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FIG. 1: Schematic behaviour of the relaxion potential above and below � = M2/g.

axion-like, hence a relaxion. The potential for the relaxion � coupled to the singlet component of
the Higgs h := (H†H)1/2 is given by

V (�, h) =
��M2 + g�

�
h2 + gM2�+ ...+ ⇤4(hhi) cos (�/f) , (1)

where the ellipses denote higher order terms3 in g�, and hhi is the (� dependent) vacuum expec-
tation value of the Higgs. We presume the relaxion to begin at very large field values � � M2/g
wherein the Higgs has a naturally large (and positive) mass squared. The relaxion evolves under
the influence of the background cosmology which has to last long enough for � to scan a su�cient
range in field space to eventually break EW symmetry at � ⇠ M2/g. Primordial inflation provides
a natural context for this evolution to take place. As soon as the relaxion expectation value drops
below � = M2/g, the Higgs starts to acquire a non-zero expectation value and a periodic potential
for � is generated by instanton e↵ects whose scale in the EW vacuum is set by

⇤4 ⇠ f2
⇡m

2
⇡, (2)

where f⇡ is the (non-perturbatively generated) pion decay constant and m⇡ is the pion mass.
Since m2

⇡ grows linearly with the quark masses, this term grows in proportion to hhi. Under the
approximation that � is slow rolling, it will get trapped in a local minimum once the barriers
induced by the instanton potential are large enough to compensate the slope of the potential,
which occurs when

⇤4 ⇠ gM2f. (3)

Parameterising the prefactor of the periodic potential as ⇤4(hhi) = ⇤4hhi/v, where v = 246 GeV,
it follows that

gM2f

f2
⇡m

2
⇡

=
hhi
v

. (4)

Since small values of g are technically natural, hhi
v of order one can be obtained for very large values

of the cut-o↵ M � v, by adjusting g accordingly.

3 The expansion is arranged in this way because it is technically natural for g to be small, since a discrete shift
symmetry is recovered in the limit where g vanishes. We will address the relevance of the higher order terms in
the next section.
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Long	  field	  excursion	  of	  the	  relaxion	  

•  Without	  fine-‐tuning	  of	  the	  ini5al	  posi5on	  of	  the	  relaxion,	  
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Mul5ple	  axions	  :	  overall	  picture	  

I. INTRODUCTION

Recently a new approach to address the hierarchy problem has been proposed in [1].

The scheme introduces a scalar degree of freedom, the relaxion �, making the Higgs boson

mass a dynamical field depending on �. During the inflationary epoch, the Higgs boson

mass-square µ2
h(�) is scanned by the rolling � from a large positive initial value to zero.

Right after the relaxion crosses the point µh(�) = 0, so that µ2
h(�) becomes negative,

a nonzero Higgs vacuum expectation value (VEV) is developed and a Higgs-dependent

back reaction potential begins to operate to stabilize the relaxion. One can then arrange

the model parameters in a technically natural way to result in the relaxion stabilized at

a point where the corresponding Higgs VEV is much smaller than the initial Higgs boson

mass.

An intriguing feature of the relaxion mechanism is that the relaxion potential involves

two very di↵erent scales. One is the period of the back reaction potential, and the other

is the excursion range of the relaxion necessary to scan µh(�) from a large initial value to

zero. To see this, let us consider the relaxion potential given by

V (�, h) = µ2
h(�)|h|2 + V0(�) + Vbr(�, h) (1)

where V0 is the potential driving the rolling of � during the inflationary epoch and Vbr is

the periodic back reaction potential stabilizing � right after it crosses µh(�) = 0. In fact,

the key feature of the mechanism can be read o↵ from the following form of potential:

µ2
h(�) = �M2 + g� + · · ·

V0(�) = gM2� + g2�2 + · · ·

Vbr(�, h) = ⇤4
br(h) cos
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f
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where Mh denotes the initial Higgs boson mass, ✏0 and ✏h are small dimensionless pa-

rameters describing the explicit breaking of the relaxion shift symmetry in V0 and µ2
h,
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where Mh denotes the initial Higgs boson mass, ✏0 and ✏h are small dimensionless pa-

rameters describing the explicit breaking of the relaxion shift symmetry in V0 and µ2
h,

respectively, and finally f is the relaxion decay constant in the back reaction potential.

In non-supersymmetric theory, the Higgs mass parameter Mh is naturally of the order of

the cuto↵ scale of the model. On the other hand, in supersymmetric theory, it corresponds

to the scale of soft supersymmetry (SUSY) breaking mass which can be well below the

cuto↵ scale of the model. In any case, we are interested in the case that Mh is much larger

than the weak scale:

Mh � v ⌘ hhi = 174 GeV, (6)

which might be explained by the relaxion mechanism.

Let us now list the conditions for the relaxion mechanism to work. First of all, in order

for the rolling relaxion to cross µh(�) = 0 without a fine tuning of the initial condition, it

should experience a field excursion
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Relaxion	  poten5als	  from	  the	  “end	  axions”	  

defines	  flat	  direc5on	  

Integra5ng	  out	  the	  heavy	  axions,	  

Short	  periodic	  poten5al	  	  
for	  back	  reac5on	  

Long	  periodic	  poten5al	  	  
for	  relaxion	  rolling	  &	  
Higgs	  mass	  scanning	  
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•  In	  order	  not	  to	  spoil	  the	  approximate	  flat	  direc5on	  determined	  by	  the	  clockwork	  
poten5al,	  

	  
•  The	  Higgs	  mass	  cutoff	  must	  be	  well	  below	  the	  cut-‐off	  scale	  of	  the	  theory.	  	  

à	  	  SUSY	  !	  	  	  
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A	  UV	  model	  :	  Need	  for	  SUSY	  

defines	  flat	  direc5on	  (clockwork)	  

Radia5ve	  correc5on	  
from	  Higgs	  loop	  

Relaxion	  rolling	  	  
poten5al	  
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poten5al	  
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N � ⇤4
br.

L =
1

2

NX

i=1

(@µ�i)
2 + ⇤4

1 cos

✓
�1

f1

+ n1
�2

f2

◆
+ ⇤4

2 cos

✓
�2

f2

+ n2
�3

f3

◆

+ · · · +⇤4
N�1 cos

✓
�N�1

fN�1

+ nN�1
�N

fN

◆

+ ✏1⇤
4 cos

✓
�1

f1

◆
+ ✏N⇤4 cos

✓
�N

fN

◆

(55)

⇤4
cut-o↵ > ⇤4

k � c0
NM4

h > M4
h

(56)

⇤4
cut-o↵ > ⇤4

k � c0
1M

4
h > M4

h
(57)

Vclock = ⇤4
1 cos

✓
n1

�1

f1

+
�2

f2

◆
+ ⇤4

2 cos

✓
n2

�2

f2

+
�3

f3

◆
+ · · · + ⇤4

N�1 cos

✓
nN�1

�N�1

fN�1

+
�N

fN

◆

(58)

Vclock (59)

11
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First of all, to have N axions with the decay constants fi ⌧ MPlanck, we introduce N

global U(1) symmetries under which

U(1)i : Xi ! ei�iXi, Yi ! e�3i�iYi (i = 1, 2, ..., N) (68)

where Xi and Yi are gauge-singlet chiral superfields with the U(1)i-invariant superpoten-

tial

W1 =
X

i

X3
i Yi

M⇤
, (69)

where M⇤ corresponds to the cuto↵ scale of the model, which might be identified as the

GUT scale or the Planck scale. Here and in the following, we ignore the dimensionless

coe�cients of order unity in the lagrangian. We assume that SUSY is softly broken with

SUSY breaking soft masses

mSUSY ⇠ Mh ⌧ M⇤. (70)

In particular, the model involves the soft SUSY breaking terms of Xi and Yi, given by

Lsoft = �m2
Xi

|Xi|2 � m2
Yi

|Yi|2 +

✓
Ai

X3
i Yi

M⇤
+ h.c

◆
, (71)

where

mXi ⇠ mYi ⇠ Ai ⇠ mSUSY.

To achieve the N axions in the low energy limit, we need all m2
Xi

are tachyonic, which

results in

hXii ⌘ xi ⇠
p

mSUSYM⇤, hYii ⌘ yi ⇠
p

mSUSYM⇤. (72)

Then the canonically normalized axion components �i can be identified as

Xi / ei�i/fi , Yi / e�3i�i/fi (73)

with

fi =
q

2(x2
i + 9y2

i ) ⇠
p

mSUSYM⇤. (74)

15

N	  	  axions	  from	  N    U(1)’s	  	  

First of all, to have N axions with the decay constants fi ⌧ MPlanck, we introduce N

global U(1) symmetries under which

U(1)i : Xi ! ei�iXi, Yi ! e�3i�iYi (i = 1, 2, ..., N) (68)

where Xi and Yi are gauge-singlet chiral superfields with the U(1)i-invariant superpoten-

tial

W1 =
X

i

X3
i Yi

M⇤
(69)

where M⇤ corresponds to the cuto↵ scale of the model, which might be identified as the

GUT scale or the Planck scale. Here and in the following, we ignore the dimensionless

coe�cients of order unity in the lagrangian. We assume that SUSY is softly broken with

SUSY breaking soft masses

mSUSY ⇠ Mh ⌧ M⇤. (70)

In particular, the model involves the soft SUSY breaking terms of Xi and Yi, given by

Lsoft = �m2
Xi

|Xi|2 � m2
Yi

|Yi|2 +

✓
Ai

X3
i Yi

M⇤
+ h.c

◆
(71)

where

mXi ⇠ mYi ⇠ Ai ⇠ mSUSY

V (Xi, Yi) = m2
Xi

|Xi|2 + m2
Yi

|Yi|2 +

✓
Ai

X3
i Yi

M⇤
+ h.c

◆
+

|Xi|6
M2

⇤
+ 9

|Xi|4|Yi|2
M2

⇤
(72)

To achieve the N axions in the low energy limit, we need all m2
Xi

are tachyonic, which

results in

hXii ⌘ xi ⇠
p

mSUSYM⇤, hYii ⌘ yi ⇠
p

mSUSYM⇤. (73)

Then the canonically normalized axion components �i can be identified as

Xi / ei�i/fi , Yi / e�3i�i/fi (74)

15

Xi,	  Yi	  :	  gauge-‐singlet	  chiral	  superfields	  

First of all, to have N axions with the decay constants fi ⌧ MPlanck, we introduce N

global U(1) symmetries under which

U(1)i : Xi ! ei�iXi, Yi ! e�3i�iYi (i = 1, 2, ..., N) (68)

where Xi and Yi are gauge-singlet chiral superfields with the U(1)i-invariant superpoten-

tial

W1 =
X

i

X3
i Yi

M⇤
(69)

where M⇤ corresponds to the cuto↵ scale of the model, which might be identified as the

GUT scale or the Planck scale. Here and in the following, we ignore the dimensionless

coe�cients of order unity in the lagrangian. We assume that SUSY is softly broken with

SUSY breaking soft masses

mSUSY ⇠ Mh ⌧ M⇤. (70)

In particular, the model involves the soft SUSY breaking terms of Xi and Yi, given by

Lsoft = �m2
Xi

|Xi|2 � m2
Yi

|Yi|2 +

✓
Ai

X3
i Yi

M⇤
+ h.c

◆
(71)

where

mXi ⇠ mYi ⇠ Ai ⇠ mSUSY

V (Xi, Yi) = m2
Xi

|Xi|2 + m2
Yi

|Yi|2 +

✓
Ai

X3
i Yi

M⇤
+ h.c

◆
+

|Xi|6
M2

⇤
+ 9

|Xi|4|Yi|2
M2

⇤
(72)

m2
Xi

< 0, m2
Yi

> 0 ! Xi ⇠ Yi ⇠
p

mSUSYM⇤ (73)

To achieve the N axions in the low energy limit, we need all m2
Xi

are tachyonic, which

results in

hXii ⌘ xi ⇠
p

mSUSYM⇤, hYii ⌘ yi ⇠
p

mSUSYM⇤. (74)

Then the canonically normalized axion components �i can be identified as

Xi / ei�i/fi , Yi / e�3i�i/fi (75)

15

First of all, to have N axions with the decay constants fi ⌧ MPlanck, we introduce N

global U(1) symmetries under which

U(1)i : Xi ! ei�iXi, Yi ! e�3i�iYi (i = 1, 2, ..., N) (68)

where Xi and Yi are gauge-singlet chiral superfields with the U(1)i-invariant superpoten-

tial

W1 =
X

i

X3
i Yi

M⇤
(69)

where M⇤ corresponds to the cuto↵ scale of the model, which might be identified as the

GUT scale or the Planck scale. Here and in the following, we ignore the dimensionless

coe�cients of order unity in the lagrangian. We assume that SUSY is softly broken with

SUSY breaking soft masses

mSUSY ⇠ Mh ⌧ M⇤. (70)

In particular, the model involves the soft SUSY breaking terms of Xi and Yi, given by

Lsoft = �m2
Xi

|Xi|2 � m2
Yi

|Yi|2 +

✓
Ai

X3
i Yi

M⇤
+ h.c

◆
(71)

where

mXi ⇠ mYi ⇠ Ai ⇠ mSUSY

V (Xi, Yi) = m2
Xi

|Xi|2 + m2
Yi

|Yi|2 +

✓
Ai

X3
i Yi

M⇤
+ h.c

◆
+

|Xi|6
M2

⇤
+ 9

|Xi|4|Yi|2
M2

⇤
(72)

m2
Xi

< 0, m2
Yi

> 0 ! Xi ⇠ Yi ⇠
p

mSUSYM⇤ (73)

To achieve the N axions in the low energy limit, we need all m2
Xi

are tachyonic, which

results in

hXii ⌘ xi ⇠
p

mSUSYM⇤, hYii ⌘ yi ⇠
p

mSUSYM⇤. (74)

Then the canonically normalized axion components �i can be identified as

Xi / ei�i/fi , Yi / e�3i�i/fi (75)

15

First of all, to have N axions with the decay constants fi ⌧ MPlanck, we introduce N

global U(1) symmetries under which

U(1)i : Xi ! ei�iXi, Yi ! e�3i�iYi (i = 1, 2, ..., N) (68)

where Xi and Yi are gauge-singlet chiral superfields with the U(1)i-invariant superpoten-

tial

W1 =
X

i

X3
i Yi

M⇤
(69)

where M⇤ corresponds to the cuto↵ scale of the model, which might be identified as the

GUT scale or the Planck scale. Here and in the following, we ignore the dimensionless

coe�cients of order unity in the lagrangian. We assume that SUSY is softly broken with

SUSY breaking soft masses

mSUSY ⇠ Mh ⌧ M⇤. (70)

In particular, the model involves the soft SUSY breaking terms of Xi and Yi, given by

Lsoft = �m2
Xi

|Xi|2 � m2
Yi

|Yi|2 +

✓
Ai

X3
i Yi

M⇤
+ h.c

◆
(71)

where

mXi ⇠ mYi ⇠ Ai ⇠ mSUSY

V (Xi, Yi) = m2
Xi

|Xi|2 + m2
Yi

|Yi|2 +

✓
Ai

X3
i Yi

M⇤
+ h.c

◆
+

|Xi|6
M2

⇤
+ 9

|Xi|4|Yi|2
M2

⇤
(72)

m2
Xi

< 0, m2
Yi

> 0 ! Xi ⇠ Yi ⇠
p

mSUSYM⇤ (73)

N axions �i (i = 1 . . . N) with fi ⇠
p

mSUSYM⇤ (74)

To achieve the N axions in the low energy limit, we need all m2
Xi

are tachyonic, which

results in

hXii ⌘ xi ⇠
p

mSUSYM⇤, hYii ⌘ yi ⇠
p

mSUSYM⇤. (75)

15

First of all, to have N axions with the decay constants fi ⌧ MPlanck, we introduce N

global U(1) symmetries under which

U(1)i : Xi ! ei�iXi, Yi ! e�3i�iYi (i = 1, 2, ..., N) (68)

where Xi and Yi are gauge-singlet chiral superfields with the U(1)i-invariant superpoten-

tial

W1 =
X

i

X3
i Yi

M⇤
(69)

where M⇤ corresponds to the cuto↵ scale of the model, which might be identified as the

GUT scale or the Planck scale. Here and in the following, we ignore the dimensionless

coe�cients of order unity in the lagrangian. We assume that SUSY is softly broken with

SUSY breaking soft masses

mSUSY ⇠ Mh ⌧ M⇤. (70)

In particular, the model involves the soft SUSY breaking terms of Xi and Yi, given by

Lsoft = �m2
Xi

|Xi|2 � m2
Yi

|Yi|2 +

✓
Ai

X3
i Yi

M⇤
+ h.c

◆
, (71)

where

mXi ⇠ mYi ⇠ Ai ⇠ mSUSY.

To achieve the N axions in the low energy limit, we need all m2
Xi

are tachyonic, which

results in

hXii ⌘ xi ⇠
p

mSUSYM⇤, hYii ⌘ yi ⇠
p

mSUSYM⇤. (72)

Then the canonically normalized axion components �i can be identified as

Xi / ei�i/fi , Yi / e�3i�i/fi (73)

with

fi =
q

2(x2
i + 9y2

i ) ⇠
p

mSUSYM⇤. (74)

15

First of all, to have N axions with the decay constants fi ⌧ MPlanck, we introduce N

global U(1) symmetries under which

U(1)i : Xi ! ei�iXi, Yi ! e�3i�iYi (i = 1, 2, ..., N) (68)

where Xi and Yi are gauge-singlet chiral superfields with the U(1)i-invariant superpoten-

tial

W1 =
X

i

X3
i Yi

M⇤
(69)

where M⇤ corresponds to the cuto↵ scale of the model, which might be identified as the

GUT scale or the Planck scale. Here and in the following, we ignore the dimensionless

coe�cients of order unity in the lagrangian. We assume that SUSY is softly broken with

SUSY breaking soft masses

mSUSY ⇠ Mh ⌧ M⇤. (70)

In particular, the model involves the soft SUSY breaking terms of Xi and Yi, given by

Lsoft = �m2
Xi

|Xi|2 � m2
Yi

|Yi|2 +

✓
Ai

X3
i Yi

M⇤
+ h.c

◆
(71)

where

mXi ⇠ mYi ⇠ Ai ⇠ mSUSY

V (Xi, Yi) = m2
Xi

|Xi|2 + m2
Yi

|Yi|2 +

✓
Ai

X3
i Yi

M⇤
+ h.c

◆
+

|Xi|6
M2

⇤
+ 9

|Xi|4|Yi|2
M2

⇤
(72)

m2
Xi

< 0, m2
Yi

> 0 ! Xi ⇠ Yi ⇠
p

mSUSYM⇤ (73)

N axions �i (i = 1 . . . N) with fi ⇠
p

mSUSYM⇤ (74)

To achieve the N axions in the low energy limit, we need all m2
Xi

are tachyonic, which

results in

hXii ⌘ xi ⇠
p

mSUSYM⇤, hYii ⌘ yi ⇠
p

mSUSYM⇤. (75)

15
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	  	  Planck	  or	  GUT	  scale	  

Murayama,	  Suzuki,	  Yanagida	  (1992)	  

Choi,	  Chun,	  Kim	  (1996)	  
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we introduce (N � 1) hidden Yang-Mills sectors associated with the gauge group G =
QN�1

i=1 SU(ki), including also the charged matter fields

 i + c
i , �ia + �c

ia (i = 1, 2, ..., N � 1; a = 1, 2, ..., ni) (91)

 ia + c
ia, �i + �c

i (i = 1, 2, ..., N � 1; a = 1, 2, ..., ni) (92)

where  i and �ia are the fundamental representation of SU(ki), while  c
i and �c

ia are anti-

fundamentals. These gauged charged matter fields couple to the U(1)i-breaking fields Xi

through the superpotential

W2 =
N�1X

i=1

(Xi i 
c
i + Xi+1�ia�

c
ia) . (93)

U(1)i, i+1 ⇥ SU(pi) ⇥ SU(pi) anomalies (94)

W2 = (X1 1 
c
1 + X2�1a�

c
1a) + (X2 2 

c
2 + X3�2a�

c
2a)

+ · · · +
�
XN�1 N�1 

c
N�1 + XN�N�1a�

c
N�1a

� (95)

W2 = (X1 1a 
c
1a + X2�1�

c
1) + (X2 2a 

c
2a + X3�2�

c
2)

+ · · · +
�
XN�1 N�1a 

c
N�1a + XN�N�1�

c
N�1

� (96)

Note that Xi couples to a single flavor of the SU(ki)-charged hidden quark  i +  c
i ,

while Xi+1 couples to ni flavors of the SU(ki)-charged hidden quarks �ia +�c
ia. With this

form of hidden Yang-Mills sectors, the N global U(1) symmetries are explicitly broken

down to a single U(1) by the U(1)i ⇥ SU(kj) ⇥ SU(kj) anomalies. The charged matter

fields  i + c
i and �ia +�ia get a heavy mass of O(fi), so can be integrated out at scales

below fi. This yields an axion-dependent threshold correction to the holomorphic gauge

kinetic function ⌧i of SU(ki) at scales below fi:

⌧i =
1

g2
i

+
i

8⇡2

✓
�i

fi

+ ni
�i+1

fi+1

◆
+ ✓2M�i , (97)

18

⌧i =
1

g2
i

+
i

8⇡2

✓
ni

�i

fi

+
�i+1

fi+1

◆
+ ✓2M�i (98)

where we ignored the dependence on |Xi|, while including the soft SUSY breaking by the

gaugino masses M�i ⇠ mSUSY. As a consequence, at scales below fi, the global symmetry

breaking by the U(1)i ⇥ SU(kj) ⇥ SU(kj) anomalies is described by the following axion

e↵ective interactions:

N�1X

i=1

1

32⇡2

✓
�i

fi

+ ni
�i+1

fi+1

◆ ⇣
FF̃

⌘

SU(ki)
, (99)

where (F )SU(ki) denotes the gauge field strength of SU(ki) and (F̃ )SU(ki) is its dual. As we

wish to generate the axion potential |Ṽ0| � M4
h ⇠ m4

SUSY from the above axion couplings,

we assume

⇤̃i � mSUSY, (100)

where ⇤̃i denotes the confining scale of the hidden gauge group SU(ki). In such case, the

resulting axion potential is determined by the non-perturbative e↵ective superpotential

describing the formation of the SU(ki) gaugino condensation [16]:

Wnp ⇠ h�i�ii /
⇣
e�8⇡2⌧i

⌘1/ki

, (101)

Wnp ⇠ h�i�ii / �
exp

��8⇡2⌧i

��1/pi (102)

yielding

Ṽ0 = �
N�1X

i=1

⇤4
i cos

✓
1

ki

✓
�i

fi

+ ni
�i+1

fi+1

◆◆
(103)

with

⇤4
i ⇠ 8⇡2

ki

M�i⇤̃
3
i . (104)

⇤i � mSUSY (105)

19

Clockwork	  from	  a	  hidden	  sector	  dynamics	  

•  Introduce	  (N  -‐  1)	  hidden	  Yang-‐Mills	  sectors.	  

•  The	  previous	  U(1)i	  charged	  field	  Xi	  couples	  to	  these	  mafer	  fields	  through	  

Then the canonically normalized axion components �i can be identified as

Xi / ei�i/fi , Yi / e�3i�i/fi (76)

with

fi =
q

2(x2
i + 9y2

i ) ⇠
p

mSUSYM⇤. (77)

G =
N�1Y

i=1

SU(pi) (78)

Now we need a dynamics to generate the axion potential Ṽ0 in (49), developing an

exponentially long flat direction as described in the previous section. For this purpose,

we introduce (N � 1) hidden Yang-Mills sectors associated with the gauge group G =
QN�1

i=1 SU(ki), including also the charged matter fields

 i + c
i , �ia + �c

ia (i = 1, 2, ..., N � 1; a = 1, 2, ..., ni), (79)

where  i and �ia are the fundamental representation of SU(ki), while  c
i and �c

ia are anti-

fundamentals. These gauged charged matter fields couple to the U(1)i-breaking fields Xi

through the superpotential

W2 =
N�1X

i=1

(Xi i 
c
i + Xi+1�ia�

c
ia) . (80)

Note that Xi couples to a single flavor of the SU(ki)-charged hidden quark  i + c
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to a single U(1) by the U(1)i ⇥ SU(kj) ⇥ SU(kj) anomalies. The charged matter fields

 i + c
i and �ia +�ia get a heavy mass of O(fi), so can be integrated out at scales below

fi. This yields an axion-dependent threshold correction to the holomorphic gauge kinetic

function ⌧i of SU(ki) at scales below fi:

⌧i =
1

g2
i

+
i

8⇡2

✓
�i

fi

+ ni
�i+1

fi+1

◆
+ ✓2M�i , (81)
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i=1 SU(ki), including also the charged matter fields

 i + c
i , �ia + �c

ia (i = 1, 2, ..., N � 1; a = 1, 2, ..., ni) (79)

where  i and �ia are the fundamental representation of SU(ki), while  c
i and �c

ia are anti-

fundamentals. These gauged charged matter fields couple to the U(1)i-breaking fields Xi

through the superpotential

W2 =
N�1X

i=1

(Xi i 
c
i + Xi+1�ia�

c
ia) . (80)

U(1)i, i+1 ⇥ SU(pi) ⇥ SU(pi) anomalies (81)

Note that Xi couples to a single flavor of the SU(ki)-charged hidden quark  i +  c
i ,

while Xi+1 couples to ni flavors of the SU(ki)-charged hidden quarks �ia +�c
ia. With this

form of hidden Yang-Mills sectors, the N global U(1) symmetries are explicitly broken

down to a single U(1) by the U(1)i ⇥ SU(kj) ⇥ SU(kj) anomalies. The charged matter

fields  i + c
i and �ia +�ia get a heavy mass of O(fi), so can be integrated out at scales

below fi. This yields an axion-dependent threshold correction to the holomorphic gauge

kinetic function ⌧i of SU(ki) at scales below fi:

⌧i =
1

g2
i

+
i

8⇡2

✓
�i

fi

+ ni
�i+1

fi+1

◆
+ ✓2M�i , (82)

16

Axion-‐dependent	  
holomorphic	  gauge	  kine5c	  

func5on	  of	  SU(pi)
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Clockwork	  from	  a	  hidden	  sector	  dynamics	  

where we ignored the dependence on |Xi|, while including the soft SUSY breaking by the

gaugino masses M�i ⇠ mSUSY. As a consequence, at scales below fi, the global symmetry

breaking by the U(1)i ⇥ SU(kj) ⇥ SU(kj) anomalies is described by the following axion

e↵ective interactions:

N�1X

i=1

1

32⇡2

✓
�i

fi

+ ni
�i+1

fi+1

◆ ⇣
FF̃

⌘

SU(ki)
, (83)

where (F )SU(ki) denotes the gauge field strength of SU(ki) and (F̃ )SU(ki) is its dual. As we

wish to generate the axion potential |Ṽ0| � M4
h ⇠ m4

SUSY from the above axion couplings,

we assume

⇤̃i � mSUSY, (84)

where ⇤̃i denotes the confining scale of the hidden gauge group SU(ki). In such case, the

resulting axion potential is determined by the non-perturbative e↵ective superpotential

describing the formation of the SU(ki) gaugino condensation [16]:

Wnp ⇠ h�i�ii /
⇣
e�8⇡2⌧i

⌘1/ki

, (85)

yielding

Ṽ0 = �
N�1X

i=1

⇤4
i cos

✓
1

ki

✓
�i

fi

+ ni
�i+1

fi+1

◆◆
(86)

with

⇤4
i ⇠ 8⇡2

ki

M�i⇤̃
3
i . (87)

⇤i � mSUSY (88)

Wnp ⇠ h�i�ii /
⇣
e�8⇡2⌧i

⌘1/pi
(89)

Vflat =
N�1X

i=1

8⇡2

pi

M�i⇤
3
i cos

✓
1

pi

✓
�i

fi

+ ni
�i+1

fi+1

◆◆
(90)

17

confining	  scale	  
of	  SU(pi)

gaugino	  
condensa5on	  

Note	  

The	  flat	  direc5on	  is	  stable	  against	  radia5ve	  correc5on.	  

where we ignored the dependence on |Xi|, while including the soft SUSY breaking by the

gaugino masses M�i ⇠ mSUSY. As a consequence, at scales below fi, the global symmetry

breaking by the U(1)i ⇥ SU(kj) ⇥ SU(kj) anomalies is described by the following axion

e↵ective interactions:

N�1X

i=1

1

32⇡2

✓
�i

fi

+ ni
�i+1

fi+1

◆ ⇣
FF̃

⌘

SU(ki)
, (83)

where (F )SU(ki) denotes the gauge field strength of SU(ki) and (F̃ )SU(ki) is its dual. As we

wish to generate the axion potential |Ṽ0| � M4
h ⇠ m4

SUSY from the above axion couplings,

we assume

⇤̃i � mSUSY, (84)

where ⇤̃i denotes the confining scale of the hidden gauge group SU(ki). In such case, the

resulting axion potential is determined by the non-perturbative e↵ective superpotential

describing the formation of the SU(ki) gaugino condensation [16]:

Wnp ⇠ h�i�ii /
⇣
e�8⇡2⌧i

⌘1/ki

, (85)

Wnp ⇠ h�i�ii / �
exp

��8⇡2⌧i

��1/pi (86)

yielding

Ṽ0 = �
N�1X

i=1

⇤4
i cos

✓
1

ki

✓
�i

fi

+ ni
�i+1

fi+1

◆◆
(87)

with

⇤4
i ⇠ 8⇡2

ki

M�i⇤̃
3
i . (88)

⇤i � mSUSY (89)

Wnp ⇠ h�i�ii /
⇣
e�8⇡2⌧i

⌘1/pi
(90)

17

Wnp ⇠ h�i�ii /
⇣
e�8⇡2⌧i

⌘1/pi
(106)

Vflat =
N�1X

i=1

8⇡2

pi

M�i⇤
3
i cos

✓
1

pi

✓
�i

fi

+ ni
�i+1

fi+1

◆◆
(107)

Vflat ⇠ mSUSY⇤3
i � M4

h ⇠ m4
SUSY

(108)

Vclock =
N�1X

i=1

8⇡2

pi

M�i⇤
3
i cos

✓
1

pi

✓
ni

�i

fi

+
�i+1

fi+1

◆◆
(109)

Vclock ⇠ mSUSY⇤3
i � M4

h ⇠ m4
SUSY

(110)

Our next mission is to generate the axion potential V0 and the axion-dependent Higgs

mass-square µ2
h in (54), driving the evolution of the relaxion during the inflationary epoch,

while scanning the Higgs mass-square from an initial value of O(m2
SUSY) to zero. This

can be done by introducing a superpotential term given by

W3 =

✓
X2

N�1

M⇤
+

X2
N

M⇤

◆
HuHd (111)

together with the associated Kähler potential term:

�K =
X2

N�1X
⇤2
N

M2
⇤

+ h.c. (112)

explicit U(1)� breaking potential

Here we ignore the irrelevant terms such as |XN |4 or |XN�1|4 in the Kähler potential. Note

that the couplings in W3 leads to a logarithmically divergent radiative correction to �K

[17], and our model is stable against such radiative correction as long as the coe�cient of

�K is of order unity. Note also that W3 provides a solution to the MSSM µ problem as

it yields naturally the Higgsino mass µe↵ ⇠ mSUSY [12–14].

After integrating out the (N � 1) axions which receive a heavy mass from Ṽ0, while

leaving the light relaxion � as described in the previous section, the Kähler potential term

�K gives rise to

V0 = �m4
0 cos

✓
2(nN�1 + 1)

�

fe↵

+ �

◆
, (113)

20

Wnp ⇠ h�i�ii /
⇣
e�8⇡2⌧i

⌘1/pi
(106)

Vflat =
N�1X

i=1

8⇡2

pi

M�i⇤
3
i cos

✓
1

pi

✓
�i

fi

+ ni
�i+1

fi+1

◆◆
(107)

Vflat ⇠ mSUSY⇤3
i � M4

h ⇠ m4
SUSY

(108)

Vclock =
N�1X

i=1

8⇡2

pi

M�i⇤
3
i cos

✓
1

pi

✓
ni

�i

fi

+
�i+1

fi+1

◆◆
(109)

Vclock ⇠ mSUSY⇤3
i � M4

h ⇠ m4
SUSY

(110)

Our next mission is to generate the axion potential V0 and the axion-dependent Higgs

mass-square µ2
h in (54), driving the evolution of the relaxion during the inflationary epoch,

while scanning the Higgs mass-square from an initial value of O(m2
SUSY) to zero. This

can be done by introducing a superpotential term given by

W3 =

✓
X2

N�1

M⇤
+

X2
N

M⇤

◆
HuHd (111)

together with the associated Kähler potential term:

�K =
X2

N�1X
⇤2
N

M2
⇤

+ h.c. (112)

explicit U(1)� breaking potential

Here we ignore the irrelevant terms such as |XN |4 or |XN�1|4 in the Kähler potential. Note

that the couplings in W3 leads to a logarithmically divergent radiative correction to �K

[17], and our model is stable against such radiative correction as long as the coe�cient of

�K is of order unity. Note also that W3 provides a solution to the MSSM µ problem as

it yields naturally the Higgsino mass µe↵ ⇠ mSUSY [12–14].

After integrating out the (N � 1) axions which receive a heavy mass from Ṽ0, while

leaving the light relaxion � as described in the previous section, the Kähler potential term

�K gives rise to

V0 = �m4
0 cos

✓
2(nN�1 + 1)

�

fe↵

+ �

◆
, (113)
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Relaxion-‐dependent	  Higgs	  mass	  

Superpoten5al	  to	  generate	  
the	  MSSM	  μ-‐term	  	  

and � is a phase angle which is generically of order unity. In our scheme, the MSSM

Higgsino mass µe↵ originates from W3, and therefore is naturally of the order of mSUSY

[12–14]. Again, after integrating out the (N � 1) heavy axions, we find the MSSM Higgs

parameters µe↵ and Bµe↵ depend on the relaxion � as

µe↵ = µN�1 exp(�i2nN�1�/fe↵) + µN exp(i2�/fe↵),

Bµe↵ = bN�1 exp(�i2nN�1�/fe↵) + bN exp(i2�/fe↵) (97)

where

|µN | ⇠ |µN�1| ⇠ f 2

M⇤
⇠ mSUSY, |bN | ⇠ |bN�1| ⇠ m2

SUSY (98)

Then the determinant of the MSSM Higgs mass matrix

D = (m2
Hu

+ |µe↵ |2)(m2
Hd

+ |µe↵ |2) � |Bµe↵ |2 (99)

also depends on � via

|µe↵ |2 = |µN |2 + |µN�1|2 + 2|µNµN�1| cos

✓
2(nN�1 + 1)

�

fe↵

+ �µN � �µN�1

◆
,

|Bµe↵ |2 = |bN |2 + |bN�1|2 + 2|bNbN�1| cos

✓
2(nN�1 + 1)

�

fe↵

+ �bN � �bN�1

◆
(100)

where �µ and �b are the phases of µ and b, respectively. Obviously, for an appropriate

range of �µ and �b, the determinant D can flip its sign from positive to negative as the

relaxion experiences an excursion of O(fe↵). Once the relaxion is stabilized near the point

of D = 0, the MSSM Higgs doublets Hu and Hd can be decomposed into the light SM

Higgs h with a mass of O(v) and the other heavy Higgs bosons having a mass of the order

of mSUSY � v.

To complete the model, we need to generate the back reaction potential Vbr. In regard

to this, we simply adopt the schemes suggested in [1]. One option is to generate Vbr

through the QCD anomaly. For this, one can introduce

Wbr = X1QQc, (101)

19

where	  
Naturally	  	  
µμeff    ~    mSUSY  

For	  an	  appropriate	  range	  of	  δµμ	  and	  δb	  ,	  the	  determinant	  can	  change	  
its	  sign	  from	  posi5ve	  to	  nega5ve	  during	  Δϕrel=O(feff).	  

Higgs	  mass	  
determinant

Kim,	  Nilles	  (1984)	  

Wnp ⇠ h�i�ii /
⇣
e�8⇡2⌧i

⌘1/pi
(106)

Vflat =
N�1X

i=1

8⇡2

pi

M�i⇤
3
i cos

✓
1

pi

✓
�i

fi

+ ni
�i+1

fi+1

◆◆
(107)

Vflat ⇠ mSUSY⇤3
i � M4

h ⇠ m4
SUSY

(108)

Vclock =
N�1X

i=1

8⇡2

pi

M�i⇤
3
i cos

✓
1

pi

✓
ni

�i

fi

+
�i+1

fi+1

◆◆
(109)

Vclock ⇠ mSUSY⇤3
i � M4

h ⇠ m4
SUSY

(110)

Our next mission is to generate the axion potential V0 and the axion-dependent Higgs

mass-square µ2
h in (54), driving the evolution of the relaxion during the inflationary epoch,

while scanning the Higgs mass-square from an initial value of O(m2
SUSY) to zero. This

can be done by introducing a superpotential term given by

W3 =

✓
X2

N�1

M⇤
+

X2
N

M⇤

◆
HuHd (111)

W3 =

✓
X2

1

M⇤
+

X2
2

M⇤

◆
HuHd (112)

W3 =

✓
X2

N�1

M⇤
+

X2
N

M⇤

◆
HuHd (113)

together with the associated Kähler potential term:

�K =
X2

N�1X
⇤2
N

M2
⇤

+ h.c. (114)

�K =
X2

1X
⇤2
2

M2
⇤

+ h.c. (115)

explicit U(1)� breaking potential

Here we ignore the irrelevant terms such as |XN |4 or |XN�1|4 in the Kähler potential. Note
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axions, we find the MSSM Higgs parameters µe↵ and Bµe↵ depend on the relaxion � as

µe↵ = µN�1 exp(�i2nN�1�/fe↵) + µN exp(i2�/fe↵),

Bµe↵ = bN�1 exp(�i2nN�1�/fe↵) + bN exp(i2�/fe↵) (122)

µe↵ = µN�1 exp

✓
�i2nN�1

�rel

fe↵

◆
+ µN exp

✓
i2

�rel

fe↵

◆
,

Bµe↵ = bN�1 exp

✓
�i2nN�1

�rel

fe↵

◆
+ bN exp

✓
i2

�rel

fe↵

◆
(123)

µe↵ = µ1 exp

✓
i2

�rel

fe↵

◆
+ µ2 exp

✓
�i2n1

�rel

fe↵

◆
,

Bµe↵ = b1 exp

✓
i2

�rel

fe↵

◆
+ b2 exp

✓
�i2n1

�rel

fe↵

◆
(124)

where

|µN | ⇠ |µN�1| ⇠ f 2

M⇤
⇠ mSUSY, |bN | ⇠ |bN�1| ⇠ m2

SUSY (125)

|µ1| ⇠ |µ2| ⇠ f 2

M⇤
⇠ mSUSY, |b1| ⇠ |b2| ⇠ m2

SUSY (126)

Then the determinant of the MSSM Higgs mass matrix

D = (m2
Hu

+ |µe↵ |2)(m2
Hd

+ |µe↵ |2) � |Bµe↵ |2 (127)

also depends on � via

|µe↵ |2 = |µN |2 + |µN�1|2 + 2|µNµN�1| cos

✓
2(nN�1 + 1)

�

fe↵

+ �µN � �µN�1

◆
,

|Bµe↵ |2 = |bN |2 + |bN�1|2 + 2|bNbN�1| cos

✓
2(nN�1 + 1)

�

fe↵

+ �bN � �bN�1

◆
(128)

|µe↵ |2 = |µN |2 + |µN�1|2 + 2|µNµN�1| cos

✓
2(nN�1 + 1)

�rel

fe↵

+ �µN � �µN�1

◆
,

|Bµe↵ |2 = |bN |2 + |bN�1|2 + 2|bNbN�1| cos

✓
2(nN�1 + 1)

�rel

fe↵

+ �bN � �bN�1

◆
(129)
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axions, we find the MSSM Higgs parameters µe↵ and Bµe↵ depend on the relaxion � as
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◆
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✓
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◆
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✓
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�rel
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◆
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✓
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�rel

fe↵

◆
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✓
�i2n1

�rel

fe↵

◆
,

Bµe↵ = b1 exp

✓
i2

�rel

fe↵

◆
+ b2 exp

✓
�i2n1

�rel

fe↵

◆
(124)

where

|µN | ⇠ |µN�1| ⇠ f 2

M⇤
⇠ mSUSY, |bN | ⇠ |bN�1| ⇠ m2

SUSY (125)

|µ1| ⇠ |µ2| ⇠ f 2

M⇤
⇠ mSUSY, |b1| ⇠ |b2| ⇠ m2

SUSY (126)

Then the determinant of the MSSM Higgs mass matrix

D = (m2
Hu

+ |µe↵ |2)(m2
Hd

+ |µe↵ |2) � |Bµe↵ |2 (127)

also depends on � via

|µe↵ |2 = |µN |2 + |µN�1|2 + 2|µNµN�1| cos

✓
2(nN�1 + 1)

�

fe↵

+ �µN � �µN�1

◆
,

|Bµe↵ |2 = |bN |2 + |bN�1|2 + 2|bNbN�1| cos

✓
2(nN�1 + 1)

�

fe↵

+ �bN � �bN�1

◆
(128)

|µe↵ |2 = |µN |2 + |µN�1|2 + 2|µNµN�1| cos

✓
2(nN�1 + 1)

�rel

fe↵

+ �µN � �µN�1

◆
,

|Bµe↵ |2 = |bN |2 + |bN�1|2 + 2|bNbN�1| cos

✓
2(nN�1 + 1)

�rel

fe↵

+ �bN � �bN�1

◆
(129)

22

|µe↵ |2 = |µ1|2 + |µ2|2 + 2|µ1µ2| cos

✓
2(n1 + 1)

�rel

fe↵

+ �µ1 � �µ2

◆
,

|Bµe↵ |2 = |b1|2 + |b2|2 + 2|b1b2| cos

✓
2(n1 + 1)

�rel

fe↵

+ �b1 � �b2

◆
(130)

where �µ and �b are the phases of µ and b, respectively. Obviously, for an appropriate

range of �µ and �b, the determinant D can flip its sign from positive to negative as the

relaxion experiences an excursion of O(fe↵). Once the relaxion is stabilized near the point

of D = 0, the MSSM Higgs doublets Hu and Hd can be decomposed into the light SM

Higgs h with a mass of O(v) and the other heavy Higgs bosons having a mass of the order

of mSUSY � v.

To complete the model, we need to generate the back reaction potential Vbr. In regard

to this, we simply adopt the schemes suggested in [1]. One option is to generate Vbr

through the QCD anomaly. For this, one can introduce

Wbr = X1QQc (131)

where Q + Qc is an exotic quark which receive a heavy mass by hX1i ⇠ f1. Once this

heavy quark is integrated out, the axion �1 couples to the gluons as

1

32⇡2

�1

f1

GG̃ (132)

After the (N�1) heavy axions are integrated out, this leads to the relaxion-gluon coupling

1

32⇡2

�rel

f
GG̃ (133)

where

f =
fe↵⇣QN�1
i=1 ni

⌘ ⇠ f1 (134)

Then the resulting back reaction potential is obtained to be

Vbr(h, �rel) ⇡ yu⇤
3
QCDh cos

✓
�rel

f
+ �br

◆
(135)

where yu is the up quark Yukawa coupling to the SM Higgs field h, and �br is a phase

angle of order unity.

23

��rel = 2⇡
q

n2f 2
1 + f 2

2 ⌘ 2⇡fe↵ ' 2⇡nf1 (26)

2⇡fe↵ = 2⇡
q

n2f 2
1 + f 2

2 ' 2⇡nf1 (27)

�rel / �
n1 · · ·nN�1f1, . . . , (�1)k�1

nk · · ·nN�1fk, . . . , (�1)N�1
fN

� · (�1, . . . , �k, . . . , �N)

(28)

�1

f1

= �n1

✓
�2

f2

= �n2

✓
�3

f3

= · · · = �nN�2

✓
�N�1

fN�1

= �nN�1
�N

fN

◆
· · ·

◆◆
(29)

�1

f1

= (�1)N�1n1n2 · · · nN�1
�N

fN
(30)

�rel =
1

fe↵

NX

k=1

(�1)k�1nk · · · nN�1fk�k ⇠ �1 (31)

fe↵ =

vuut
NX

k=1

n2
k · · · n2

N�1f
2
k ⇠ n1 · · · nN�1f1 ⇠ e⇠Nf1 (⇠ = O(1)) (32)

fe↵ ⇠ n1 · · · nN�1f1

⇠ e⇠Nf1

(33)

fe↵ ⇠ n1 · · · nN�1f

⇠ eNf
(34)

Le↵ =
1

2
(@µ�rel)

2 + ✏1⇤
4 cos

✓
n1 · · · nN�1

fe↵

�rel

◆
+ ✏N⇤4 cos

✓
�rel

fe↵

◆
(35)

Le↵ =
1

2
(@µ�rel)

2 + ✏1⇤
4 cos

✓
�rel

fe↵

◆
+ ✏N⇤4 cos

✓
n1 · · · nN�1

fe↵

�rel

◆
(36)

⇠ �rel

f1
(37)

⇠ �rel

f
(38)
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Relaxion	  rolling	  poten5al	  

Radia5ve	  	  
correc5on	  
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pi
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Our next mission is to generate the axion potential V0 and the axion-dependent Higgs

mass-square µ2
h in (54), driving the evolution of the relaxion during the inflationary epoch,

while scanning the Higgs mass-square from an initial value of O(m2
SUSY) to zero. This

can be done by introducing a superpotential term given by
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together with the associated Kähler potential term:

�K =
X2

N�1X
⇤2
N

M2
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+ h.c. (114)

�K =
X2

1X
⇤2
2

M2
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+ h.c. (115)

explicit U(1)� breaking potential

Here we ignore the irrelevant terms such as |XN |4 or |XN�1|4 in the Kähler potential. Note

20

that the couplings in W3 leads to a logarithmically divergent radiative correction to �K

[17], and our model is stable against such radiative correction as long as the coe�cient of

�K is of order unity. Note also that W3 provides a solution to the MSSM µ problem as

it yields naturally the Higgsino mass µe↵ ⇠ mSUSY [12–14].

After integrating out the (N � 1) axions which receive a heavy mass from Ṽ0, while

leaving the light relaxion � as described in the previous section, the Kähler potential term

�K gives rise to
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fe↵
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and � is a phase angle which is generically of order unity.
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In our scheme, the MSSM Higgsino mass µe↵ originates from W3, and therefore is

naturally of the order of mSUSY [12–14]. Again, after integrating out the (N � 1) heavy
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Our next mission is to generate the axion potential V0 and the axion-dependent Higgs

mass-square µ2
h in (54), driving the evolution of the relaxion during the inflationary epoch,

while scanning the Higgs mass-square from an initial value of O(m2
SUSY) to zero. This

can be done by introducing a superpotential term given by
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Then the resulting back reaction potential is obtained to be

Vbr(h, �rel) ⇡ yu⇤
3
QCDh cos

✓
�rel

f
+ �br

◆
(137)

where yu is the up quark Yukawa coupling to the SM Higgs field h, and �br is a phase

angle of order unity.

Alternatively, we can consider a back reaction potential generated by an SU(nHC)

hidden color gauge interaction which confines at scales around the weak scale [1, 15]. For

this, one can introduce the hidden colored matter superfields

L + Lc

N + N c
(138)

L + Lc (139)

N + N c (140)

L + Lc, N + N c (141)

with the superpotential couplings

Wbr = 1
X2

1

M⇤
LLc + uHuLN c + dHdL

cN (142)

Wbr = N
X2

N

M⇤
LLc + uHuLN c + dHdL

cN (143)

where L is an SU(nHC)-fundamental and SU(2)L-doublet with the U(1)Y charge 1/2,

Lc is its conjugate representation, N is an SU(nHC)-fundamental but SU(2)L ⇥ U(1)Y

singlet, and N c is its conjugate representation. At scales below mSUSY, all superpartners

can be integrated out, leaving the following Yukawa interactions between the relevant

light degrees of freedom:

Lbr = mLe2i�1/f1LLc + u sin �hLN c + d cos �h†LcN + mNNN c, (144)

Vbr = ud sin 2�
1

2mL

e�2i�1/f1hh†NN c (145)
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I.  QCD	  

	  
	  

II.  Hidden	  Color	  

Back	  reac5on	  poten5al	  

relaxion experiences an excursion of O(fe↵). Once the relaxion is stabilized near the point

of D = 0, the MSSM Higgs doublets Hu and Hd can be decomposed into the light SM

Higgs h with a mass of O(v) and the other heavy Higgs bosons having a mass of the order

of mSUSY � v.

To complete the model, we need to generate the back reaction potential Vbr. In regard

to this, we simply adopt the schemes suggested in [1]. One option is to generate Vbr

through the QCD anomaly. For this, one can introduce

Wbr = X1QQc (104)

where Q + Qc is an exotic quark which receive a heavy mass by hX1i ⇠ f1. Once this

heavy quark is integrated out, the axion �1 couples to the gluons as

1

32⇡2

�1

f1

GG̃ (105)

After the (N�1) heavy axions are integrated out, this leads to the relaxion-gluon coupling

1

32⇡2

�rel

f
GG̃ (106)

where

f =
fe↵⇣QN�1
i=1 ni

⌘ ⇠ f1 (107)

Then the resulting back reaction potential is obtained to be

Vbr(h, �) ⇡ yu⇤
3
QCDh cos

✓
�

f
+ �br

◆
(108)

where yu is the up quark Yukawa coupling to the SM Higgs field h, and �br is a phase

angle of order unity.

Alternatively, we can consider a back reaction potential generated by an SU(nHC)

hidden color gauge interaction which confines at scales around the weak scale [1, 15]. For

this, one can introduce the hidden colored matter superfields

L + Lc, N + N c (109)
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Vbr(h, �rel) ⇡ ud sin(2�)

mL

⇤3
HC hh† cos

✓
2
�rel

f
+ �br

◆
(119)

where we have expressed the axion component �1 in terms of the light relaxion field �,

and

m2
br ⇠ ud sin(2�)

mL

⇤3
HC (120)

m2
1 ⇠ ud sin(2�)

mL

⇤3
HC, m4

2 ⇠ mN⇤3
HC (121)

for the SU(nHC) confinement scale ⇤HC. If m4
2 < m2

1v
2 with m2

1 . O(v2), which can

be achieved for mL < 4⇡v [1], this back reaction potential can successfully stabilize the

relaxion at a value giving v = hhi ⌧ mSUSY.

IV. CONCLUSION

In this paper, we have addressed the problem of huge scale hierarchy in the relaxion

mechanism, i.e. a relaxion excursion �� ⇠ 2⇡fe↵ which is bigger than the period 2⇡f

of the back reaction potential by many orders of magnitudes. We proposed a scheme

to yield an exponentially long relaxion direction within the compact field space of N

periodic axions with decay constants well below the Planck scale, giving fe↵/f ⇠ e⇠N

with ⇠ = O(1). Although it relies on a specific form of the mass mixing between nearby

axions, our scheme does not involve any fine tuning of continuous parameters, nor an

unreasonably large discrete parameter. Furthermore, our scheme finds a natural UV

completion in high scale or (mini) split SUSY scenario, in which all decay constants of

the N periodic axions are generated by SUSY breaking as fi ⇠ p
mSUSYM⇤, where mSUSY

denotes the soft SUSY breaking scalar masses and M⇤ is the fundamental scale such as

the Planck scale or the GUT scale. In our model, the required relaxion potential and

the relaxion-dependent Higgs boson mass are generated through a superpotential term

providing a natural solution to the MSSM µ-problem.
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Integra5ng	  out	  L	  +	  Lc	  

to	  prevent	  the	  Higgs	  loop	  >	  v2	  

Graham,	  Kaplan,	  Rajendran	  (2015)	  
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where �µ and �b are the phases of µ and b, respectively. Obviously, for an appropriate

range of �µ and �b, the determinant D can flip its sign from positive to negative as the

relaxion experiences an excursion of O(fe↵). Once the relaxion is stabilized near the point

of D = 0, the MSSM Higgs doublets Hu and Hd can be decomposed into the light SM

Higgs h with a mass of O(v) and the other heavy Higgs bosons having a mass of the order

of mSUSY � v.

To complete the model, we need to generate the back reaction potential Vbr. In regard

to this, we simply adopt the schemes suggested in [1]. One option is to generate Vbr

through the QCD anomaly. For this, one can introduce

Wbr = X1QQc (131)

Wbr = XNQQc (132)

where Q + Qc is an exotic quark which receive a heavy mass by hX1i ⇠ f1. Once this

heavy quark is integrated out, the axion �1 couples to the gluons as

1

32⇡2

�1

f1

GG̃ (133)

Once this heavy quark is integrated out, the axion �1 couples to the gluons as

1

32⇡2

�N

fN

GG̃ (134)

After the (N�1) heavy axions are integrated out, this leads to the relaxion-gluon coupling

1

32⇡2
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f
GG̃ (135)

where

f =
fe↵⇣QN�1
i=1 ni

⌘ ⇠ fN (136)
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where L + Lc and N + N c denote the fermion components of the original superfields,

tan � = hHui/hHdi, and

mL ⇠ 1
f 2

1

M⇤
⇠ 1mSUSY (146)

is presumed to be lighter than mSUSY. Note that a nonzero Dirac mass of N + N c is

induced by radiative corrections below mSUSY, giving

mN ⇠ 1

16⇡2
sin(2�)udm

⇤
Le�2i�1/f1 ln

✓
mSUSY

mL

◆
. (147)

Now this e↵ective theory at scales below mSUSY corresponds to the non-QCD model

proposed in [1, 15], yielding a back reaction potential of the form

Vbr = m2
1 hh† cos

✓
2
�

f
+ �1

◆
+ m4

2 cos

✓
2
�

f
+ �2

◆
, (148)

Vbr(h, �rel) ⇡ ud sin(2�)

mL

⇤3
HC hh† cos

✓
2
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f
+ �br

◆
(149)

where we have expressed the axion component �1 in terms of the light relaxion field �,

and

m2
br ⇠ ud sin(2�)

mL

⇤3
HC (150)

m2
1 ⇠ ud sin(2�)

mL

⇤3
HC, m4

2 ⇠ mN⇤3
HC (151)

⇤HC < mL ⇠ 1mSUSY < 4⇡v (152)

⇤HC < mL ⇠ NmSUSY < 4⇡v (153)

for the SU(nHC) confinement scale ⇤HC. If m4
2 < m2

1v
2 with m2

1 . O(v2), which can

be achieved for mL < 4⇡v [1], this back reaction potential can successfully stabilize the

relaxion at a value giving v = hhi ⌧ mSUSY.
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Summary	  

•  The	   relaxion	  mechanism	   requires	   a	   huge	   field	   excursion	   (typically	   trans-‐
Planckian)	  due	  to	  the	  hierarchy	  between	  a	  Higgs	  mass	  cutoff	  scale	  and	  the	  
weak	  scale.	  

•  Our	   clockwork	   mechanism	   can	   yield	   an	   exponen5ally	   long	   relaxion	  
direc5on	  ~  eN   f  within	  the	  compact	  field	  space	  of	  N	  periodic	  axions	  with	  
their	  decay	  constants	  ~  f  well	  below	  the	  Planck	  scale.	  

•  Our	  scheme	  finds	  a	  natural	  UV	  comple5on	  in	  high	  scale	  SUSY	  scenario	   in	  
order	  to	  preserve	  the	  approximate	  flat	  relaxion	  direc5on	  against	  radia5ve	  
correc5on.	  

•  The	   required	   relaxion	   poten5al	   is	   generated	   by	   a	   superpoten5al	   term	  
providing	  a	  natural	  solu5on	  to	  the	  MSSM	  µμ-‐problem.	  

•  The	   back	   reac5on	   sector	   is	   restricted	   to	   make	   the	   (radia5vely	   induced)	  
Higgs	  independent	  part	  be	  subdominant.	  


