Institute for Basic Science

Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry

arXiv:1511.00132
Kiwoon Choi and Sang Hui Im

Sang Hui Im (IBS-CTPU)
2015 Dec 17, Dark Side of the Universe 2015, Kyoto

Outline

- Review of the relaxion mechanism Huge relaxion excursion
- Relaxion from multiple axions

Clockwork mechanism

- A UV completion with high scale SUSY
- Summary

Relaxion mechanism

Graham, Kaplan, Rajendran (2015)

$$
\begin{aligned}
& \text { Relaxion-dependent Relaxion rolling Back reaction } \\
& \text { potential } \\
& \text { sector } \\
& V(\phi, h)=\left(-M^{2}+g \phi\right) h^{2}+V_{0}(g \phi)+\frac{1}{32 \pi^{2}} \frac{\phi}{f} \tilde{G}^{\mu \nu} G_{\mu \nu} \\
& \mathbf{g}: \text { small shift-symmetry }(\phi \rightarrow \phi+\alpha) \\
& \text { breaking parameter } \\
& \rightarrow\left(-M^{2}+g \phi\right) h^{2}+\left(g M^{2} \phi+g^{2} \phi^{2}+\cdots\right)+\Lambda_{\mathrm{br}}^{4}(h) \cos \left(\frac{\phi}{f}\right) \\
& \text { Initially, } \mathrm{g} \phi>\mathrm{M}^{2} \\
& \Lambda_{\mathrm{br}}^{4}(h) \sim\left\{\begin{array}{l}
y_{u} \Lambda_{\mathrm{QCD}}^{3} h \\
\Lambda_{\mathrm{HC}}^{2} h^{2}
\end{array}\right. \\
& \phi \\
& \text { Relaxion } \\
& \text { stop point : } V_{0}^{\prime}(\phi) \sim \frac{\Lambda_{\mathrm{br}}^{4}(h)}{f} \\
& \left(\frac{\langle h\rangle}{v}\right)^{1,2}=g \frac{M^{2} f}{\Lambda_{\mathrm{br}}^{4}(h=v)} \\
& g=\frac{\Lambda_{\mathrm{br}}^{4}}{f M^{2}} \sim 10^{-24}-10^{-9} \mathrm{GeV} \text { for } M=100 \mathrm{TeV}\langle h\rangle=v
\end{aligned}
$$

Long field excursion of the relaxion

- Without fine-tuning of the initial position of the relaxion,

$$
\left(-M^{2}+g \phi\right) h^{2} \rightarrow g \Delta \phi \gtrsim M^{2}
$$

$$
\Delta \phi \gtrsim \frac{M^{2}}{g}=f\left(\frac{M}{\Lambda_{\mathrm{br}}}\right)^{4}=10^{22} \mathrm{GeV}\left(\frac{f}{10^{10} \mathrm{GeV}}\right)\left(\frac{M}{100 \mathrm{TeV}}\right)^{4}\left(\frac{100 \mathrm{GeV}}{\Lambda_{\mathrm{br}}}\right)^{4}
$$

- Hierarchy conversion :

$$
M / v \gg 1 \quad \Rightarrow \quad \Delta \phi / f \gtrsim M^{4} / v^{4}
$$

- A sensible EFT with a UV completion ?

Multiple axions : overall picture

$$
V(\phi, h)=\underbrace{\mu_{h}^{2}(\phi)|h|^{2}}_{\substack{\text { Relaxion-dependent } \\
\text { Higgs mass }}}+V_{\substack{\text { Relaxion rolling } \\
\text { potential }}}^{V}+\begin{gathered}
\text { Back reaction } \\
\text { potential }
\end{gathered}
$$

$$
\begin{aligned}
\mu_{h}^{2}(\phi) & =-M^{2}+g \phi+\cdots & g \sim \frac{M^{2}}{f_{\mathrm{eff}}} & \mu_{h}^{2}(\phi)
\end{aligned}=-c_{1} M^{2}+c_{2} M^{2} \cos \left(\frac{\phi}{f_{\mathrm{eff}}}+\delta_{h}\right)
$$

```
with }\mp@subsup{f}{\mathrm{ eff }}{}~\mp@subsup{e}{}{\xiN}f(\xi~\mathcal{O}(1)
```

N : number of axions

Clockwork mechanism for exponentially large $\mathrm{f}_{\text {eff }}$

K. Choi, SH. Im (1511.00132); Kaplan, Rattazzi (1511.01827)

$$
V_{\text {clock }}=\Lambda_{1}^{4} \cos \left(n_{1} \frac{\phi_{1}}{f_{1}}+\frac{\phi_{2}}{f_{2}}\right)+\Lambda_{2}^{4} \cos \left(n_{2} \frac{\phi_{2}}{f_{2}}+\frac{\phi_{3}}{f_{3}}\right)+\cdots+\Lambda_{N-1}^{4} \cos \left(n_{N-1} \frac{\phi_{N-1}}{f_{N-1}}+\frac{\phi_{N}}{f_{N}}\right)
$$

$$
\square\left(\frac{\Delta \phi_{1}}{f_{1}}, \frac{\Delta \phi_{2}}{f_{2}}, \frac{\Delta \phi_{3}}{f_{3}}, \cdots, \frac{\Delta \phi_{N}}{f_{N}}\right)=\left(1,-n_{1}, n_{1} n_{2}, \cdots,(-1)^{N-1} n_{1} \cdots n_{N-1}\right)
$$

Flat direction

$$
f_{\mathrm{eff}}=\sqrt{\sum_{k=1}^{N} n_{1}^{2} \cdots n_{k-1}^{2} f_{k}^{2}} \sim n_{1} \cdots n_{N-1} f \sim e^{N} f
$$

Relaxion potentials from the "end axions"

$$
\mathcal{L}=\frac{1}{2} \sum_{i=1}^{N}\left(\partial_{\mu} \phi_{i}\right)^{2}+\begin{array}{|}
\begin{array}{|}
\Lambda_{1}^{4} \cos \left(n_{1} \frac{\phi_{1}}{f_{1}}+\frac{\phi_{2}}{f_{2}}\right)+\Lambda_{2}^{4} \cos \left(n_{2} \frac{\phi_{2}}{f_{2}}+\frac{\phi_{3}}{f_{3}}\right) & V_{\text {clock }} \\
+\cdots+\Lambda_{N-1}^{4} \cos \left(n_{N-1} \frac{\phi_{N-1}}{f_{N-1}}+\frac{\phi_{N}}{f_{N}}\right)
\end{array} \\
\text { defines flat direction } \quad+\epsilon_{1} \Lambda^{4} \cos \left(\frac{\phi_{1}}{f_{1}}\right)+\epsilon_{N} \Lambda^{4} \cos \left(\frac{\phi_{N}}{f_{N}}\right)
\end{array}
$$

Integrating out the heavy axions,

| $\epsilon_{1} \Lambda^{4} \cos \left(\frac{\phi_{\text {rel }}}{f_{\text {eff }}}\right)$ |
| :---: |$+\epsilon_{\epsilon_{N} \Lambda^{4} \cos \left(\frac{n_{1} \cdots n_{N-1}}{f_{\text {eff }}} \phi_{\text {rel }}\right)}^{\sim \frac{\phi_{\text {rel }}}{f}}$

A UV model : Need for SUSY

$$
\begin{aligned}
V\left(\phi_{k}, h\right) & \left.=\sum_{k=1}^{N} \Lambda_{k}^{4} \cos \left(n_{k} \frac{\phi_{k}}{f_{k}}+\frac{\phi_{k+1}}{f_{k+1}}\right)\right] \text { defines flat direction (clockwork) } \\
& +\left[M_{h}^{2}+c_{1} M_{h}^{2} \cos \left(\frac{\phi_{1}}{f_{1}}+\delta_{1}\right)\right] h^{2}+c_{1}^{\prime} M_{h}^{4} \cos \left(\frac{\phi_{1}}{f_{1}}+\delta_{1}^{\prime}\right)+\Lambda_{\mathrm{br}}^{4}(h) \cos \left(\frac{\phi_{N}}{f_{N}}+\delta_{N}\right)
\end{aligned}
$$

M_{h} : Higgs mass cutoff $\quad c_{1}>1$
Relaxion-depedent Higgs mass
Relaxion rolling potential

- In order not to spoil the approximate flat direction determined by the clockwork potential,

$$
\Lambda_{\text {cut-off }}^{4}>\Lambda_{k}^{4} \gg c_{1}^{\prime} M_{h}^{4}>M_{h}^{4}
$$

- The Higgs mass cutoff must be well below the cut-off scale of the theory. \rightarrow SUSY!

N axions from $N \mathrm{U}(1)$'s

$$
U(1)_{i}: \quad X_{i} \rightarrow e^{i \beta_{i}} X_{i}, \quad Y_{i} \rightarrow e^{-3 i \beta_{i}} Y_{i} \quad(i=1,2, \ldots, N)
$$

X_{i}, Y_{i} : gauge-singlet chiral superfields

Murayama, Suzuki, Yanagida (1992) Choi, Chun, Kim (1996)
M_{*} : Cut-off scale such as the Planck or GUT scale

$$
\begin{aligned}
& \left\{\begin{array}{l}
V\left(X_{i}, Y_{i}\right)=m_{X_{i}}^{2}\left|X_{i}\right|^{2}+m_{Y_{i}}^{2}\left|Y_{i}\right|^{2}+\left(A_{i} \frac{X_{i}^{3} Y_{i}}{M_{*}}+\text { h.c }\right)+\frac{\left|X_{i}\right|^{6}}{M_{*}^{2}}+9 \frac{\left|X_{i}\right|^{4}\left|Y_{i}\right|^{2}}{M_{*}^{2}} \\
m_{X_{i}}^{2}<0, m_{Y_{i}}^{2}>0 \quad \rightarrow \quad X_{i} \sim Y_{i} \sim \sqrt{m_{\mathrm{SUSY}} M_{*}} \\
X_{i} \propto e^{i \phi_{i} / f_{i}}, \quad Y_{i} \propto e^{-3 i \phi_{i} / f_{i}} \\
N \text { axions } \phi_{i}(i=1 \ldots N) \text { with } f_{i} \sim \sqrt{m_{\mathrm{SUSY} M_{*}}}
\end{array}\right.
\end{aligned}
$$

Clockwork from a hidden sector dynamics

- Introduce ($N-1$) hidden Yang-Mills sectors.

Gauge group $\quad G=\prod_{i=1}^{N-1} S U\left(p_{i}\right)$
Vector-like charged matter fields

$$
\Psi_{i a}+\Psi_{i a}^{c}, \quad \Phi_{i}+\Phi_{i}^{c} \quad\left(i=1,2, \ldots, N-1 ;\left\{\begin{array}{l}
i \\
\left.a=1,2, \ldots, n_{i}\right)
\end{array}\right.\right.
$$

- The previous $\mathrm{U}(1)_{\mathrm{i}}$ charged field X_{i} couples to these matter fields through

$$
\begin{aligned}
W_{2}=\left(X_{1} \Psi_{1 a} \Psi_{1 a}^{c}+X_{2} \Phi_{1} \Phi_{1}^{c}\right) & +\left(X_{2} \Psi_{2 a} \Psi_{2 a}^{c}+X_{3} \Phi_{2} \Phi_{2}^{c}\right) \\
& +\cdots+\left(X_{N-1} \Psi_{N-1 a} \Psi_{N-1 a}^{c}+X_{N} \Phi_{N-1} \Phi_{N-1}^{c}\right)
\end{aligned}
$$

$$
U(1)_{i, i+1} \times S U\left(p_{i}\right) \times S U\left(p_{i}\right) \text { anomalies }
$$

$\begin{array}{r}\begin{array}{r}\text { Axion-dependent } \\ \text { holomphic gauge kinetic } \\ \text { function of } \operatorname{SU}\left(\mathrm{p}_{\mathrm{i}}\right)\end{array} \\ \tau_{i}\end{array}=\frac{1}{g_{i}^{2}}: \frac{i}{8 \pi^{2}}\left(n_{i} \frac{\phi_{i}}{f_{i}}+\frac{\phi_{i+1}}{f_{i+1}}\right)+\theta^{2} M_{\lambda_{i}}$

Clockwork from a hidden sector dynamics

$$
\begin{gathered}
\underset{\substack{\text { of SU }\left(\mathrm{p}_{\mathrm{i}}\right)}}{\substack{\text { confining scale }}} \underbrace{\longrightarrow \Lambda_{i} \gg W_{\mathrm{np}} \sim\left\langle\lambda_{i} \lambda_{i}\right\rangle \propto\left(\exp \left(-8 \pi^{2} \tau_{i}\right)\right)^{1 / p_{i}}}_{\begin{array}{c}
\text { gaugino } \\
\text { condensation }
\end{array}} \xrightarrow{\quad V_{\text {clock }}=\sum_{i=1}^{N-1} \frac{8 \pi^{2}}{p_{i}} M_{\lambda_{i}} \Lambda_{i}^{3} \cos \left(\frac{1}{p_{i}}\left(n_{i} \frac{\phi_{i}}{f_{i}}+\frac{\phi_{i+1}}{f_{i+1}}\right)\right)}
\end{gathered}
$$

Note $\quad V_{\text {clock }} \sim m_{\mathrm{SUSY}} \Lambda_{i}^{3} \gg M_{h}^{4} \sim m_{\mathrm{SUSY}}^{4}$
The flat direction is stable against radiative correction.

Relaxion-dependent Higgs mass

Superpotential to generate the MSSM μ-term

$$
W_{3}=\left(\frac{X_{1}^{2}}{M_{*}}+\frac{X_{2}^{2}}{M_{*}}\right) H_{u} H_{d}
$$

Kim, Nilles (1984)

$$
\begin{aligned}
\mu_{\mathrm{eff}} & =\mu_{1} \exp \left(i 2 \frac{\phi_{\text {rel }}}{f_{\text {eff }}}\right)+\mu_{2} \exp \left(-i 2 n_{1} \frac{\phi_{\text {rel }}}{f_{\text {eff }}}\right), \\
B \mu_{\text {eff }} & =b_{1} \exp \left(i 2 \frac{\phi_{\text {rel }}}{f_{\text {eff }}}\right)+b_{2} \exp \left(-i 2 n_{1} \frac{\phi_{\text {rel }}}{f_{\text {eff }}}\right)
\end{aligned}
$$

$$
f_{\text {eff }} \sim n_{1} \cdots n_{N-1} f
$$

$$
\sim e^{N} f
$$

where $\quad\left|\mu_{1}\right| \sim\left|\mu_{2}\right| \sim \frac{f^{2}}{M_{*}} \sim m_{\text {SUSY }}, \quad\left|b_{1}\right| \sim\left|b_{2}\right| \sim m_{\text {SUSY }}^{2}$
Naturally
$\mu_{\text {eff }} \sim \mathrm{m}_{\text {SUSY }}$

For an appropriate range of δ_{μ} and δ_{b}, the determinant can change its sign from positive to negative during $\Delta \phi_{\text {rel }}=0\left(f_{\text {eff }}\right)$.

$$
\begin{aligned}
& \left|\mu_{\mathrm{eff}}\right|^{2}=\left|\mu_{1}\right|^{2}+\left|\mu_{2}\right|^{2}+2\left|\mu_{1} \mu_{2}\right| \cos \left(2\left(n_{1}+1\right) \frac{\phi_{\mathrm{rel}}}{f_{\mathrm{eff}}}+\delta_{\mu_{1}}-\delta_{\mu_{2}}\right), \\
& \left|B \mu_{\mathrm{eff}}\right|^{2}=\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}+2\left|b_{1} b_{2}\right| \cos \left(2\left(n_{1}+1\right) \frac{\phi_{\mathrm{rel}}}{f_{\mathrm{eff}}}+\delta_{b_{1}}-\delta_{b_{2}}\right) \\
& \mathcal{D}=\left(m_{H_{u}}^{2}+\left|\mu_{\mathrm{eff}}\right|^{2}\right)\left(m_{H_{d}}^{2}+\left|\mu_{\mathrm{eff}}\right|^{2}\right)-\left|B \mu_{\mathrm{eff}}\right|^{2} \\
& \text { Higgs mass } \\
& \text { determinant }
\end{aligned}
$$

Relaxion rolling potential

$$
W_{3}=\left(\frac{X_{1}^{2}}{M_{*}}+\frac{X_{2}^{2}}{M_{*}}\right) H_{u} H_{d}
$$

$$
\Delta K=\frac{X_{1}^{2} X_{2}^{\dagger 2}}{M_{*}^{2}}+\text { h.c. }
$$

Radiative

correction

$$
\begin{gathered}
V_{0}\left(\phi_{\mathrm{rel}}\right)=m_{0}^{4} \cos \left(2\left(n_{1}+1\right) \frac{\phi_{\mathrm{rel}}}{f_{\mathrm{eff}}}+\delta\right) \\
m_{0}^{4} \sim \frac{f_{1}^{2} f_{2}^{2}}{M_{*}^{2}} m_{\mathrm{SUSY}}^{2} \sim m_{\mathrm{SUSY}}^{4}
\end{gathered}
$$

Back reaction potential

I. $Q C D$

$$
\begin{gathered}
W_{\mathrm{br}}=X_{N} Q Q^{c} \longrightarrow \frac{1}{32 \pi^{2}} \frac{\phi_{N}}{f_{N}} G \tilde{G} \longrightarrow \frac{1}{32 \pi^{2}} \frac{\phi_{\mathrm{rel}}}{f} G \tilde{G} \quad f=\frac{f_{\mathrm{eff}}}{\left(\prod_{i=1}^{N-1} n_{i}\right)} \sim f_{N} \\
V_{\mathrm{br}}\left(h, \phi_{\mathrm{rel}}\right) \approx y_{u} \Lambda_{\mathrm{QCD}}^{3} h \cos \left(\frac{\phi_{\mathrm{rel}}}{f}+\delta_{\mathrm{br}}\right)
\end{gathered}
$$

II. Hidden Color

$$
\underbrace{W_{\mathrm{br}}=\kappa_{N} \frac{X_{N}^{2}}{M_{*}} L L^{c}+\kappa_{u} H_{u} L N^{c}+\kappa_{d} H_{d} L^{c} N} \quad \underbrace{N+N^{c}}_{\underbrace{}_{\operatorname{SU}(2)_{\mathrm{L}}} \times \mathrm{U}(1)_{\mathrm{Y}} \text { singlet }} \begin{array}{ll}
\overbrace{L+L^{c}} & \begin{array}{l}
\text { Vector-like } \\
\text { hidden colored } \\
\text { matter fields }
\end{array} \\
\mathrm{SU}(2)_{\mathrm{L}} \text { doublet }
\end{array}
$$

$$
V_{\mathrm{br}}\left(h, \phi_{\mathrm{rel}}\right) \approx \frac{\kappa_{u} \kappa_{d} \sin (2 \beta)}{m_{L}} \Lambda_{\mathrm{HC}}^{3} h h^{\dagger} \cos \left(2 \frac{\phi_{\mathrm{rel}}}{f}+\delta_{\mathrm{br}}\right)
$$

$\Lambda_{\mathrm{HC}}<m_{L} \sim \kappa_{N} m_{\mathrm{SUSY}}<4 \pi v$
to prevent the Higgs loop $>\mathrm{v}^{2}$

Summary

- The relaxion mechanism requires a huge field excursion (typically transPlanckian) due to the hierarchy between a Higgs mass cutoff scale and the weak scale.
- Our clockwork mechanism can yield an exponentially long relaxion direction $\sim \mathrm{e}^{N} \mathrm{f}$ within the compact field space of N periodic axions with their decay constants $\sim \mathrm{f}$ well below the Planck scale.
- Our scheme finds a natural UV completion in high scale SUSY scenario in order to preserve the approximate flat relaxion direction against radiative correction.
- The required relaxion potential is generated by a superpotential term providing a natural solution to the MSSM μ-problem.
- The back reaction sector is restricted to make the (radiatively induced) Higgs independent part be subdominant.

