Dark Side of the Universe 2015 Kyoto University

The Flavour Portal to Dark Matter

Lorenzo Calibbi ITP CAS, Beijing

December 18th 2015

Introduction

Why are we interested in Flavour Physics?

SM flavour puzzle

We need to find the scale of New Physics!

- Why three families?
- Why the hierarchies?

$$m_{t}/m_{e} = 3.4 \times 10^{5}$$

- LHC found a SM-like Higgs
- No sign of new phenomena
- We know there is new physics somewhere (DM, neutrino masses, baryogenesis etc.)

SM flavour puzzle

Hierarchy of SM fermion masses and mixing

Up quarks

$$\frac{m_c}{m_t} \approx \epsilon^4, \quad \frac{m_u}{m_t} \approx \epsilon^8$$

$$V_{CKM} pprox \left(egin{array}{cccc} 1 & \epsilon & \epsilon^3 \\ \epsilon & 1 & \epsilon^2 \\ \epsilon^3 & \epsilon^2 & 1 \end{array}
ight)$$

Down quarks

$$\frac{m_s}{m_b} \approx \epsilon^3, \quad \frac{m_d}{m_b} \approx \epsilon^5$$

$$\epsilon \approx 0.23$$

Hints for an organizing principle: is there a dynamical explanation?

Froggatt-Nielsen flavour models

• SM fermions charged under a new horizontal symmetry G_F

Froggatt Nielsen '79 Leurer Seiberg Nir '92, '93

- G_F forbids Yukawa couplings at the renormalisable level
- G_F spontaneously broken by "flavons" vevs $\langle \phi_I \rangle$
- Yukawas arise as higher dimensional operators

$$\mathcal{L}_{yuk} = y_{ij}^{U} \, \overline{q}_{Li} u_{Rj} \, \tilde{h} + y_{ij}^{D} \, \overline{q}_{Li} d_{Rj} \, h + \text{h.c.}$$

$$y_{ij}^{U,D} \sim \prod_{I} \left(\frac{\langle \phi_{I} \rangle}{M} \right)^{n_{I,ij}^{U,D}}$$

$$\overline{q}_{Li} \quad y_{ij}^{D} \quad d_{Rj}$$

$$\phi_I < M \Longrightarrow \epsilon_I \equiv \langle \phi_I \rangle / M$$
 small exp. parameter $n_{I,ij}^{U,D}$ dictated by the symmetry

What is G_F ?

Froggatt-Nielsen flavour models

 $G_{\rm F}$ abelian or non-abelian, continuous or discrete

$$U(1)$$
, $U(1)xU(1)$, $SU(2)$, $SU(3)$, $SO(3)$, A_4 ...

Froggatt Nielsen '79; Leurer Seiberg Nir '92, '93; Ibanez Ross '94; Dudas Pokorski Savoy '95; Binetruy Lavignac Ramond '96; Barbieri Dvali Hall '95; Pomarol Tommasini '95; Berezhiani Rossi '98; King Ross '01; Ma '02; Altarelli Feruglio '05...

U(1) example

Chankowski et al. '05

$$Y_u \sim \begin{pmatrix} \epsilon^6 & \epsilon^5 & \epsilon^3 \\ \epsilon^5 & \epsilon^4 & \epsilon^2 \\ \epsilon^3 & \epsilon^2 & 1 \end{pmatrix} \qquad Y_d \sim \begin{pmatrix} \epsilon^7 & \epsilon^5 & \epsilon^5 \\ \epsilon^6 & \epsilon^4 & \epsilon^4 \\ \epsilon^4 & \epsilon^2 & \epsilon^2 \end{pmatrix}$$

What is M?

The messenger sector

- If smaller than M_{Pl} , M can be interpreted as the mass scale of new degrees of freedom: the "flavour messengers"
- New fields in vector-like representations of the SM group and G_F -charged
- Effective Yukawa couplings generated by integrating out the messengers.
- Two possibilities: heavy fermions or heavy scalars:

LC Lalak Pokorski Ziegler '12

messengers mix with SM fermions or scalar fields and induce FCNC

Low-energy flavour models

How light can the flavour dynamics be?

• Effective Yukawas imply fermion-flavon couplings

$$(m_f)_{ij} = a_{ij}^f \left(\frac{\langle \phi \rangle}{M}\right)^{n_{ij}^f} \frac{v}{\sqrt{2}} \qquad \longrightarrow \qquad \mathcal{L} \supset n^f \frac{m_f}{\langle \phi \rangle} f_L f_R \phi$$

- Generically flavour violating
- FCNC induced at tree-level, but suppressed by small quark masses, e.g.:

• What if the flavour symmetry is local?

Low-energy flavour models

How light can the flavour dynamics be?

• Local flavour symmetry \implies flavour gauge bosons, e.g. abelian Z':

$$\mathcal{L} \supset g_F \overline{f} \gamma^{\mu} (\mathcal{Q}_{f_L} P_L + \mathcal{Q}_{f_R} P_R) f Z'_{\mu}$$

- FV couplings to fermions (different generations have different charges)
- FCNC also arise at tree-level, e.g.:

Additional contributions arise from the messenger sector

Low-energy messengers

How light can the messenger sector be?

By construction always present couplings (with O(1) coeffs.) of the form:

FUVC

$$\mathcal{L} \supset \alpha^Q \ \overline{q}_{Li} Q_{R\alpha} \phi_I + \alpha^D \ \overline{D}_{L\beta} d_{Rj} \phi_J + \text{h.c.}$$

$$\mathcal{L} \supset \lambda_{ij}^D \overline{q}_{Li} d_{Rj} H_{\alpha} + \text{h.c.}$$

$$\mathcal{L}_{eff} \supset \frac{|\alpha|^4}{16\pi^2 M^2} (\overline{f}_{Li} \gamma^{\mu} f_{Li})^2$$

$$\mathcal{L}_{eff} \supset \frac{|\alpha|^4}{16\pi^2 M^2} (\overline{f}_{Li} \gamma^{\mu} f_{Li})^2 \qquad \mathcal{L}_{eff} \supset \frac{|\alpha|^2}{16\pi^2 M^2} m_i \, \overline{f}_{Li} \sigma^{\mu\nu} f_{Ri} F_{\mu\nu} \qquad \mathcal{L}_{eff} \supset \frac{|\lambda_{ij}|^2}{M^2} (\overline{d}_{Li} d_{Rj}) (\overline{d}_{Rj} d_{Li})$$

$$\mathcal{L}_{eff} \supset \frac{|\lambda_{ij}|^2}{M^2} (\overline{d}_{Li} d_{Rj}) (\overline{d}_{Rj} d_{Li})$$

$$\Rightarrow$$

Flavour conserving Flavour violating in the mass basis:

$$d_{Li} \to d_{Li} + \sum_{j \neq i} \theta_{ij}^{DL} d_{Lj}$$

LC Lalak Pokorski Ziegler '12

FCNC bounds on FN models

U(1) example:

TeV-scale flavons are possible!

$$m_{\phi} = k \langle \phi \rangle$$

$$\Delta M_K: m_\phi \gtrsim \sqrt{k} \times 580 \text{ GeV}$$

$$\epsilon_K: m_\phi \gtrsim \sqrt{k} \times 2.3 \text{ TeV}$$

[with $\mathcal{O}(1)$ phases]

$$\Delta M_K: m_{\phi} \gtrsim \left(\frac{g_F}{10^{-3}}\right) \times 210 \text{ GeV}$$

$$\epsilon_K: m_\phi \gtrsim \left(\frac{g_F}{10^{-3}}\right) \times 3.3 \text{ TeV}$$

[with $\mathcal{O}(1)$ phases]

$$\Delta M_K: m_\phi \gtrsim k \times 1.7 \text{ TeV}$$

$$\epsilon_K: m_\phi \gtrsim k \times 27 \text{ TeV}$$

[with $\mathcal{O}(1)$ phases]

(indirect bounds from messenger sector)

- DM must interact weakly with the SM, likely to be a SM singlet
- We introduce DM: fermionic SM singlets charged under the flavour symmetry G_F
- Flavour interactions are the only connection between dark and visible sector
- Global G_F : DM and SM communicate only through flavon exchange
- Local G_F : interactions can be also mediated by flavour gauge bosons

Global G_F

$$(m_f)_{ij} = a_{ij}^f \left(\frac{\langle \phi \rangle}{M}\right)^{n_{ij}^f} \frac{v}{\sqrt{2}} \qquad m_\chi = b_\chi \left(\frac{\langle \phi \rangle}{M}\right)^{n^\chi} \langle \phi \rangle \qquad m_\phi = k \langle \phi \rangle$$

$$\mathcal{L} \supset n^f \frac{m_f}{\langle \phi \rangle} f_L f_R \phi + (n^{\chi} + 1) \frac{m_{\chi}}{\langle \phi \rangle} \chi_L \chi_R \phi \equiv \lambda_f f_L f_R \phi + \lambda_{\chi} \chi_L \chi_R \phi$$

DM annihilation to SM:

Global G_F

$$(m_f)_{ij} = a_{ij}^f \left(\frac{\langle \phi \rangle}{M}\right)^{n_{ij}^f} \frac{v}{\sqrt{2}} \qquad m_\chi = b_\chi \left(\frac{\langle \phi \rangle}{M}\right)^{n_\chi} \langle \phi \rangle \qquad m_\phi = k \langle \phi \rangle$$

$$\mathcal{L} \supset n^f \frac{m_f}{\langle \phi \rangle} f_L f_R \phi + (n^{\chi} + 1) \frac{m_{\chi}}{\langle \phi \rangle} \chi_L \chi_R \phi \equiv \lambda_f f_L f_R \phi + \lambda_{\chi} \chi_L \chi_R \phi$$

DM annihilation to SM:

annihilation to heavy flavours preferred

Global G_F

$$(m_f)_{ij} = a_{ij}^f \left(\frac{\langle \phi \rangle}{M}\right)^{n_{ij}^J} \frac{v}{\sqrt{2}} \qquad m_\chi = b_\chi \left(\frac{\langle \phi \rangle}{M}\right)^{n^\chi} \langle \phi \rangle \qquad m_\phi = k \langle \phi \rangle$$

$$\mathcal{L} \supset n^f \frac{m_f}{\langle \phi \rangle} f_L f_R \phi + (n^{\chi} + 1) \frac{m_{\chi}}{\langle \phi \rangle} \chi_L \chi_R \phi \equiv \lambda_f f_L f_R \phi + \lambda_{\chi} \chi_L \chi_R \phi$$

DM annihilation to SM:

no coupling suppression

Global G_F

$$(m_f)_{ij} = a_{ij}^f \left(\frac{\langle \phi \rangle}{M}\right)^{n_{ij}^f} \frac{v}{\sqrt{2}} \qquad m_\chi = b_\chi \left(\frac{\langle \phi \rangle}{M}\right)^{n_\chi} \langle \phi \rangle \qquad m_\phi = k \langle \phi \rangle$$

$$\mathcal{L} \supset n^f \frac{m_f}{\langle \phi \rangle} f_L f_R \phi + (n^{\chi} + 1) \frac{m_{\chi}}{\langle \phi \rangle} \chi_L \chi_R \phi \equiv \lambda_f f_L f_R \phi + \lambda_{\chi} \chi_L \chi_R \phi$$

DM annihilation to SM:

p-wave (velocity suppressed)

Global G_F

$$(m_f)_{ij} = a_{ij}^f \left(\frac{\langle \phi \rangle}{M}\right)^{n_{ij}^f} \frac{v}{\sqrt{2}} \qquad m_\chi = b_\chi \left(\frac{\langle \phi \rangle}{M}\right)^{n^\chi} \langle \phi \rangle \qquad m_\phi = k \langle \phi \rangle$$

$$\mathcal{L} \supset n^f \frac{m_f}{\langle \phi \rangle} f_L f_R \phi + (n^{\chi} + 1) \frac{m_{\chi}}{\langle \phi \rangle} \chi_L \chi_R \phi \equiv \lambda_f f_L f_R \phi + \lambda_{\chi} \chi_L \chi_R \phi$$

DM scattering with nuclei:

Global G_F

$$(m_f)_{ij} = a_{ij}^f \left(\frac{\langle \phi \rangle}{M}\right)^{n_{ij}^f} \frac{v}{\sqrt{2}} \qquad m_\chi = b_\chi \left(\frac{\langle \phi \rangle}{M}\right)^{n_\chi} \langle \phi \rangle \qquad m_\phi = k \langle \phi \rangle$$

$$\mathcal{L} \supset n^f \frac{m_f}{\langle \phi \rangle} f_L f_R \phi + (n^{\chi} + 1) \frac{m_{\chi}}{\langle \phi \rangle} \chi_L \chi_R \phi \equiv \lambda_f f_L f_R \phi + \lambda_{\chi} \chi_L \chi_R \phi$$

DM scattering with nuclei:

suppressed by light quark masses/matrix elements

Local G_F

$$\mathcal{L} \supset g_F \, \overline{\chi} \gamma^{\mu} (\mathcal{Q}_{\chi_L} P_L + \mathcal{Q}_{\chi_R} P_R) \chi \, Z'_{\mu} + g_F \, \overline{f} \gamma^{\mu} (\mathcal{Q}_{f_L} P_L + \mathcal{Q}_{f_R} P_R) f \, Z'_{\mu}$$

DM annihilation to SM:

 $m_{Z'} = \sqrt{2}g_F\langle\phi\rangle$

$$\langle \sigma_{Z'} v \rangle \sim \frac{g_F^4}{(m_{Z'}^2 - 4m_\chi^2)^2 + \Gamma_{Z'}^2 m_{Z'}^2} m_\chi^2$$

no velocity suppression no quark mass dependence

DM scattering with nuclei:

$$\sigma_{Z'}^{\rm SI} \sim \frac{g_F^2 \lambda_{Z'N}^2}{m_{Z'}^4} \mu_{\chi N}^2 \qquad \lambda_{Z'N} \propto g_F$$

Simple $U(1)_F$, only few parameters (besides O(1) coeffs.): m_{ϕ} , m_{χ} , $k \equiv m_{\phi}/\langle \phi \rangle$

$$\lambda_{ij}^{(u,d)} = a_{ij}^{(u,d)} (\mathcal{Q}_{q_i} + \mathcal{Q}_{(u_j,d_j)}) \epsilon^{\mathcal{Q}_{q_i} + \mathcal{Q}_{(u_j,d_j)}} \frac{v}{\langle \phi \rangle}$$

$$0 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

Thermal freeze-out via flavour portal motivation for TeV-scale flavour dynamics!

Explicit example

$$\lambda_{ij}^{(u,d)} = a_{ij}^{(u,d)} (\mathcal{Q}_{q_i} + \mathcal{Q}_{(u_j,d_j)}) \epsilon^{\mathcal{Q}_{q_i} + \mathcal{Q}_{(u_j,d_j)}} \frac{v}{\langle \phi \rangle}$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

$$\lambda_{ij}^{(u,d)} = a_{ij}^{(u,d)} (\mathcal{Q}_{q_i} + \mathcal{Q}_{(u_j,d_j)}) \epsilon^{\mathcal{Q}_{q_i} + \mathcal{Q}_{(u_j,d_j)}} \frac{v}{\langle \phi \rangle}$$

Explicit example

$$\lambda_{ij}^{(u,d)} = a_{ij}^{(u,d)} (\mathcal{Q}_{q_i} + \mathcal{Q}_{(u_j,d_j)}) \epsilon^{\mathcal{Q}_{q_i} + \mathcal{Q}_{(u_j,d_j)}} \frac{v}{\langle \phi \rangle}$$

Explicit example

Local U(1)_F, relic density bound only fulfilled on the resonance: $m_{\chi} \approx m_{Z'}/2$

Conclusions

Froggatt-Nielsen flavour models are possible explanation of hierarchies in fermion masses and mixing

FCNC constraints still allows TeV-scale flavour dynamics

Dark Matter can be a thermal relic charged under the flavour symmetry only

No ad hoc quantum numbers are needed: SM-DM interactions dictated by the flavour dynamics ("Flavour Portal")

Direct DM searches and flavour experiments can test this class of models

ありがとうございます。

Bounds on effective FCNC operators

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM}} + \sum_{d \geq 5} rac{c_{ij}^{(d)}}{\Lambda_{NP}^{d-4}} \; O_{ij}^{(d)}$$

Hadronic FCNC and CPV:

Isidori Nir Perez '10

Operator	Bounds on Λ in TeV $(c_{ij} = 1)$		Bounds on c_{ij} ($\Lambda = 1 \text{ TeV}$)		Observables
	Re	${ m Im}$	Re	${ m Im}$	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^{2}	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^{4}	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\bar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	9.3×10^2	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_L \gamma^\mu s_L)^2$	1.1×10^{2}		7.6×10^{-5}		Δm_{B_s}
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	3.7×10^2		1.3×10^{-5}		Δm_{B_s}

Collider signatures?

Flavon production and decay → distinctive signatures, e.g. same-sign tops

Low production at the LHC:

0.1 (10⁻³) fb for 500 (1000) GeV flavon

Flavon-Higgs mixing → flavour-violating Higgs decays

$$\mathcal{L}\supset\ H^{\dagger}H\phi^{\dagger}\phi$$

$$\frac{h}{\left(\frac{v}{\langle\phi\rangle}\right)^2}-\frac{f}{\bar{f}'}$$