Recent results from the second CDMSlite run and overview of SuperCDMS SNOLAB project

• Tsuguo Aramaki on behalf of the SuperCDMS collaboration

The SuperCDMS Collaboration

Outline

- Introduction
- SuperCDMS Soudan
 - Detection concept
 - Detector design
 - CDMSlite second run result
- SuperCDMS SNOLAB
 - Project overview
 - Detector design
 - Projected sensitivity

Introduction

DM search

Indirect Search DM annihilation

Collider Search Man-made production

SLAC

Direct Search Nuclear elastic scattering

Direct DM search

CDMS project history

SuperCDMS Soudan

- There are 5 towers, 3 detectors each
- 3 inch diameter, 2.5 cm thick, 600g
 Ge crystal (CDMS II: 240g)
- 4 phonon and 2 charge channels/side

Detection technique – phonon & charge signals

DM scatters off a target nuclon (Ge/Si)

-> creates **prompt phonons & e-h** pairs

e⁻/h⁺ are separated by E-field and drift to electrodes

-> creates **Luke phonon** due to the Naganov-Luke effect

- e⁻/h⁺ are read out with the charge sensitive amplifier
- Phonons break cooper pairs in Al fins, create quasi-particles (QPs)
- QPs are collected in W Transition Edge Sensors (TESs)

Detection technique – TES

- TES resistance sharply increases as warmed up
 -> current changes in the input coil
- SQUID amplifier reads the induced magnetic flux in the input coil 10

iZIP detector – surface rejection with charge

iZIP detector – ionization yield

- Ionization yield: $Y = E_Q / E_{recoil}$
- NR events creates less e-h pairs, compared with ER for same E_r Y ~ 1 for ER, ~ 0.3 for NR

-> NR events are distinguishable from ER with ionization yield

iZIP detector – surface rejection with phonons

 Phonon pulse shapes are different between surface and bulk events

HV detector – CDMSlite

CDMS low-ionization threshold experiment

- One SuperCDMS iZIP detector was operated in HV mode
 - side 1: 0V, side 2: 70V
 - Read phonon signals at side 1
- Phonon signals are enhanced due to the Naganov-Luke effect

$$E_{\text{phonon, total}} = E_r \left(1 + Y \frac{q \mathcal{V}}{\varepsilon} \right)$$

SLAC

ε ~ 3 eV for Ge, 3.7 eV for Si
-> x10 lower threshold for ER observed ⁷¹Ge activation lines (0.16 keV, 1.3 keV, 10.4 keV)
-> x5 dilute background

Similar phonon noise performance
No ER-NR discriminations 14

CDMSlite – recent upper limits

- First Run in 2013
 - 6.5 kg-days
 - 170 eV_{ee} threshold
- Second Run in 2014
 - install vibration sensor $\sqrt{10^{-39}}$
 - better LF noise rejection <u>5</u>
 - better energy calibration 5^{5} 10⁻⁴⁰
 - new radial fiducial cut
 - 70 kg-days
 - $\sim 56 \text{ eV}_{ee}$ threshold

SuperCDMS SNOLAB – overview

- Selected as DOE/NSF 2nd-generation direct dark matter search
- Larger Ge/Si crystals: 1.4 kg for Ge, 0.5 kg for Si
 - 4 inch diameter, 3.3 cm thick
- 5 towers: 6 detectors/tower
 - 3 Ge iZIP, 1 Si iZIP, 1 HV (4 Ge + 2 Si) towers
 - Up to 31 towers are deployable
- Lower background
 - Lower bulk gamma background with cleaner copper
 - Lower Radon exposure
 - Lower cosmogenic activation
 - Lower muon flux at deeper site
- Improved signal readout
 - Phonon: new SQUIDs
 - Charge: FET -> HEMT (7mW -> 0.1 mW/device)
- Improved resolution with lower T_c

SuperCDMS SNOLAB – detector design

SuperCDMS SNOLAB – projected sensitivity

- SuperCDMS SNOLAB can uniquely probe low mass DM, m < 5 GeV
- Ge and Si targets will allow us to study non-standard interaction
- Ge iZIP will detect ~ 15 ⁸B solar neutrinos

Summary/Conclusion

- CDMS has been leading the direct dark matter search experiment for the past 15 years.
- The recent results of 70kg-days exposure in the second CDMSlite run excluded new parameter space for low-mass dark matter particles, in the dark matter mass range of 1.6 - 5.5 GeV.
- The SuperCDMS collaboration is moving forward with the design and construction of the SuperCDMS SNOLAB project.
- Lower backgrounds, lower threshold and improved detector resolution in SuperCDMS SNOLAB will allow us to uniquely and deeply probe the DM parameter space, especially for low-mass DM models.
- We will also be able to detect ⁸B solar neutrinos