Bright Side of the High Energy Universe

Kunihito IOKA (KEK, Sokendai)

The Graduate University for Advanced Studies

Oth: Power law E<3×10¹⁵eV (Knee) $F \propto E^{-2.7}$ Supernova remnant $L_{CR} \sim 10^{41} \text{ erg/s} \sim 0.1 E_{SN}/t_{SN}$ <E<5×10¹⁸eV (Ankle) $F \propto E^{-3-3.2}$ Galactic origin? <10¹⁴⁻¹⁵eV by SNR? <E<4×10¹⁹eV (GZK cutoff?) $F \propto E^{-2.7}$ Extra-Galactic: AGN? GRB?

Bright Side of the Universe by K. IOKA

Diffusion in Space

Microquasar

Supernova Remnant

Our galaxy

 $\langle \delta B^2(k) \rangle \propto k^{-5/3} (\text{Kolmogorov?})$

Pulsar

Oth: Power law E<3×10¹⁵eV (Knee) $F \propto E^{-2.7}$ Supernova remnant $L_{CR} \sim 10^{41} \text{ erg/s} \sim 0.1 E_{SN}/t_{SN}$ <E<5×10¹⁸eV (Ankle) $F \propto E^{-3-3.2}$ Galactic origin? <10¹⁴⁻¹⁵eV by SNR? <E<4×10¹⁹eV (GZK cutoff?) $F \propto E^{-2.7}$ Extra-Galactic: AGN? GRB?

0th: **Power law** E<3×10¹⁵eV (Knee) $F \propto E^{-2.7}$ Supernova remnant $L_{CR} \sim 10^{41} \text{ erg/s} \sim 0.1 E_{SN}/t_{SN}$ <E<5×10¹⁸eV (Ankle) $F \propto E^{-3-3.2}$ Galactic origin? <10¹⁴⁻¹⁵eV by SNR? <E<4×10¹⁹eV (GZK cutoff?) $F \propto E^{-2.7}$ Extra-Galactic: AGN? GRB?

Contents

- e[±] excess: Astrophysical
 - ✓ TeV spec., Anisotropy, ... CALET
- p: No excess or pp?
 - ✓ B/C ⇔ Li? **AMS-02**
- He, C hardening: Superbubble?
 - ✓ O, Ne, Mg, Si, Fe hardening?
- GeV γ-ray excess: DM? Pulsar?
 - ✓ Inverse Compton at TeV? **CTA**

PAMELA

Positron excess above the predicted secondary

Cosmic-Ray Electron An Excess also in (e⁺+e⁻) Spectrum

Bright Side of the Universe by K. IOKA

e[±] Cooling

We are here

Our galaxy

e[±] lose energy (cool) via inverse Compton and synchroton

Positron source

 $d < 2\sqrt{D_{\text{diff}}t_{\text{cool}}} \sim 1 \text{ kpc}\left(\frac{\varepsilon}{\text{TeV}}\right)^{2}$

 $t_{\rm cool}$ $\frac{4\pi}{3}\sigma_T c \left(\frac{B^2}{8\pi} + U_{\gamma}\right) \left(\frac{\varepsilon}{mc^2}\right)^2$

Talk by Jin & Zhou Boron is 2ndary of Carbon $D_{diff} \sim D_0 (\epsilon/\epsilon_0)^{-\delta}$ δ~0.4 $D_0 \sim 2 \times 10^{28} \text{ cm}^2/\text{s}$ Subject to change by - Disk & halo -Wind convection - Turbulent diffusion Reacceleration Isotope ratio: ¹⁰Be/⁹Be

14

Energies and rates of the cosmic-ray particles

Astrophysical Models

17

Pulsars

Abdo+ 13

Gamma-Ray Pulsars

Fermi satellite (LAT) has found >160 γ -ray pulsars CGRO PSRs (+), young radio-selected (O), young gamma-selected (D), MSPs (\diamondsuit)

Pulsar Wind Nebula Most spin-down energy ⇒ Pulsar wind

(Relativistic plasma of magnetized e[±])

 $L_{e^{\pm}} \sim 10 L_{\gamma}$

Termination shock $\Rightarrow e^{\pm}$ acceleration \Rightarrow Power law spec.

PWN→SNR→ISM

TeV Gamma-Ray Sky

1307.4690

l (deg

260

270

290

280

b (deg)

b (deg)

Spectral Fitting

Astrophysical models reproduce e⁺ & e⁻ spectra

Supported by astrophysical observations Consistent with a charge symmetric source term Primary e⁻ spectrum may have hardening

Astrophysical Models

Supernova Remnant

Major CR sources **P**_{CR} + **P**_{surrounding} $\rightarrow \pi \rightarrow e^+e^-$ Hadronic origin Typical τ_{pp} is small - Dense matter (molecular cloud) - Reacceleration

> Fujita, Kohri, Yamazaki & KI 09 Blasi & Serpico 09

Constraints on DM

Planck 1502.01589

6 Syr Fermi Limits on DM

Limits on Cross Section

Future?

- Spectrum at >TeV
- Anisotropy
- Anti-proton, ...

Spectrum: Fine Structure

DM-like Pulsar

High-energy e[±] lose energy by synch. & inv. Compton

CALET (CALorimetric Electron Telescope)

~1TeV electron candidate (#1128791625_17544)

(converted to MIP by calibration)

Set on Aug. 25

Data is taking!
DAMPE DArk Matter Particle Explore

China, Swiss, Italy Launch tomorrow? Total: 33 rad length

e, γ: 5GeV-10TeV ΔE=1%@800GeV 0.3 m²

p: 100GeV-100TeV ∆E=40%@800GeV 0.2 m²

 $\Delta \theta = 0.1^{\circ} @100 \text{GeV}$

Local Structures

Spiral distribution

Local B Turbulence

Contents

- e[±] excess: Astrophysical
 - ✓ TeV spec., Anisotropy, ... CALET
- p: No excess or pp?
 - ✓ B/C ⇔ Li? **AMS-02**
- He, C hardening: Superbubble?
 - ✓ O, Ne, Mg, Si, Fe hardening?
- GeV γ-ray excess: DM? Pulsar?
 - ✓ Inverse Compton at TeV? **CTA**

Figure 1. Antiproton to proton ratio measured by AMS. As seen, the measured ratio cannot be explained by existing models of secondary production.

Just 2ndary Anti-proton?

Just 2ndary Anti-proton?

Similar results on anti-proton uncertainties

Right Branching Fraction

pp in Supernova Remnant without Pulsars nor DM?

B/C for e[±] Excess

Similar B/C upturn was predicted for e^{\pm} excess e⁺, anti-proton & boron are 2ndary No B/C upturn \Rightarrow SN happens in low metal region?

B/C

B/C v.s. Li

AMS-02 has internal inconsistency

× R^{2.7} [GV^{1.7} m⁻² sr⁻¹ s⁻¹] Boron-to-Carbon Ratio 0.4 comparison with measurements $\Phi = C \left(\frac{R}{45 \,\text{GV}}\right)^{\gamma} \left[1 + \left(\frac{R}{R_0}\right)^{\Delta \gamma/s}\right]^{\circ}$ from 0.5 GeV/n to 3 TeV/n 0.3 0.2 10 AMS-02 **PAMELA (2014)** 0.1 **TRACER (2006)** CREAM-I (2004) ATIC-02 (2003) Fit to data AMS-01 (1998) ---- $\Delta \gamma = 0$ Buckley et al. (1991) 0.05 CRN-Spacelab2 (1985) Webber et al. (1981) Flux 0.04 HEAO3-C2 (1980) Simon et al. (1974-1976) 0.03 Dwyer & Meyer (1973-1975) Orth et al. (1972) 10³ 0.02 10² 10 10² 10³ Kinetic Energy (GeV/n) 10 1 **Rigidity** [GV] Derome+AMS days 15 Oliva+AMS days 15

Both boron and Lithium are secondary

Li

Contents

- e[±] excess: Astrophysical
 - ✓ TeV spec., Anisotropy, ... CALET
- p: No excess or pp?
 - ✓ B/C ⇔ Li? **AMS-02**
- He, C hardening: Superbubble?
 - ✓ O, Ne, Mg, Si, Fe hardening?
- GeV γ-ray excess: DM? Pulsar?
 - ✓ Inverse Compton at TeV? **CTA**

Spectral Breaks

Helium is Special

- He/p ~ **3×Y**₀! @100TeV
- Stellar nucleosynthesis
 never double the mean Y
 - (: Schonberg-Chandrasekhar)
 - : Reason to invoke **Big Bang**
- \Rightarrow Ejecta-enriched region

 $M_{He}/M <$

q_{SC}~0.1

He

CR origin ~ Superbubble?

Isolated SNR (~Fermi SNR)

not a main channel??

Multiple SNR Superbubble

Predict hardenings of heavy elements

Scenarios for Break

- 2. Injection
- 3. Local high-energy source
- 4. Local low-energy sou

Vladimirov+ 12

B/C break? O, Ne, Mg, Si, Fe breaks?

Contents

- e[±] excess: Astrophysical
 - ✓ TeV spec., Anisotropy, ... CALET
- p: No excess or pp?
 - ✓ B/C ⇔ Li? AMS-02
- He, C hardening: Superbubble?
 - ✓ O, Ne, Mg, Si, Fe hardening?
- GeV γ-ray excess: DM? Pulsar?
 - ✓ Inverse Compton at TeV? **CTA**

Galactic Center Morselli's talk

GeV y-ray Excess

Goodenough & Hooper 09 Vitale & Morselli 09 Hooper & Goodenough II Boyarsky+ 11 Hooper & Linden 11 Abazajian & Kaplinghat 12 Gordon & Macias 13 Huang+ 13 Abazajian+ 14 Daylan+ 14 Zhou+ 14 Calore+ 14 Bertone+ 15 Fermi collaboration 15 ...

Caveat: Background model systematics is not small

 $\sigma v ~(cm^3/s)$

Dark Matter v.s. Pulsar $\Omega \uparrow$ B Positrons Electron Intiprotons Supersymmetric neutralinos Protons Decay process $\rho_{\rm local} = 0.4 ~{\rm GeV/cm^3}$ bb 3 $s\overline{s}$ 2 uu,dd 10-26 5 $\Delta V \approx \frac{\Omega^2 B R^3}{2c^2} \sim 10^{14} \,\mathrm{V} \, \left(\frac{\Omega}{100 \,\mathrm{s}^{-1}}\right)^2 \left(\frac{B}{10^8 \,\mathrm{G}}\right) \left(\frac{R}{10^6 \,\mathrm{cm}}\right)^3$ $40^{\circ} x 40^{\circ}, \gamma = 1.18$ З Full Sky, $\gamma = 1.28$ 2 Or cosmic-ray bursts? (Carlson & Profumo 14; 20 30 50 60 40 Daylan+ 14; Petrovic+ 2014; Cholis+ 15) m_{X} (GeV)

Most Pulsars are Unseen

We are observing only nearby pulsars MSPs are faint Galactic center may have $O(IO^{3-4})$ MSPs \Rightarrow GeV excess?

Abazajian 11; Gordon & Macias 13; Yuan & Zhang 14; Petrovic+ 15; Bartels+ 15; Lee+ 15 Hooper+ 13; Cholis+ 15

▲ MSP; ● Radio-loud; ■ Radio-quiet

Pulsar Wind Nebula Most spin-down energy ⇒ Pulsar wind

(Relativistic plasma of magnetized e[±])

 $L_{r} \sim 10 L_{v}$

PWN→SNR→ISM ⇒ Inverse

Compton emission

Inverse Compton Spectrum

Surface Brightness

Contents

- e[±] excess: Astrophysical
 - ✓ TeV spec., Anisotropy, ... CALET
- p: No excess or pp?
 - ✓ B/C ⇔ Li? AMS-02
- He, C hardening: Superbubble?
 - ✓ O, Ne, Mg, Si, Fe hardening?
- GeV γ-ray excess: DM? Pulsar?
 - ✓ Inverse Compton at TeV? **CTA**

Thank

AMS-02 New Results

Air Shower **LHAASO** СТА GLAST Whipple cta 10¹¹ E F(>E) (TeV/cm²s) $AS_{\gamma} + MD$ MAGIC cherenkov telescope array MAGIC LHAASO HAWC H.E.S.S. LHAASO СТА 10¹⁴ 10^{-1} 10⁶ E (GeV) 10³ 10² 10⁵ 10⁴ 10

p & He Breaks

AMS-02 has changed the claim as events increase

✓ He remains harder than p Ohira & KI II

CR Helium Hardenings

Origin of Different Spectra

TABLE 1 Score Sheet for Models of Different Cosmic-ray Spectra

Model	Mechanism	Score	Comment	Reference
Propagation	Spallation	\otimes	Grammage	Blasi & Amato (2012)
Different sources	Wind	Δ	H wind	Biermann et al. (2010)
	Reverse shock	Δ	Energetics	Ptuskin et al. (2013)
Injection	Gyroradii	\otimes	C/He ≠ const.	Malkov et al. (2011)
Inhomogeneous environment	Ionization	\otimes	C/He ≠ const.	Drury (2011)
	Superbubble	\checkmark	Mixed ejecta	Ohira & Ioka (2011)

The last 3 are related to the nature of CR accelerators

Mixing Fraction of ISM

- $[He/p]_{Ejecta} \sim [He/p]_{ISM}$
- [C/p]_{Ejecta}>>[C/p]_{ISM}
- AMS-02: C/He~const within ~20%
 ⇒ ISM fraction <20% at ~10 GV
 <10% at ~10 TV
- Cosmic rays originate PRIMARILY from supernova ejecta!

Spectral Breaks

$$e^{\pm} \operatorname{Propagation}_{\substack{\partial \\ \partial t}} f(t, \varepsilon_{e}, \vec{x}) = \underbrace{K(\varepsilon_{e}) \nabla^{2} f}_{\text{Diffusion}} + \underbrace{\frac{\partial}{\partial \varepsilon_{e}} [b \varepsilon_{e}^{2} f]}_{\text{Herry loss by}} + \underbrace{q(t, \varepsilon_{e}, \vec{x})}_{\text{Injection}}_{\substack{Diffusion \\ b \sim 10^{-16} \text{GeV}^{-1} \text{s}^{-1}} + \underbrace{\frac{\partial}{\partial \varepsilon_{e}} [b \varepsilon_{e}^{2} f]}_{\text{IC & synchro.}} + \underbrace{q(t, \varepsilon_{e}, \vec{x})}_{\substack{\text{Injection} \\ \text{IC & synchro.}}}_{\substack{K(\varepsilon_{e}) \sim 5.8 \times 10^{28} \text{ cm}^{2} \text{s}^{-1} \left(1 + \frac{\varepsilon_{e}}{4 \text{GeV}}\right)^{\frac{1}{3}}} \leftarrow B/C \text{ ratio}$$
For a single burst with $q \propto \varepsilon_{e}^{-\alpha}$ Power law spectrum
$$f = \frac{q_{0} \varepsilon_{e}^{-\alpha}}{\pi^{3/2} d_{diff}^{3}} (1 - bt \varepsilon_{e})^{\alpha - 2} e^{-(d/d_{diff})^{2}} \qquad \text{Atoyan+ 95, Shen 70}$$
Spatially uniform over
$$d_{diff}(t, \varepsilon_{e}) \sim 2 [K(\varepsilon_{e}) t]^{\frac{1}{2}} \qquad \text{Spectral cutoff} \qquad \varepsilon_{cut} \sim \frac{1}{bt}$$

Spectral Fitting

Positron

Tension with Fermi?

Slope declines \Rightarrow Does not fit Fermi data

For both DM and pulsar models Still within the Fermi systematics Cholis & Hooper 13, Ibe+ 13 Yuan+ 13, Yuan & Bi 13 Masina & Sannino 13, Jin+ 13 De Simone+ 13, Feng+ 13 Gaggero & Maccione 13

Dark Matter Structure

N-body Simulation

The Aquarius Project

e⁻ Anisotropy: Dark Matter

DM Over-Density

ALE

(CALorimetric Electron Telescope)

Cosmic Ray Electrons up to ~10TeV w/ ∆E~a few % (>100GeV)

