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Evidences(for(DM

• have(masses(roughly(between(10(GeV(and(a(few(TeV.(

• interact(only(through(weak(and(gravita]onal(interac]ons.(

• explain(the(observed(DM(density(with(their(thermal(relic.(

• appear(in(models(beyond(the(Standard(Model.(

WeaklyaInterac]ng(Massive(Par]cles((WIMPs)



Supersymmetry((SUSY)
SUSY(offers(a(WIMP(DM(candidate.

Neutralino
(with(Raparity(conserva]on)

Mixed(state(of(bino,(wino(and(Higgsino.

Current(constraints(on(SUSY

• Null(results(for(SUSY(searches(

• 125(GeV(Higgs(mass

SUSY(scale(may(be(much(higher(than(the(EW(scale.

Neutralino(DM(is(s]ll(promising?

Can(we(probe(the(neutralino(DM??



HighJscale(SUSY( L.(J.(Hall,(Y.(Nomura,(S.(Shirai((2012)(
M.(Ibe,(S.(Matsumoto,(T.(T.(Yanagida((2012)(

A.(Arvanitaki,(N.(Craig,(S.(Dimopoulos,(G.(Villadoro((2012)(
N.(ArkaniaHamed,(A.(Gupta,(D.(E.(Kaplan,(N.(Weiner,(and(T.(Zorawski((2012)(

If(the(Kahler(poten]al(has(a(generic(form(and(there(is(no(singlet(field(
in(the(SUSY(breaking(sector;

Gravi!no Scalar Par!cles Higgsinos

Gauginos

O(10      ) TeV

O(1) TeV

Gluino

Bino

Wino

(2-5)

125(GeV(Higgs(mass(is(realized.

Gaugino(masses(are(induced(at(loop(level.
• Anomaly(media]on(
• Threshold(correc]ons((Higgsinos,(extra(maRers,(…)

L.(Randall(and(R.(Sundrum((1998)(
G.(F.(Giudice,(M.(A.(Luty,(H.(Murayama,(and(R.(RaRazzi((1998)(

Extra(maRers
O(102a3)(TeV



DM(in(HighJscale(SUSY(
This(scenario(accommodates(neutralino(DM.

Wino(DM
• Thermal(relic(of(3(TeV(wino(accounts(for(the(DM(density.

J.(Hisano,(S.(Matsumoto,(M.(Nagai,(O.(Saito,(M.(Senami((2006)(Bino(DM
In(general,(its(thermal(relic(abundance(is(too(large.

Coannihila]on!
In(our(setup,(there(are(two(possibili]es:

Binoagluino(coannihila]on
S.(Profumo,(C.(Yaguna((2004),(D.(Feldman,(Z.(Liu,(P.(Nath((2009),(A.(De(Simone,(G.(F.(Giudice,(A.(Strumia,((

K.(Harigaya,(K.(Kaneta,(S.(Matsumoto((2014),(J.(Ellis,(F.(Luo,(K.(A.(Olive((2015)(

Binoawino(coannihila]on
H.(Baer,(T.(Krupovnickas,(A.(Mustafayev,(E.(K.(Park,(S.(Profumo(et.(al.((2005),((

M.(Ibe,(A.(Kamada,(S.(Matsumoto((2013),(K.(Harigaya,(K.(Kaneta,(S.(Matsumoto((2014)(



Today’s(topic(
These(scenarios(require(the(lightest(and(the(nextatoalightest(
par]cles(to(be(degenerate(in(mass.

Hard(to(probe(with(tradi]onal(LHC(searches.(
(Decay(products(are(too(son.)

In(both(scenarios,(the(nextatoalightest(par]cle(
becomes(longalived.

Displaced(vertex((DV)(searches(can(probe(the(scenario.

Hard(to(probe(with(other(DM(searches.
(Interac]ons(are(too(weak.)



ATLAS(Inner(detector

ATLAS(has(searched(for(DVs(in(the(region(of(|z|<30(cm(and(r(<(30(cm.

Sensi]ve(to((((((((((((((((((((((((((((((((((((.

TRT

SCT

Pixel



ATLAS(DV(+(MET(search
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Strong(limit(from(the(DV(
search.

We(will(reinterpret(this(result,(considering(the(small(
mass(difference(required(by(the(coannihila]on(scenarios.

No(SM(background.

ATLAS,(Phys.(Rev.(D92,(072004((2015)([arXiv:(1504.05162]



Our(strategy
To(take(into(account(the(small(mass(difference,

Simulate(the(reduc]on(of(trigger(efficiencies(using(
public(codes.

Reconstruc]on(efficiency(of(DVs(is(es]mated(from(
the(plots(in(the(ATLAS(paper(and(our(ignorance(is(
shown(as(theore]cal(uncertainty.



Contour(for(mass(difference(Δm(which(achieves(((((((((((((((((((((((.
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Feng(Luo’s(talk!
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The(sensi]vity(is(beRer(than(the(exis]ng(searches(
based(on(jets(plus(missing(energy.
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Prospects(for(the(longJlived(gluino(search



Mass(spectrum(and(decay(chains

ΔMEW(=(160(MeV(

ΔM(=(O(10)(GeV(
Coannihila]on!(

Prompt(decay(

Longalived!(



Neutral(wino(decay
A(neutral(wino(can(decay(into(the(bino(LSP(via(Higgsino(mixing.

The(decay(rate(is(suppressed(for(a(large(Higgsino(mass.

Dominant(diagram Subadominant(diagrams
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When(Higgsino(mass(is(quite(large,(the(neutral(wino(
becomes(longalived.



Decay(length(of(neutral(wino
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Prospects(for(the(longJlived(wino(search
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400(GeV((800(GeV)(wino(can(be(probed(at(8((14)(TeV(LHC.(

N.(Nagata,(H.(Otono,(S.(Shirai,(JHEP(1510,(086((2015)([arXiv:(1506.08206]

tanβ(=(2(



Conclusion

We(discuss(bino(DM(in(the(highascale(SUSY(scenario.

The(observed(DM(density(is(accounted(for(by(the(bino(DM(
if(gluino/wino(is(degenerate(with(the(DM(in(mass.

The(displaced(vertex(searches(at(the(LHC(are(quite(
promising(for(probing(these(scenarios.

For(the(binoagluino(coannihila]on,(the(14(TeV(LHC(can(
reach(a(gluino(mass(of(~(2(TeV.

In(the(case(of(the(binoawino(coannihila]on,(the(expected(
reach(for(the(wino(mass(is(~(800(GeV.



Backup



ATLAS(longJlived(gluino(search
DV(+(missing(transverse(energy(

Displaced(vertex

• should(be(accompanied(with(more(than(four(tracks(

• invariant(mass(should(be(more(than(10(GeV(

• Two(jets(with(pT(>(50(GeV.
Missing(transverse(energy
• (

ATLAS([arXiv:(1504.05162]
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ATLAS(longJlived(gluino(search
DV(+(missing(transverse(energy(

ATLAS([arXiv:(1504.05162]
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EventJlevel(efficiency(for(DV(+(MET
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BinoJgluino(coannihila.on
• Bino(selfaannihila]on(
• Binoagluino(annihila]on(
• Gluino(selfaannihila]on

Very(small(cross(sec]on

Large(cross(sec]on
(due(to(strong(coupling)

For(binoagluino(coannihila]on(to(work(effec]vely,(chemical((
equilibrium(between(bino(and(gluino(is(required.

The(transi]on(rate(between(them(should((
be(much(larger(than(the(Hubble(rate.(

for

This(condi]on(gives(an(upper(bound(on(the(sfermion(mass(scale
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Gluino(decay(length
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ReJinterpreta.on(of(the(ATLAS(result
We(reinterpret(the(ATLAS(DV(+(MET(search(result(considering(
the(small(binoagluino(mass(difference(in(our(scenario.

8(TeV(LHC(with(20(|a1

14(TeV(LHC(with(300(|a1

• (

• (Trigger(efficiency(is(simulated(to(be(40%.

• (

• (Trigger(efficiency(is(simulated(to(be(15%.

HERWIG(6(
ACERDET
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ReJinterpreta.on(of(the(ATLAS(result
We(reinterpret(the(ATLAS(DV(+(MET(search(result(to(op]mize(it(
for(the(binoawino(coannihila]on(scenario.

8(TeV(LHC(with(20(|a1

14(TeV(LHC(with(300(|a1

• (

• (Acceptance(rate(is(simulated(to(be(3%.

• (

• (Acceptance(rate(is(simulated(to(be(1%.

MADGRAPH5(
PYTHIA6(
DELPHES3(
PROSPINO2

We(have(dropped(the(PT(condi]on(for(DVs.

MET(comes(from(the(back(reac]on(of(ISR.



ATLAS(longJlived(gluino(search

ATLAS([arXiv:(1504.05162]
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Full(theory
GauginoaHiggsinoaHiggs(interac]ons

2.1 E↵ective theory for wino decay

Here, we discuss the wino decay based on the e↵ective field theoretical approach. To begin with,

we introduce the full theory containing Higgsino with renormalizable interactions. Then, we obtain

a relevant e↵ective field theory by integrating out the heavy Higgsino. The Higgsino contributions

are described by higher-dimensional operators in the e↵ective theory, which causes the wino decay

into the bino LSP.

Full theory above Higgsino scale

First, let us consider the full theory. In the mini-spit/spread SUSY, it is reasonable to assume that

the sfermion mass scale em is similar to or greater than the Higgsino mass µ: em & |µ|. In this case,

the decay of wino is dominantly controlled by the gaugino-Higgsino-Higgs couplings, rather than the

interactions with sfermions and heavy Higgs bosons. Thus, we can safely neglect their contributions

in the following discussion.

The gaugino-Higgsino-Higgs interactions are given by

Lint =� 1p
2
{g1uH† eHu + g1d✏

↵�(H)↵( eHd)�} eB

�
p
2{g2uH†TAH̃u � g2d✏

↵�(H)↵(T
A eHd)�}fWA + h.c. , (1)

where eHu,d, eB, and fWA (A = 1, 2, 3) denote the Higgsino, bino, and wino fields, respectively; H is

the SM Higgs field; TA are the SU(2)L generators. In this paper, we mainly use the two-component

notation for fermion fields unless otherwise noted. At the leading order, the above coupling constants

are given by

g1u = g0 sin �, g1d = g0 cos � ,

g2u = g sin �, g2d = g cos � , (2)

at the SUSY breaking scale em. Here, g0 and g are the U(1)Y and SU(2)L gauge coupling constants,

respectively, and tan � ⌘ hH0
ui/hH0

di.
The gaugino and Higgsino mass terms are defined by

Lmass = �M1

2
eB eB � M2

2
fWAfWA � µ ✏↵�( eHu)↵( eHd)� + h.c. , (3)

with ✏↵� the antisymmetric tensor. In the following subsection, we construct an e↵ective filed theory

for the gauginos by integrating out the Higgsinos eHu and eHd, which are supposed to be much heavier

than the gauginos.

E↵ective theory below Higgsino scale

Next, we formulate an e↵ective theory which describes the wino decay into the bino LSP. The decay

is caused by e↵ective interactions expressed by higher-dimensional operators, which are induced
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Effec.ve(theory
Effec]ve(interac]ons
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Figure 2: Examples of the diagrams, which generate the e↵ective operators.

when we integrate out heavier particles than gauginos—Higgsinos and scalar particles whose masses

are O(10–103) TeV. Let us write down relevant operators up to dimension six. For the dimension-five

operators, we have

O(5)
1 = eBfWAH†TAH , (4)

O(5)
2 = eB�µ⌫fWAWA

µ⌫ , (5)

Q1 =
1

2
eB eB|H|2 , (6)

Q2 =
1

2
fWAfWA|H|2 , (7)

where WA
µ⌫ is the SU(2)L gauge field strength tensor; �µ⌫ ⌘ i

2(�µ�⌫ � �⌫�µ), where �µ = (�0, �i)

and �µ = (�0,��i) with �i (i = 1, 2, 3) the Pauli matrices. The first two operators contain a bino

and a wino, and thus directly contribute to the wino decay into the bino LSP. The latter two are,

on the other hand, only relevant to the mass matrix for the neutral bino and wino; these operators

reduce to the mass terms for them after the EW symmetry breaking. As for dimension-six, we have

O(6) = eB†�µfWAH†TAi
 !
D µH , (8)

where Dµ is the covariant derivative and A
 !
D µB ⌘ ADµB� (DµB)A with A and B arbitrary fields.

This operator also contributes to the wino decay, though its e↵ect is further suppressed by a heavy

mass scale. Then, the e↵ective interactions are given as follows:

�Lint =
X

i=1,2

C
(5)
i O(5)

i +
X

i=1,2

eCiQi + C(6)O(6) + h.c. (9)

The Wilson coe�cients of these operators are determined below.
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2(�µ�⌫ � �⌫�µ), where �µ = (�0, �i)

and �µ = (�0,��i) with �i (i = 1, 2, 3) the Pauli matrices. The first two operators contain a bino

and a wino, and thus directly contribute to the wino decay into the bino LSP. The latter two are,

on the other hand, only relevant to the mass matrix for the neutral bino and wino; these operators

reduce to the mass terms for them after the EW symmetry breaking. As for dimension-six, we have

O(6) = eB†�µfWAH†TAi
 !
D µH , (8)

where Dµ is the covariant derivative and A
 !
D µB ⌘ ADµB� (DµB)A with A and B arbitrary fields.

This operator also contributes to the wino decay, though its e↵ect is further suppressed by a heavy

mass scale. Then, the e↵ective interactions are given as follows:

�Lint =
X

i=1,2
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(5)
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i +
X

i=1,2

eCiQi + C(6)O(6) + h.c. (9)

The Wilson coe�cients of these operators are determined below.
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5

Wilson(coefficientsBy evaluating the tree-level Higgsino exchange diagrams (Fig. 2a), we readily obtain

C
(5)
1 =

1

µ
(g1ug2d + g1dg2u) +

1

2|µ|2 [(g
⇤
1ug2u + g⇤1dg2d)M1 + (g1ug

⇤
2u + g1dg

⇤
2d)M2] , (10)

C(6) = � 1

2|µ|2 (g
⇤
1ug2u � g⇤1dg2d) , (11)

eC1 =
g1ug1d
µ

+
M1

2|µ|2 (|g1u|
2 + |g1d|2) , (12)

eC2 =
g2ug2d
µ

+
M2

2|µ|2 (|g2u|
2 + |g2d|2) . (13)

Here we have kept e↵ective operators up to dimension six, and used equations of motions for external

gaugino fields to eliminate redundant operators. The operator O(5)
2 is not induced at tree level.

However, since this operator gives rise to the two-body decay process fW 0 ! eB + �, it could be

important even though it is induced at loop level [41–44], especially when the wino mass is close

to the bino mass. Thus, only for this operator, we also consider the one-loop contribution. The

one-loop Higgsino-Higgs loop diagram (Fig. 2b) yields

C
(5)
2 =+

g

2(4⇡)2µ
(g1ug2d � g1dg2u)

� g

8(4⇡)2


(g⇤1ug2u � g⇤1dg2d)

M1

|µ|2 � (g1ug
⇤
2u � g1dg

⇤
2d)

M2

|µ|2
�

, (14)

where again we have kept terms up to O(|µ|�2). Note that the first term vanishes if we use the tree-

level relation Eq. (2). We also find that the heavy Higgs contribution of O(µ�1) vanishes in a similar

manner. Thus, although the operator O(5)
2 is dimension five, its Wilson coe�cient is suppressed

by |µ|�2 and thus subdominant compared to the contribution of O(5)
1 . Moreover, the terms in the

second line could also cancel with each other to great extent if M1 ' M2. This results in a further

suppression of this contribution. Besides, quark-squark loop processes can generate the operator

O(5)
2 at one-loop level. Their contribution is suppressed by a factor of m�2

q̃ on top of a loop factor,

with meq the mass of the squark running in the loop, and thus again subdominant.

EW broken phase

After the Higgs field acquires a vacuum expectation value (VEV), the operators O(5)
1 , Q1, and Q2

reduce to the mass terms for bino and wino. The mass matrix for the neutral sector is given by

Lmass = �1

2
( eB fW 0)M

 
eB
fW 0

!
, (15)

with

M =

 
M1 � v2

2
eC1

v2

4 C
(5)
1

v2

4 C
(5)
1 M2 � v2

2
eC2

!
⌘
✓M11 M12

M12 M22

◆
, (16)
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