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Model Setup 

 A one-dimensional (1-D) mode III fault is assumed. The 
interaction among heat, fluid pressure and inelastic pore creation 
is investigated. See details in Suzuki and Yamashita (2010, 
2014). 

 In particular, temporal evolution of the porosity is investigated 
because it produces an important universality and analytical 
study of such a behavior gives some implications for 
understanding the slip behavior. 
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Governing Equations 

 From the interaction 
mentioned above, … 
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Two Qualitatively Different Slip Behaviors 

 If the fluid flow is neglected, governing equations can be 
rewritten in terms of the normalized slip velocity and inelastic 
porosity: 

 

 

 

 We assume                 (      is the initial value of      ). At the 
slip onset (         ), we can easily show          . 

 From brief consideration, we clearly find two qualitatively 
different slip behaviors. 
 First case:                     decreases with increasing time and     can  

                      become positive. → Acceleration 

 Second case:      is always negative. → Spontaneous slip cessation 

 The steady state solutions for the governing equations are 
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Phase Diagram 

 All orbits of solutions are first 
apparently absorbed into           

 If the orbits do not cross the 
straight line                    , they 
are finally absorbed to the 
stable steady state  

 

 On the other hand, if the orbits 
cross the line                    , the 
relationship                     is 
satisfied and they are finally 
absorbed into the stable steady 
state     
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(1) The Function     Determining Slip 

Behavior Completely 

 The function                        determining the 
system behavior can be given by (Suzuki and 
Yamashita, 2014) 
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       becomes positive. →  
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(2) Critical Porosity 

 For the acceleration case, the deceleration changes 
to the acceleration at            , and we define      and      
as the values of      and      at that time: 

 

 

 Since the condition             must be satisfied, we 
obtain 

 

 

 We can conclude that if             is satisfied,                      
can emerge. 

 In other words, it is the upper value of      for the 
case 
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Temporal Changes in Porosity 

 If  

 If            ,    approaches the constant values.  
 The constant values are below     . 
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Phase Transition and Power Law 

 We introduce the variables                                      
and change                  as a parameter. 
 If                  

 If 

 For           the value      changes continuously 
with changing 

 

 The power law near              is expected for 
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Absorbing Phase Transition 

 Once the system enters one state, the system cannot 
escape the state. 

 ex.) Directed percolation 
 Percolation in a lattice with channels 

 Each channel is open with the possibility     , while it is 
closed with the possibility          . 

 Flow occurs from upstream  to downstream. 

 If we define      as the possibility that the infinite percolation 
occurs,      is known to show a critical phenomenon: 
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Power Law (Universality…?) 

 Figure shows the power 
law near 

 

 

 Values for      are: 

 

 

 
 Universal? 

 If this value is universal, 
porosity values observed in 
natural faults are related to 
the initial slip velocity and 
we may presume the 
ancient slip behavior from 
the porosity. 

( , ) :c cw  

0( )c cw w      

   

2, 3u aS T 

2.5, 6u aS T 

1.5, 2u aS T 

0 cw w 

c  

 



0.538 ( 1.5, 2)u aS T   

0.548 ( 2.5, 6)u aS T   

0.540 ( 2, 3)u aS T   



Conclusions and Future Works 

 Phase transition observed in porosity 
change within the framework including the 
heat, fluid pressure and dilatancy 

 Universal value for    ? 

 New index characterizing the slip behavior? 

 Analytical treatments to show the 
universality is required. 
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