The indirect search for dark matter with the ANTARES neutrino telescope

Christoph Tönnis - IFIC Valencia

on behalf of the ANTARES Collaboration

Dark Side of the Universe 2015, 14th - 18th December 2015

- The ANTARES neutrino telescope
- 2 Search towards the Galactic Centre
- Search towards the Sun
- 4 Summary

The ANTARES neutrino telescope

The ANTARES neutrino telescope

Indirect detection of dark matter with neutrino telescopes

- Relic WIMPs accumulate in massive celestial bodies like the Sun, the Galactic Center, the Earth (presented as poster) or galaxy clusters
- The annihilation in W^{\pm}, Z, H bosons, c, b, t quarks and τ leptons can lead to significant neutrino fluxes
- The neutrino signal is less subjected to astrophysical uncertainties than γ -rays or cosmic rays and a measured signal will be a smoking gun

Dark matter neutrino signal

Figure: Neutrino spectra from WIMP annihilations in vacuum, Blue: $b\bar{b}$, Green: $\tau^+\tau^-$,Red: W^+W^- , Black: $\nu\bar{\nu}$, Violet: $\mu^+\mu^-$, used for the Galactic Centre, dwarf galaxies and galaxy clusters

The ANTARES detector

Reconstruction strategies

- AAFit (likelihood based)
 - * Better for high energies (>250 GeV)
 - * Event selection parameters are λ (reconstruction quality) and β (angular error estimate)
- BBFit (χ^2 based)
 - * Better for low energies (<250 GeV)
 - * Can reconstruct single-line events (only zenith angle provided)
 - * The main event selection parameter is tchi2 ($\sim \chi^2$)

Search towards the Galactic Centre

Galactic Centre

Cone cuts

- In a binned analysis, sensitivities and limits are obtained from a background estimate, that is produced for varying quality cuts and cone cuts around the analyzed source.
- In our analysis this background estimate is generated from time-scrambled data.
- The sensitivities are optimised with respect to the cone and reconstruction quality parameter cut.
- The limits are then generated using the same cone and quality cuts used for the sensitivities.

Unblinding

Unblinding

Unblinding

No observed excess.

Figure: The cumulative number of events from the 2007-2012 period (crosses) vs. background estimate (line). 1321 days of livetime

Acceptance

Figure: Acceptance $[m^2]$ per WIMP mass [GeV] for the different channels. Solid lines: AAFit, Dashed lines: BBFit, Green: $b\bar{b}$, Red: $\tau^+\tau^-$, Blue: W^+W^- , Gray: $\mu^+\mu^-$, Light blue: $\nu\bar{\nu}$

Flux limits

Figure: The neutrino and antineutrino flux limits for the different annihilation channels.

J-Factor

 The J-Factor is the integral along the line of sight of the dark matter density squared.

$$J(\theta) = \int_{0}^{l_{\text{max}}} \frac{\rho_{\text{DM}}^2 \sqrt{R_{\text{SC}}^2 - 2lR_{\text{SC}}\cos(\theta) + l^2}}{R_{\text{SC}}\rho_{\text{SC,DM}}^2} dl$$

• The J-Factor is necessary to convert a flux into a thermally averaged annihilation cross section $<\sigma v>$

$$\frac{\mathrm{d}\phi_{\nu}}{\mathrm{dE}} = \frac{<\sigma v>}{2} J_{\Delta\Omega} \frac{R_{\mathrm{SC}} \rho_{\mathrm{SC}}^2}{4\pi m_{\chi}^2} \frac{\mathrm{d} N_{\nu}}{\mathrm{d} E}$$

• The total J-factor for the binned analysis is calculated by integrating the J-factor over solid angle until the cone cut

Limit comparison

Search towards the Sun

The Sun

Unbinned method

• The used likelihood function is:

$$\log(L) = \sum_{i} \log \left(\frac{n_s}{N} S_i(\alpha, N_{hits}, \beta) + \left(1 - \frac{n_s}{N} \right) B_i(dec, N_{hits}, \beta) \right)$$

- N_{hits} is the number of selected hits in the event, β the angular error estimate (χ^2 is used for BBFit)
- The test statistics used is:

$$\log [TS] = \log [L^{max}] - \log [L(n_s = 0)]$$

Spectra and acceptance

Figure: Neutrino spectra used for the Sun analysis produced with WIMPSIM, taking neutrino oscillations into account.

Figure: The acceptance $[m^2]$ as a function of the WIMP mass for the different channels

Conversion to cross sections

 The neutrino fluxes are converted to cross sections assuming an equilibrium between annihilation and capture

$$C_{cap} = 2C_{ann}$$

- C_{ann} is the annihilation rate, C_{cap} is the capture rate
- The capture rate can be expressed as:

$$C_{cap} = 3.35 \frac{1}{s} \left(\frac{\rho_{loc}}{0.3 \frac{GeV}{cm^3}} \right) \left(\frac{270 \frac{km}{s}}{v_{rms}} \right)^3 \left(\frac{\sigma_{H,sd} + \sigma_{H,si} + 0.07 \sigma_{He,si}}{10^{-6} pb} \right) \left(\frac{100 GeV}{m_\chi} \right)^2$$

• $\sigma_{H,sd}$, $\sigma_{H,si}$ and $\sigma_{He,si}$ are the spin-dependent and spin-independent scattering cross-sections with hydrogen and helium, ρ_{loc} is the local DM density, v_{rms} is the mean DM particle velocity and m_{χ} is the WIMP mass.

Limits and results

 The data from the 2007-2012 period has been used (1321 days of livetime)

Summary

- The searches for dark matter in the Galactic Center and the Sun analysis show very competitive results
- The produced limits begin to constrain the SUSY dark matter models
- Further analyses for the Earth and secluded dark matter are also conducted
- ANTARES limits will further improve with new data (and an unbinned GC search is ongoing)

Flux limits

Figure: The neutrino plus antineutrino flux limits for the different annihilation channels.

Detection principle

Dark matter neutrino signal

- For the Earth and the Sun analyses the dark matter neutrino spectra have been calculated with the WIMPSIM package (Blennow, Edsjö, Ohlsson, 03/2008)
- For the Galactic Centre and the galaxy cluster analysis the spectra of the Cirelli group are used (M.Cirelli et al., arXiv:1012.4515)
- Annihilations into $b\bar{b}$, $\tau^+\tau^-$, W^+W^- , $\mu^+\mu^-$ and $\nu_\mu\bar{\nu}_\mu$ are used as benchmark

Source selection

- An analysis of the 11 most promising sources is in progress
- For now only the binned method has been applied

Figure: Cumulative estimated contribution per source sorted by magnitude

First estimation of sensitivity for the Virgo cluster

Figure: Solid: AAFit, Dashed: BBFit Colours: $b, \tau, W, \mu, \nu_{\mu}$

Limits and results

- The data from the 2007-2012 period has been used
- 1321 days of livetime in this period

Clumpy Output

J factor computed for the NFW profile using CLUMPY version 2011.09_corr2 (A. Chardonnier et al., Comp. Phys. Comm. 183, 656 (2012) (http://lpsc.in2p3.fr/clumpy))

Background rejection

The largest part of the background consists of atmospheric muons

They can be rejected by making a "horizon cut" thereby using the Earth as a shield against these muons

Visibility

IceCube visibility without veto in galactic coordinates Resolution in ice $\sim 0.6^{\circ}$

Figure: IceCube visibility increases with the veto at the price effective area

ANTARES visibility in galactic coordinates Resolution in water $\sim 0.3^{\circ}$

