Avalanche Crystallization of ⁴He in Aerogel

Ryuji Nomura H. Matsuda, A. Ochi, R. Isozaki, and Y. Okuda

Tokyo Institute of Technology

0. Introduction

Aerogel: ~ 98% high porosity,

very transparent,

suitable for visualizing the dynamics in it.

By Haard

98% model aerogel

By NASA

We are interested in the dynamics of the first order phase transition in disordered media at very low temperatures.

Why ⁴He?

No viscous effect in pores.

No release of latent heat.

Effect of quenched disorder, which induces complex energy landscape, on the crystallization can be revealed down to absolute 0 K.

New quantum phenomena may emerge at very low temperatures.

Aerogel is in a thin glass tube and has a contact with the bulk crystals on the upper surface.

Porosities: 96% made by Panasonic 98% made by Pollanen and Halperin at Northwestern University

1. Crystallization of ⁴He in aerogel by pressurization

Crystallization in 98% aerogel

170 mK

(50 times faster replay)

Avalanche at low temperatures

Creep at high temperatures

(100 times faster replay)

850 mK

Transition in a growth mode

Dynamical phase diagram 98% 2.0×10^{-3} pressurization rate (bar/s) creep 1.5 coexist avalanche 1.0 0.5 0.0 ⊦ 0.0 0.4 0.8 1.2 T (K)

Competition between thermal fluctuation and disorder Nomura *et al.* PRL **101**, 175703 (2008) Mass has to be transferred for the crystallization. ⁴He crystals are formed deep in the aerogel.

Outer bulk crystal has to be melted by the stress, and enter the aerogel in the superfluid state.

Nucleation probability

Critical overpressure at which the first crystal appeared.

Clear metastability:

not instability but nucleation

The critical overpressure was measured 50 times at constant temperature.

$\delta P_{1/2}$ mean critical overpressure in 98% aerogel

Avalanche: quantum nucleation

Creep: thermal activation

Matsuda et al. PRE (2013)

Power law in the avalanche size distribution in 98% aerogel

S_c decrease as approaching the transition. (due to dissipation?)

Looks like a crossover.

$$N = AS^{-\alpha} \exp\left(-\left(\frac{S}{S_c}\right)^{\beta}\right)$$
$$\alpha' \approx \frac{2}{3}\alpha \approx 0.8$$

/

2. Crystallization of ⁴He in aerogel on cooling Due to "supersolidity"?

Crystallization of ⁴He in 96% aerogel on cooling

100 times faster

Crystallization of ⁴He in 96% aerogel on cooling

Mass supply from the surrounding bulk crystals into aerogel is needed to grow crystal in aerogel, even without pressurization.

Crystallization rate and Pressure of bulk crystals on cooling

Mass flowed from the surrounding bulk crystals into aerogel.

1. What is the driving force for crystallization on cooling?

Equilibrium crystallization pressure is temperature independent at low temperatures in ⁴He.

$$\Delta \mu = \left\{ \frac{1}{\rho_l} - \frac{1}{\rho_s} \right\} \Delta P - \left(S_l - S_s \right) \Delta T$$
Usually neglected

2. How mass is transported in bulk ⁴He crystals?

May be related to the so called "supersolidity".

Mass flow experiment

 $T_{flow} = 630 \text{ mK}$

Original torsional oscillator experiment by Kim and Chan (Nature 2004) was retracted.

But, occurrence of mass flows in ⁴He crystal was reported by Hallock *et al.* (PRL 2008) by direct flow measurements.

Superfluid components at a core of edge dislocation

Path integral Monte Carlo technique Boninsegni *et al.*, PRL **99,** 035301 (2007)

This issue has not been is settled, yet.

Crystallization diagram in aerogel on cooling

Summary

Crystallization in aerogel is via creep at high T and via avalanche at low T by pressurization.

Creep growth is thermal activation and avalanche growth is macroscopic quantum tunneling from both crystallization rate and nucleation probability measurements.

Avalanche size follows a power low: Self-organized critical states in macroscopic quantum tunneling.

Crystallization on cooling was observed.

 T_{grow} was lower than T_{flow} .

T_{arow} had a anomalous pressure dependence.

T_{grow} had a anomalously wide distribution; large supercooling in nucleation process.

This can be an observation of a new crystallization mode as "supersolidity"-assisted crystallization in pores.