on the assumption that the relaxation time is
given by the collision time.

= [ he relaxation time for the stress time correlation
function is numerically estimated.
It is determined by the contact duration.

s There are two time-scales: contact duration
(stress) and collision time (dissipation).

= The implications to the theory are now under
investigation.
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