Structure and large scale distribution of dark matter halos:

Overview and new horizons

Surhud More (Kavli-IPMU)

Collaborators: Hironao Miyatake (JPL), Masahiro Takada (Kavli IPMU), David Spergel (Princeton), Rachel Mandelbaum (CMU), Eduardo Rozo (Arizona), Eli Rykoff(Stanford), Benedikt Diemer, Neal Dalal, Masamune Oguri & Andrey Kravtsov (UChicago)

Cosmological paradigm

Cosmological paradigm

Surhud More, KIPMU

DSU 2015, Kyoto, Dec 15

Inhomogeneous Universe

• Evolution of structure: dark matter

Inhomogeneous Universe

• Evolution of structure: dark matter

Bias of dark matter halos

- More clustered
- The spatial distribution of halos is biased with respect to the matter distribution
- The bias of halos changes with their mass, more massive halos are more strongly clustered : b(M)
- This dependence is used to infer halo masses of objects such as galaxies by measuring their clustering

Halo assembly bias

- Dependence of the large scale clustering amplitude on secondary parameters other than the halo mass.
- Notice the asymmetric behaviour on either side of Mnl.

See also: Lemson & Kaufmann 99, Gao et al. 2005, 2008

Observationally: Yang et al. 2006, Weinmann et al. 2006, Kauffmann et al. 2013, Hearin et al. 2014, but cf. Lin et al. 2015

Halo assembly bias

High concentration halos

Low concentration Halos

- Dependence of the large scale clustering amplitude on secondary parameters other than the halo mass.
- Notice the asymmetric behaviour on either side of Mnl.

See also: Lemson & Kaufmann 99, Gao et al. 2005, 2008

Observationally: Yang et al. 2006, Weinmann et al. 2006, Kauffmann et al. 2013, Hearin et al. 2014, but cf. Lin et al. 2015

DSU 2015, Kyoto, Dec 15

redMaPPer cluster catalog

Rykoff et al. 2014

• Clusters found as overdensities of red galaxies

Bayesian formalism to select clusters

redMaPPer cluster subsamples

- 8648 redMaPPer clusters: $z \in [0.1, 0.33]$
- Subsamples based upon the average cluster-centric distance of member galaxies, <R_{mem}>
- Control for halo mass using the weak gravitational lensing signal

Less compact

More compact

Weak gravitational lensing

- Same average halo mass, different large scale bias.
- Bias difference due to mass difference is 1.1 in the extreme case.

Miyatake, SM, et al. 2015

Clustering of galaxy clusters

• Projected clustering of galaxy clusters shows a significant and consistent difference as well

Clustering of galaxy clusters

Projected clustering of galaxy clusters shows a significant and consistent difference as well

Dark matter halos

• Fundamental building block for structure in the Universe

• Near-universal density profile

 $\rho(r) \propto \left(\frac{r}{r_{\rm s}}\right)^{-1} \left(1 + \frac{r}{r_{\rm s}}\right)^{-2}$

Arbitrarily defined boundary

$$M_{\Delta} = \frac{4}{3} \pi R_{\Delta}^3 [\Delta \rho_{\rm ref}]$$

See Niikura et al. 2015 for observational evidence for NFW profile

Dark matter halos

See Niikura et al. 2015 for

(density is reconstructed using phase-space shootser.votional evidence for NFW profile

 $M_{\Delta} = \frac{4}{3} \pi R_{\Delta}^3 [\Delta \rho_{\rm ref}]$

Visualization based on a technique developed by Kaehler, Hahn and Abel 2013

Self-similar secondary infall

LAST CAUSTIC

DISTANCE

FILLMORE AND GOLDREICH 1984 BERTSCHINGER 1985

ANITIO LENG

400

300

100

200

VIA LACTEA I DIEMAND ET AL 2008

DISTANCE

Surhud More, KIPMU

DSU 2015, Kyoto, Dec 15

600

Self-similar secondary infall

LAST CAUSTIC

DISTANCE

FILLMORE AND GOLDREICH 1984 BERTSCHINGER 1985

ANITIO LENG

400

300

100

200

VIA LACTEA I DIEMAND ET AL 2008

DISTANCE

DSU 2015, Kyoto, Dec 15

600

Self-similar secondary infall

LAST CAUSTIC

DISTANCE

FILLMORE AND GOLDREICH 1984 BERTSCHINGER 1985

ANITIO LENG

400

300

100

200

VIA LACTEA I DIEMAND ET AL 2008

DISTANCE

DSU 2015, Kyoto, Dec 15

600

• Depends upon the mass accretion rate

• Faster accreting halos have smaller splash back radius

See also: Vogelsberger et al. 2011, Diemer & Kravtsov 2014, Adhikari, Dalal & Chamberlain 2014

DSU 2015, Kyoto, Dec 15

• Depends upon the mass accretion rate

• Faster accreting halos have smaller splash back radius

See also: Vogelsberger et al. 2011, Diemer & Kravtsov 2014, Adhikari, Dalal & Chamberlain 2014

DSU 2015, Kyoto, Dec 15

• Depends upon the mass accretion rate

• Faster accreting halos have smaller splash back radius

See also: Vogelsberger et al. 2011, Diemer & Kravtsov 2014, Adhikari, Dalal & Chamberlain 2014

- Depends upon the mass accretion rate
 - Faster accreting halos have smaller splash back radius

See also: Vogelsberger et al. 2011, Diemer & Kravtsov 2014, Adhikari, Dalal & Chamberlain 2014

DSU 2015, Kyoto, Dec 15

Splashback radius

- Use photometric galaxies with M_i-5 log h <-21.42 (assuming cluster redshift)
- Surface number density of such galaxies as a function of radius

SM, et al. 2015 (in preparation)

Dynamical friction ?!

 Does not appear to depend upon the magnitude of photometric galaxies used.

> SM, et al. 2015 (in preparation) DSU 2015, Kyoto, Dec 15

DSU 2015, Kyoto, Dec 15

Xray properties

• Differences in the inner regions (perhaps different from theoretical expectations).

SZ properties

High $c_{\rm gal}$ Low $c_{\rm gal}$ 10.52 2 9.07.50 0 6.04.5 $^{-1}$ $^{-1}$ 3.0-2 $^{-2}$ 1.5-30.0 -3-22 $^{-1}$ -21.512Compton y-maps Low c_{gal} High $c_{\rm gal}$ 1.410 1.3 $[10^{-7} \text{ units}]$ $y_{ m low}/y_{ m high}$ 1.21.1Ъ 1.0 $\mathbf{2}$ 0.9 $0.8 \ 10^{-1}$ $_{10^{-1}}^{0}$ 10^{0} 10^{0} $R_{\rm phys}~(h^{-1}{\rm Mpc})$ $R_{\rm phys}~(h^{-1}{\rm Mpc})$

Differences in the outer regions (similar to theoretical • expectations).

Surhud More, KIPMU

Stacked Planck

•

See e.g., Lau et al. 2014

Weak lensing systematics ???

• Kinematics of member galaxies around the redMaPPer clusters (using spectra from SDSS DR12 BOSS)

DSU 2015, Kyoto, Dec 15

SUMIRE: Subaru Measurements of Images and Redshift Survey

SUMIRE: Subaru Measurements of Images and Redshift Survey

• Hyper Suprime-cam:

- 0.9 Gpixel camera
- 5 bands: g,r,i,z,y
- r band limit: 26 (Wide)
- Wide angle (1.77 sq deg.)
- Prime Focus
 - Spectrograph:
 - 2400 optical fibers per field of view
 - Real time fiber positioning adjustments

SUMIRe: Subaru Measurements of Images

and **Redshift** Survey

Conclusions

 Detection of halo assembly bias and the splash back radius on cluster scales !!!

 The strength of the assembly bias effect seems to be larger than naive expectations.

• The splash back radius is smaller than expected.

Thank you!!!