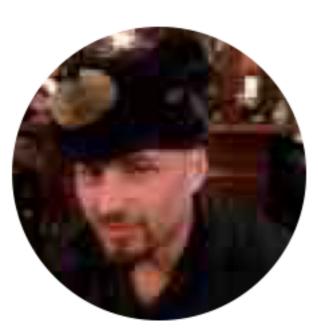
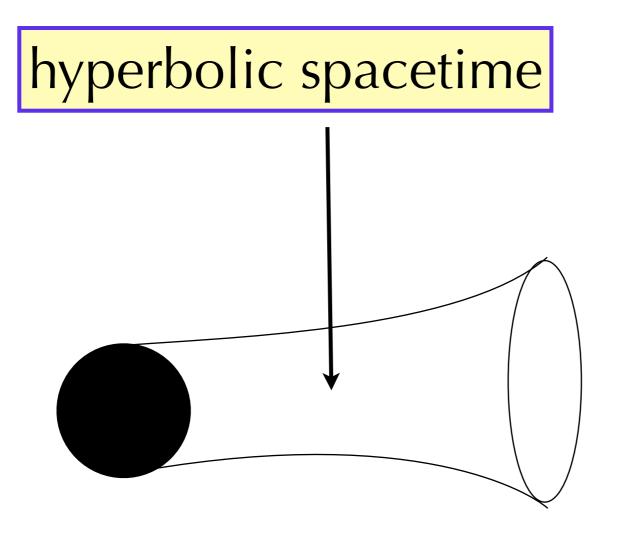
Branes in the AdS/CFT Correspondence

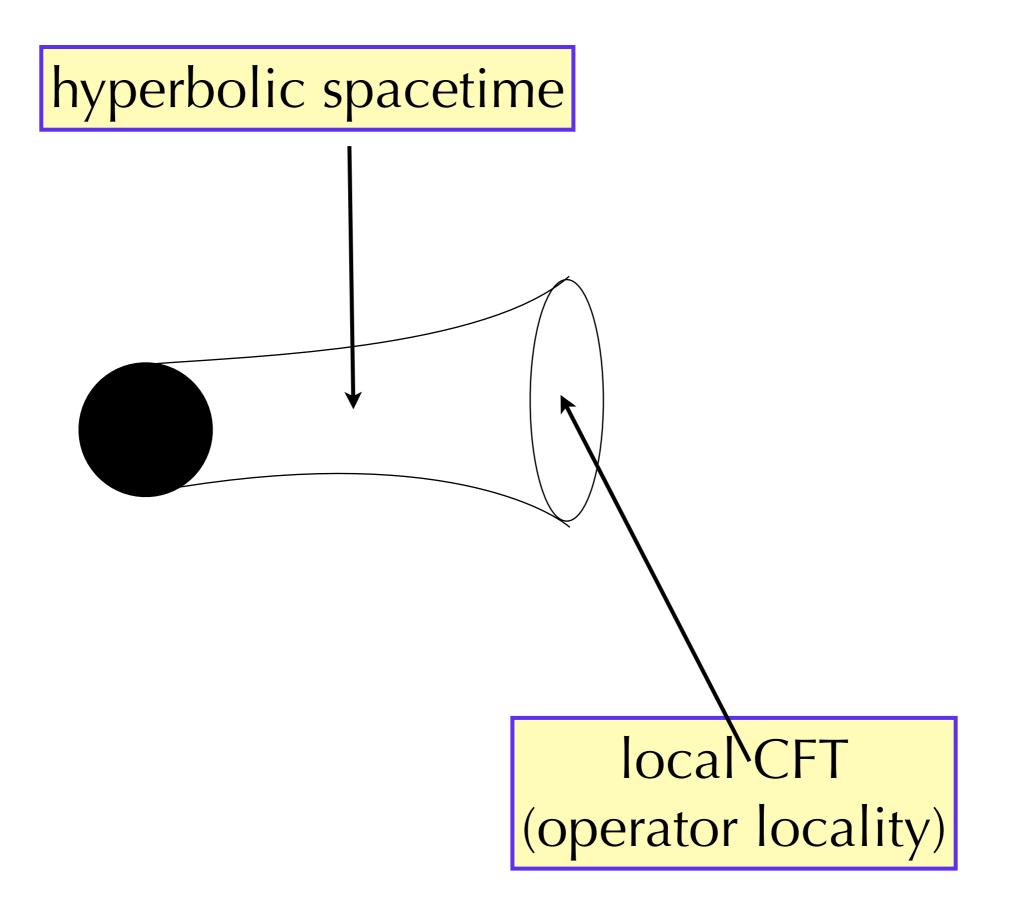
thanks to

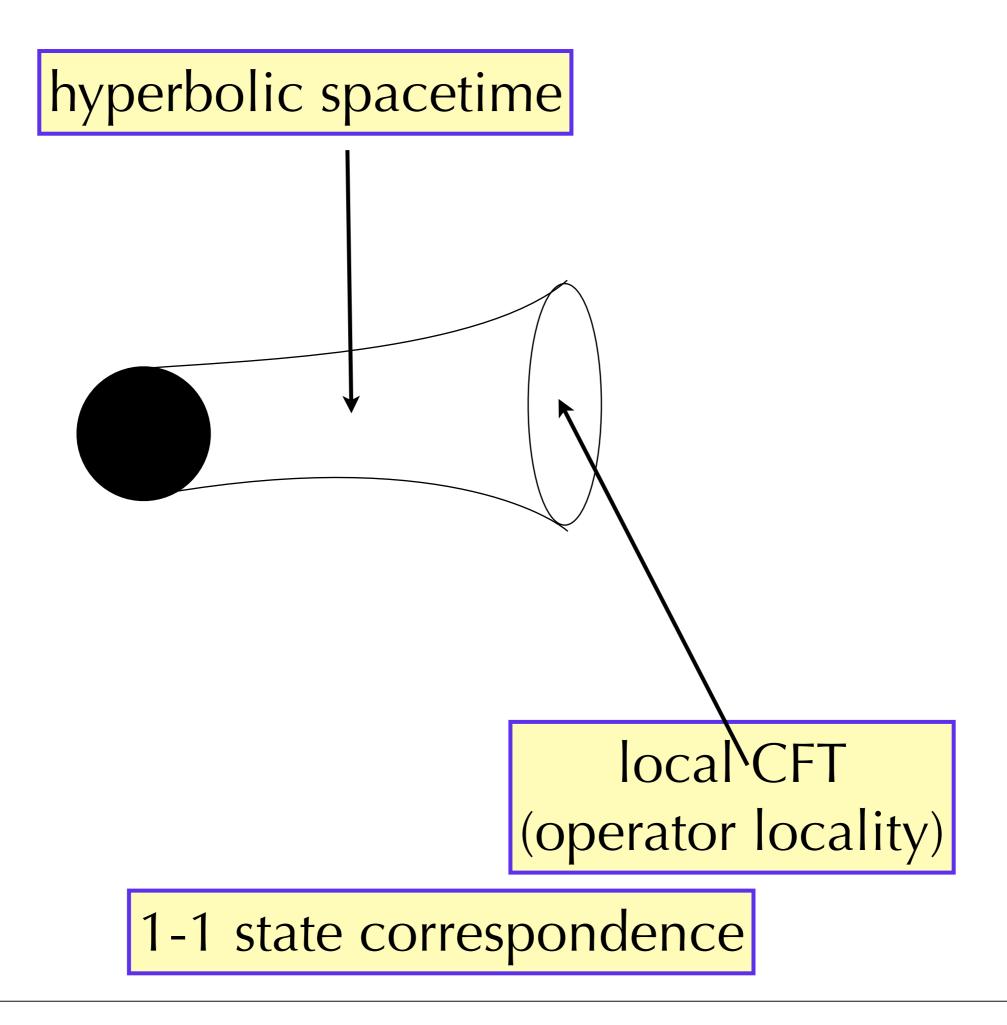
Gabriele La Nave

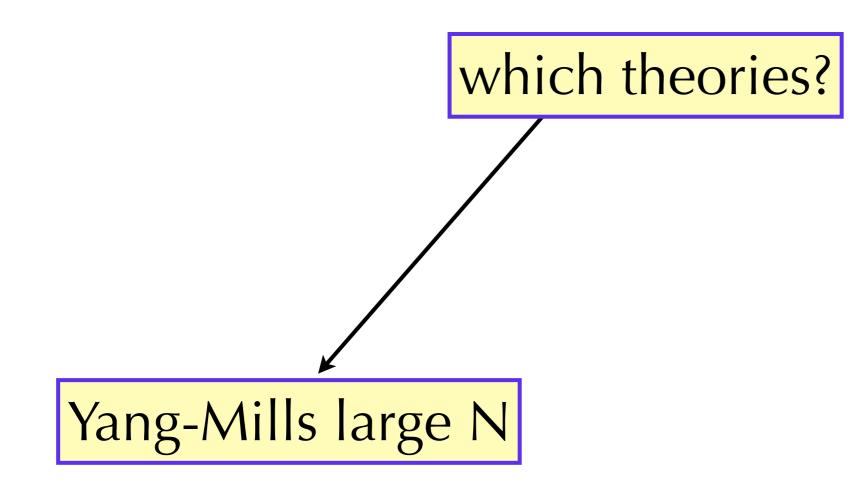


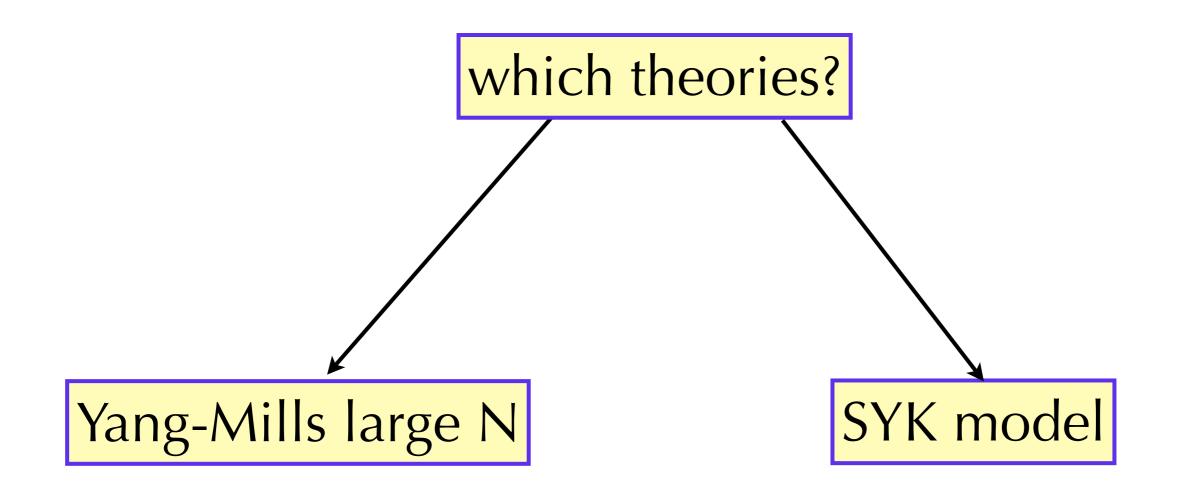
arxiv:1605.07525

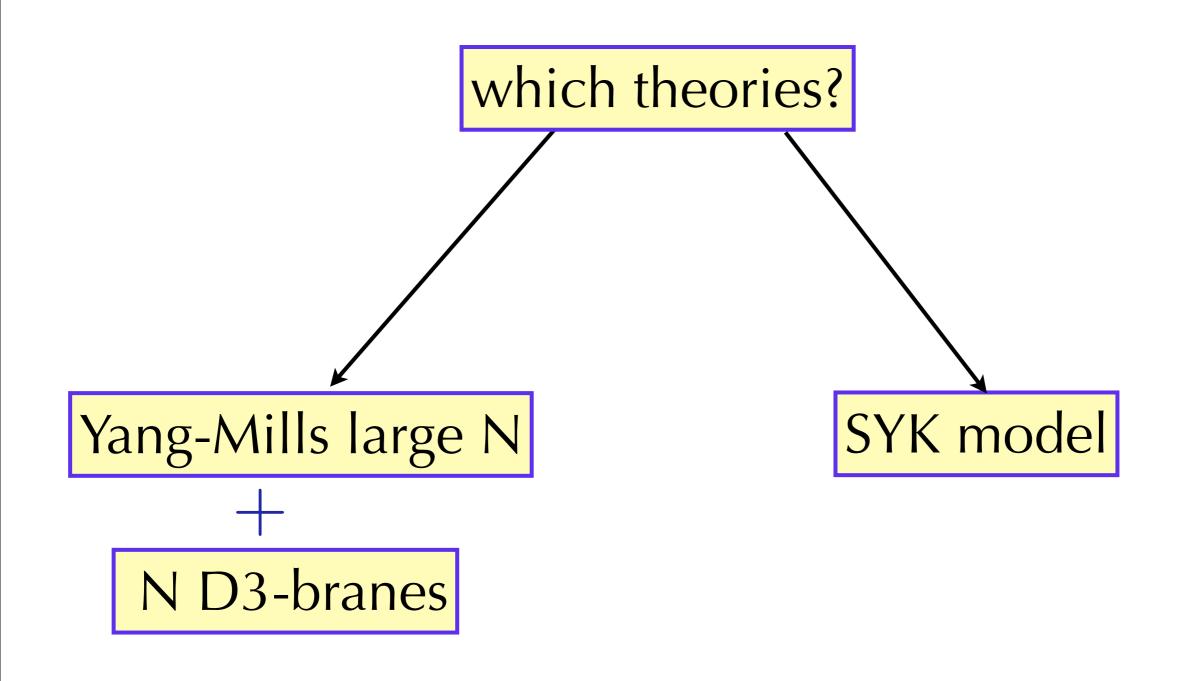


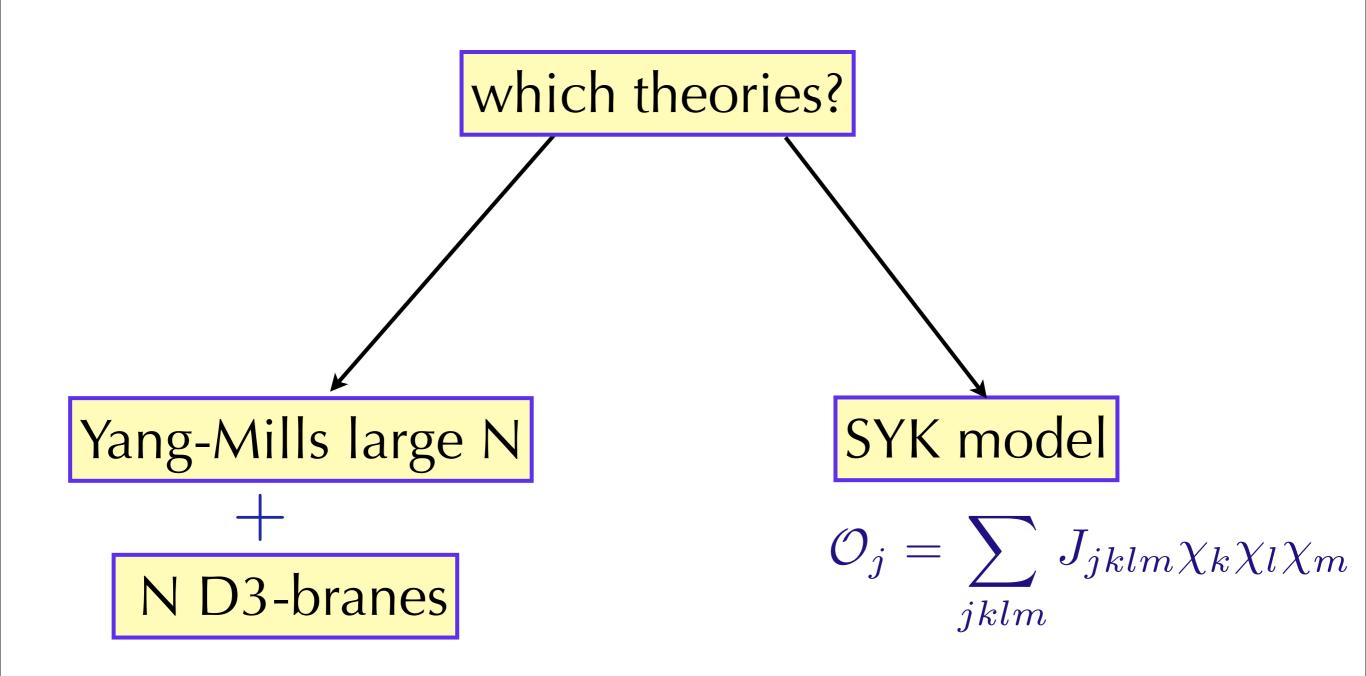


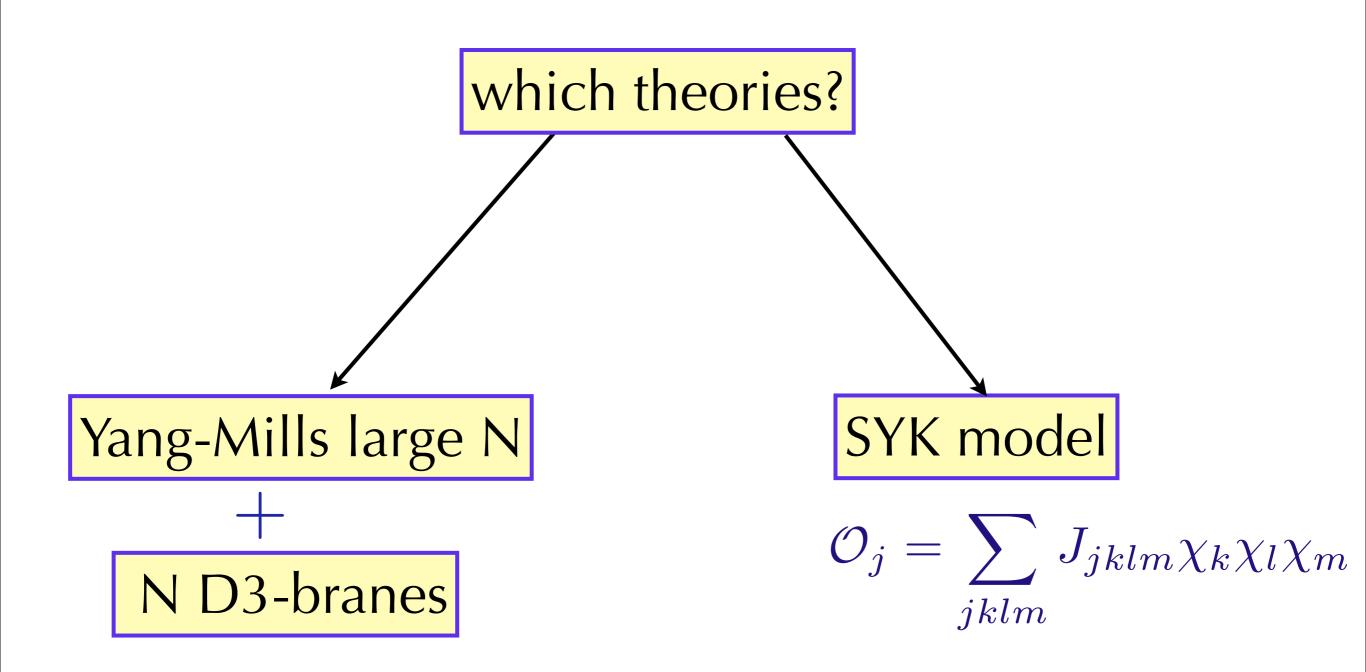




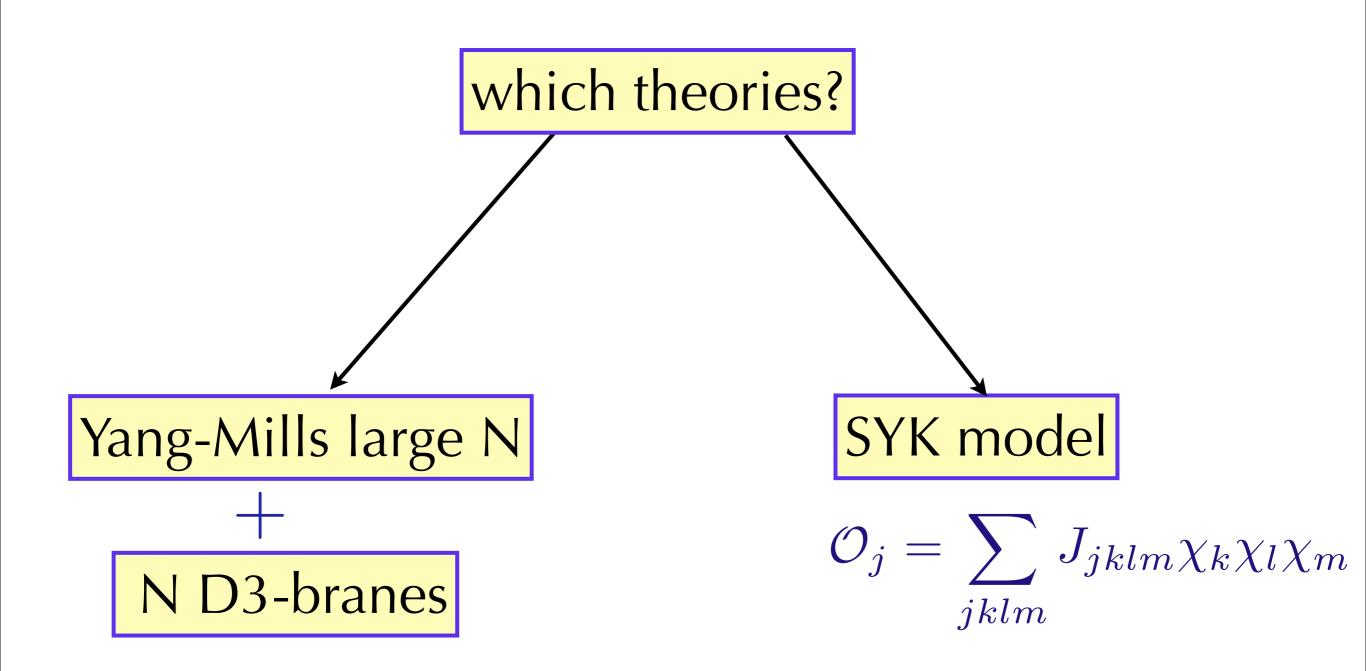








completely different limits



completely different limits

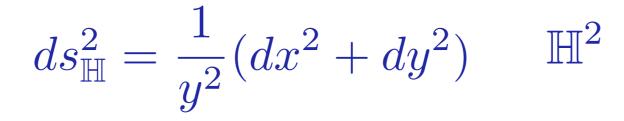
geodesic completeness

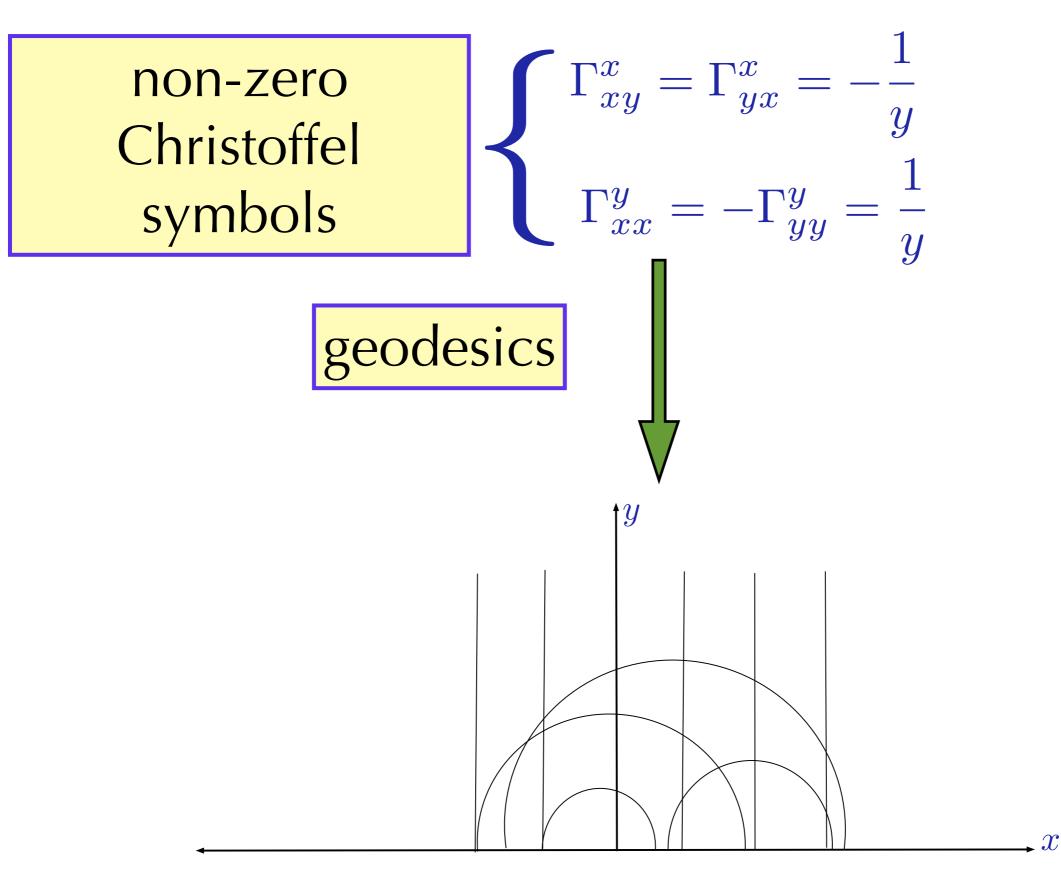
$$ds_{\mathbb{H}}^2 = \frac{1}{y^2} (dx^2 + dy^2) \qquad \mathbb{H}^2$$

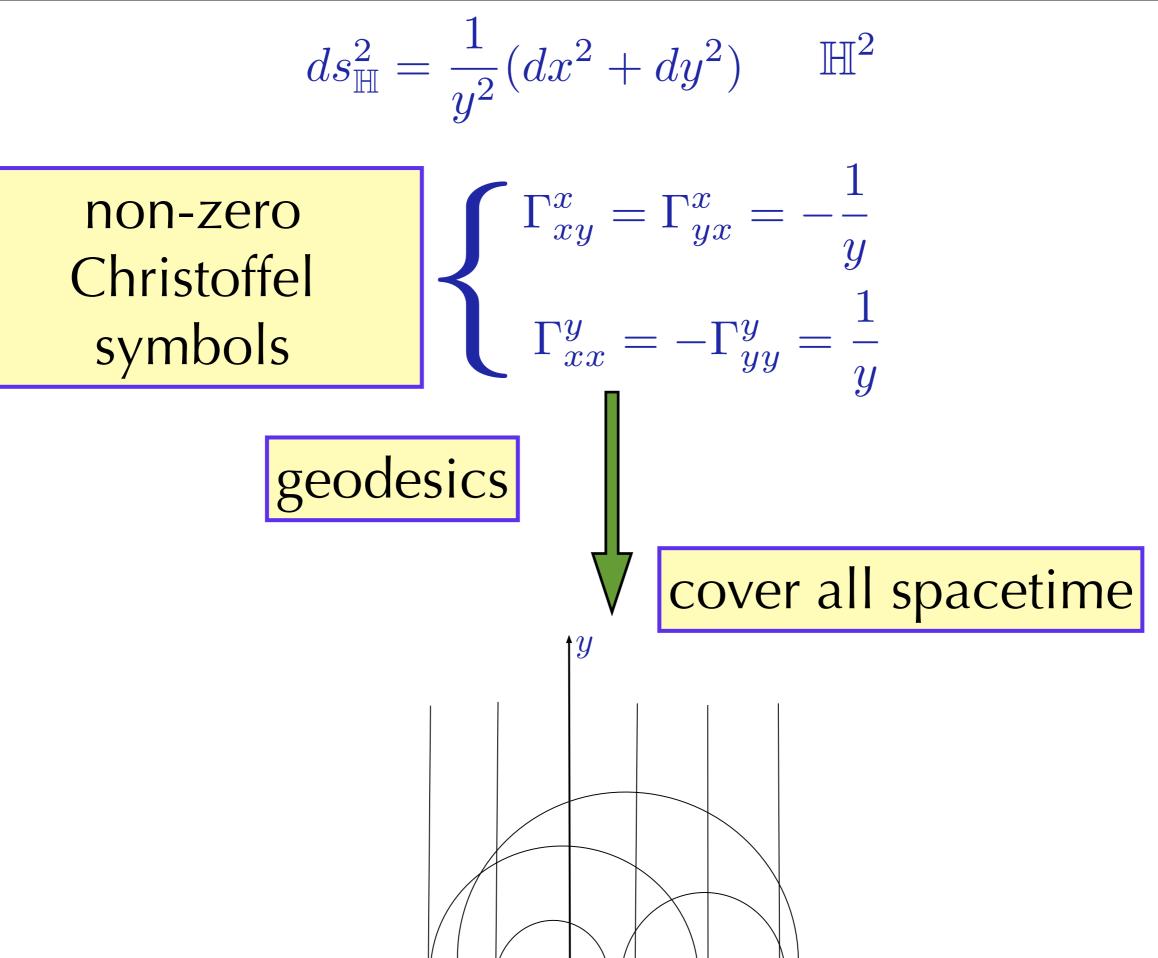
$$ds_{\mathbb{H}}^2 = \frac{1}{y^2} (dx^2 + dy^2) \qquad \mathbb{H}^2$$

non-zero Christoffel symbols

$$\left\{ \begin{array}{l} \Gamma^x_{xy} = \Gamma^x_{yx} = -\frac{1}{y} \\ \Gamma^y_{xx} = -\Gamma^y_{yy} = \frac{1}{y} \end{array} \right.$$







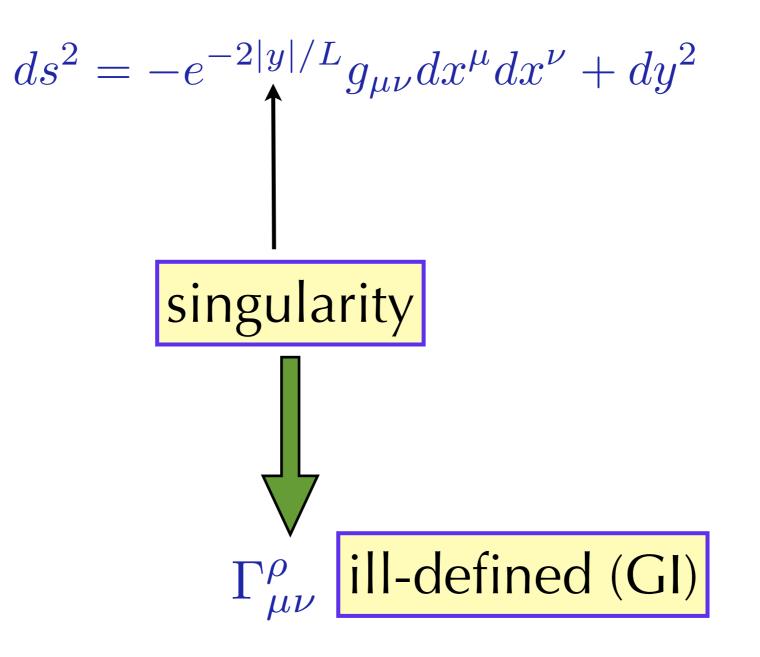
 \mathcal{X}

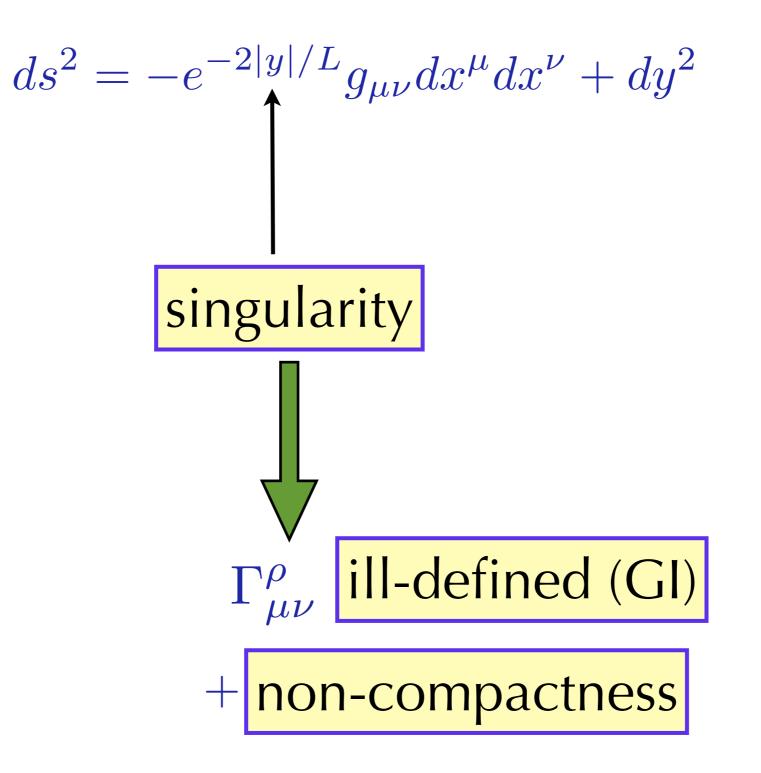
Saturday, June 11, 16

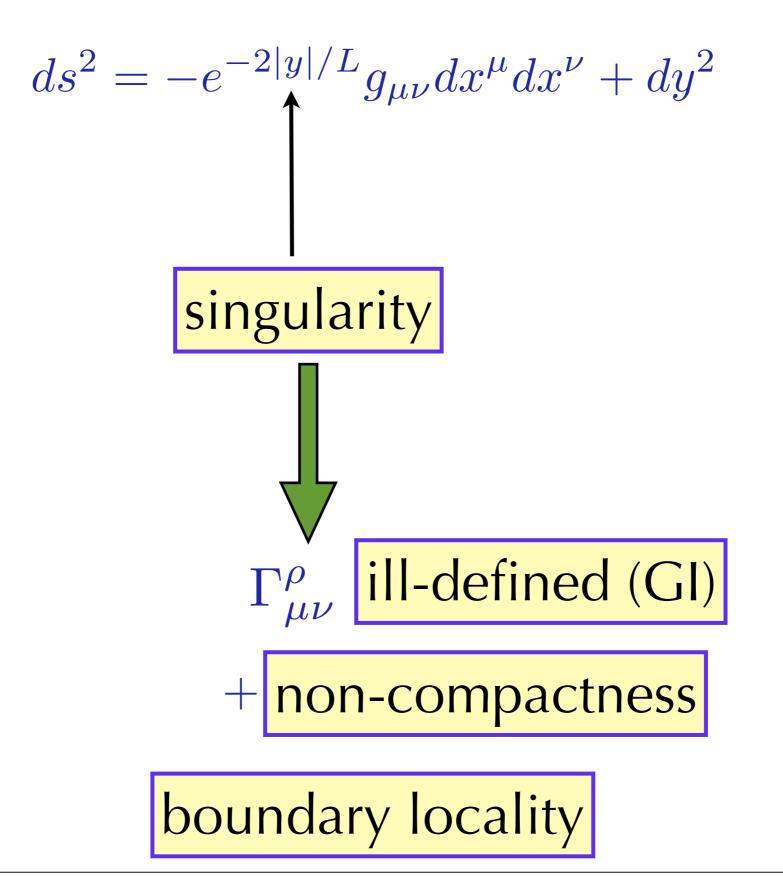
 $ds^{2} = -e^{-2|y|/L}g_{\mu\nu}dx^{\mu}dx^{\nu} + dy^{2}$

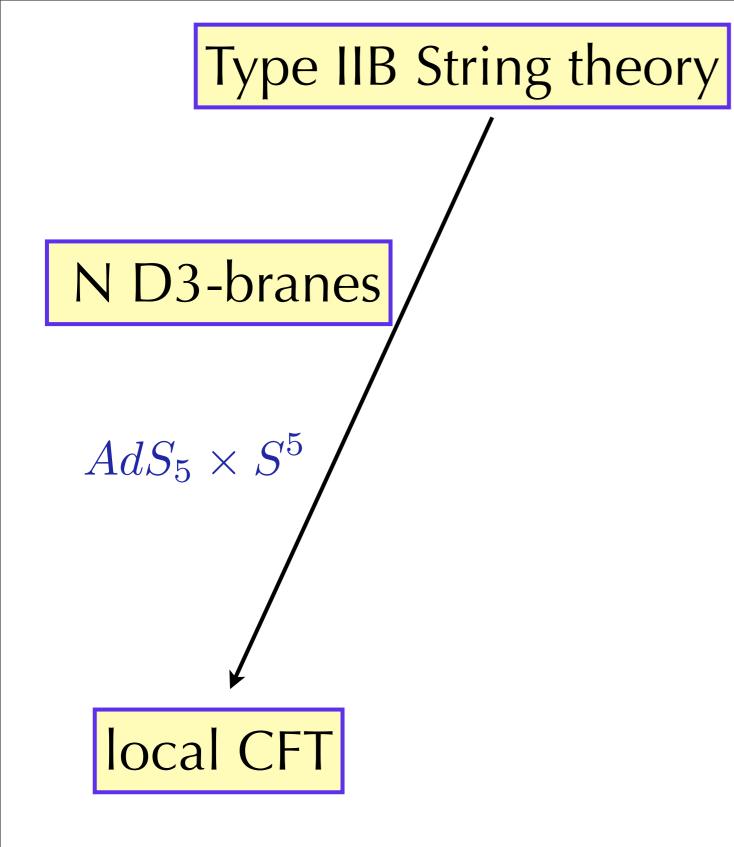
$$ds^{2} = -e^{-2|y|/L}g_{\mu\nu}dx^{\mu}dx^{\nu} + dy^{2}$$

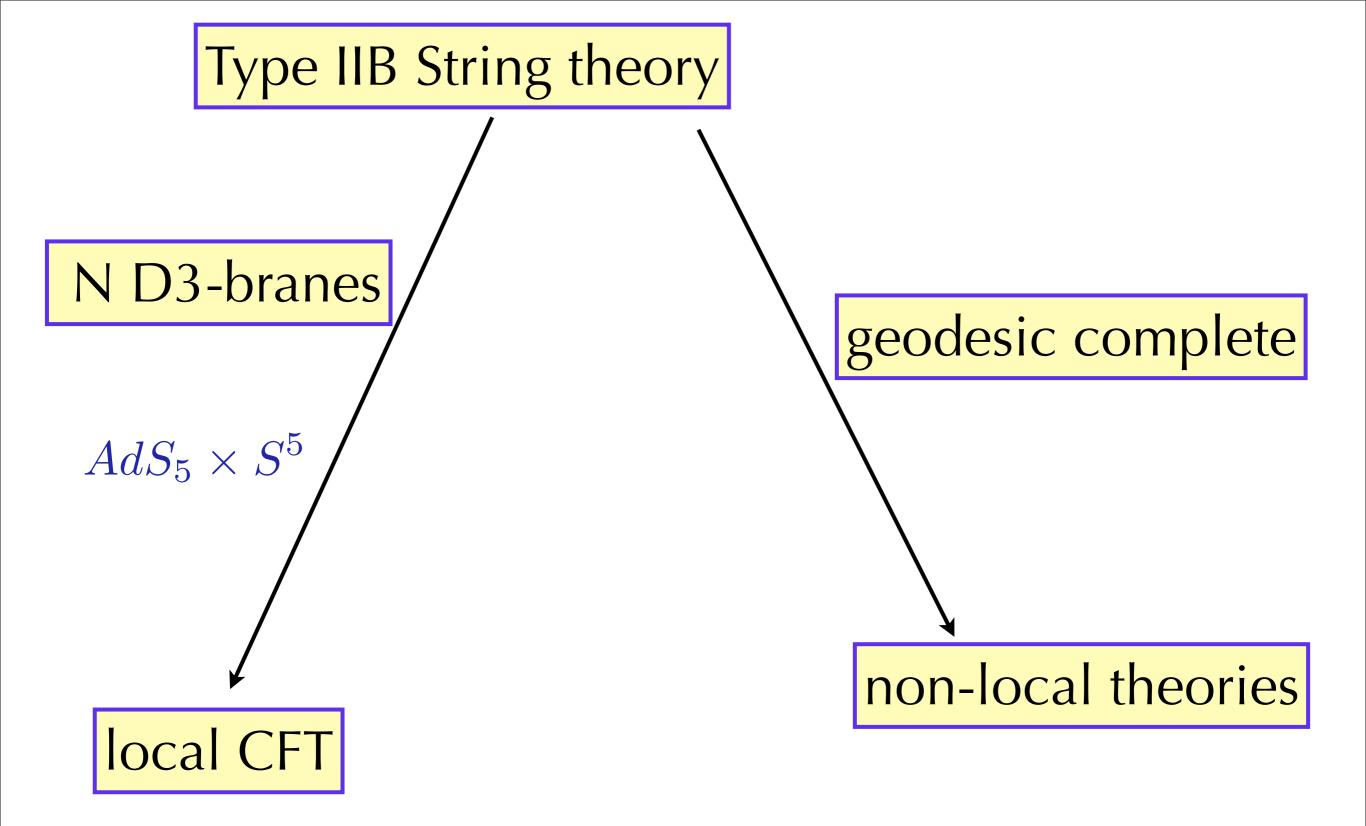
$$\int singularity$$

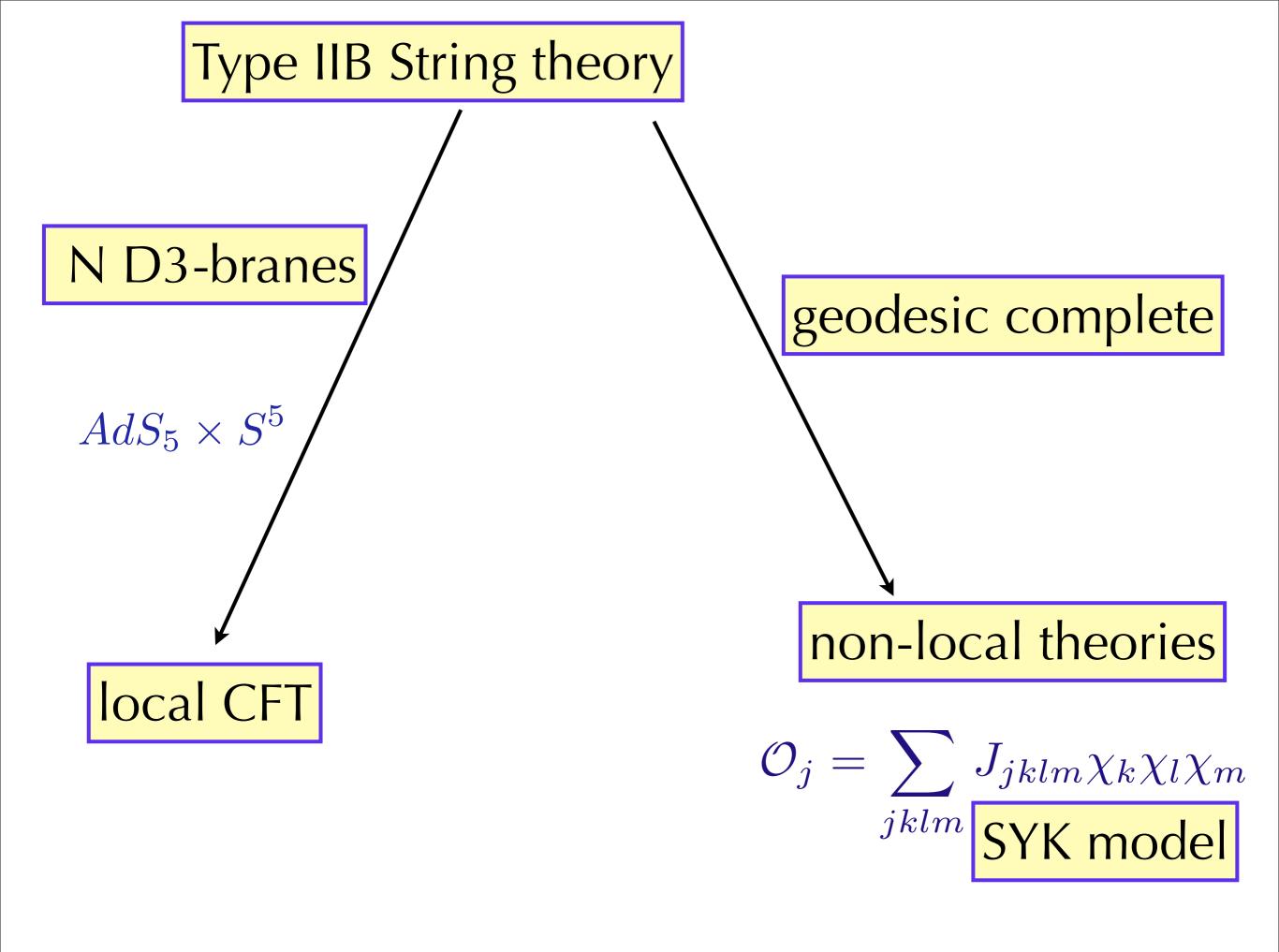




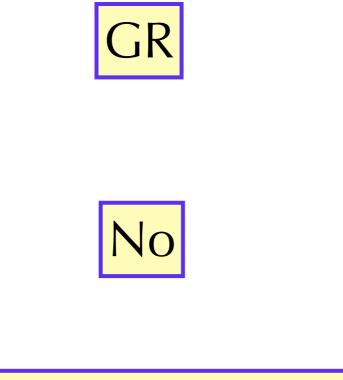




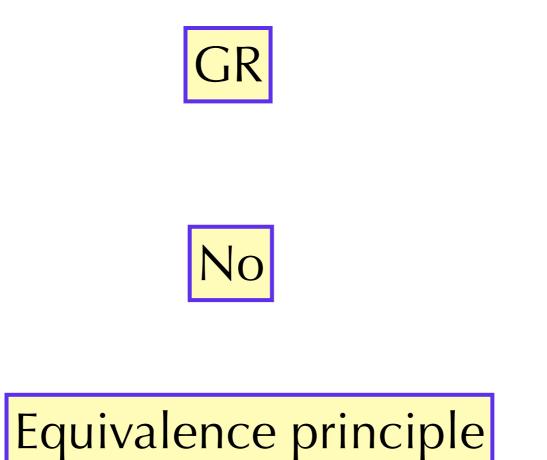




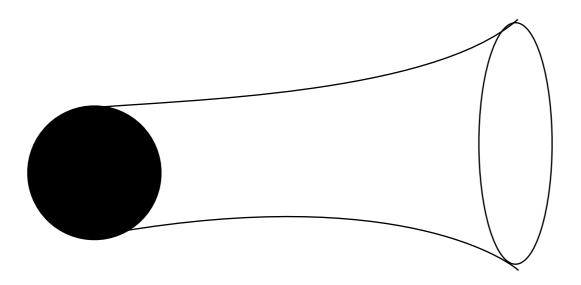
does he feel his weight?



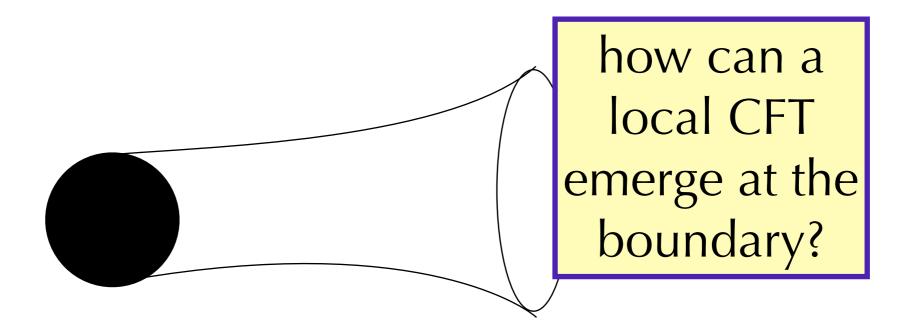
Equivalence principle



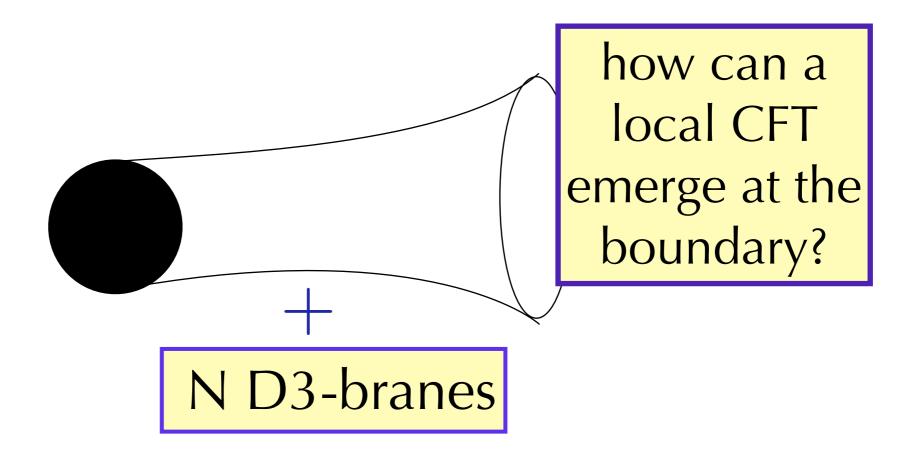
no local measurement can ever tell you about a uniform gravitational field any theory with gravity has less observables than a theory without it!



any theory with gravity has less observables than a theory without it!



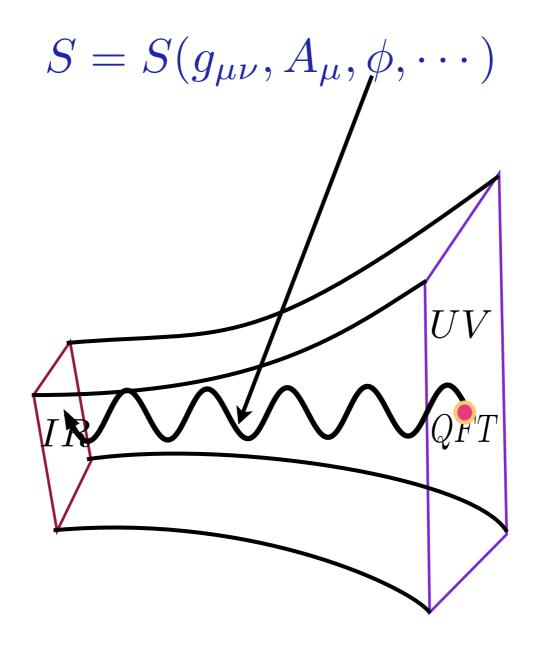
any theory with gravity has less observables than a theory without it!

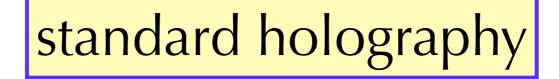


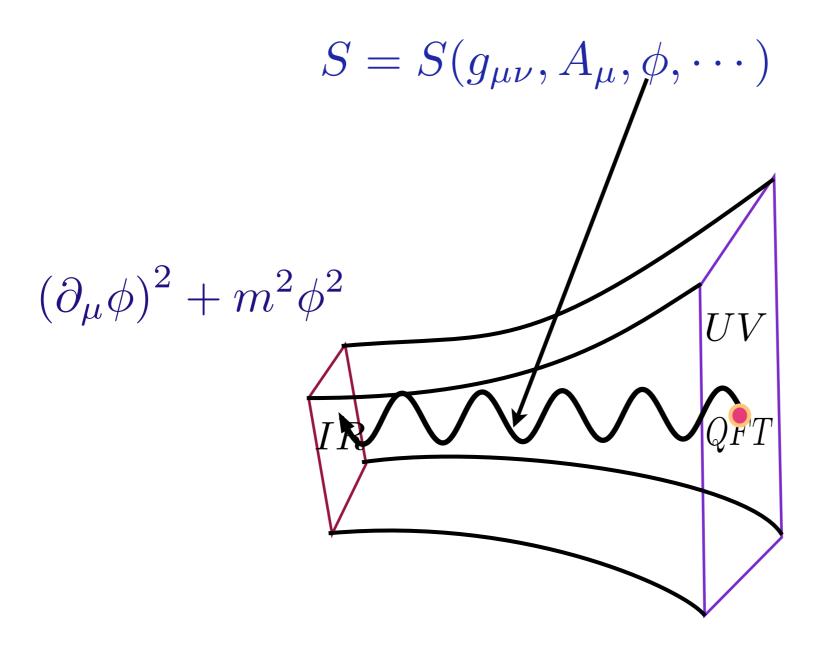
standard holography

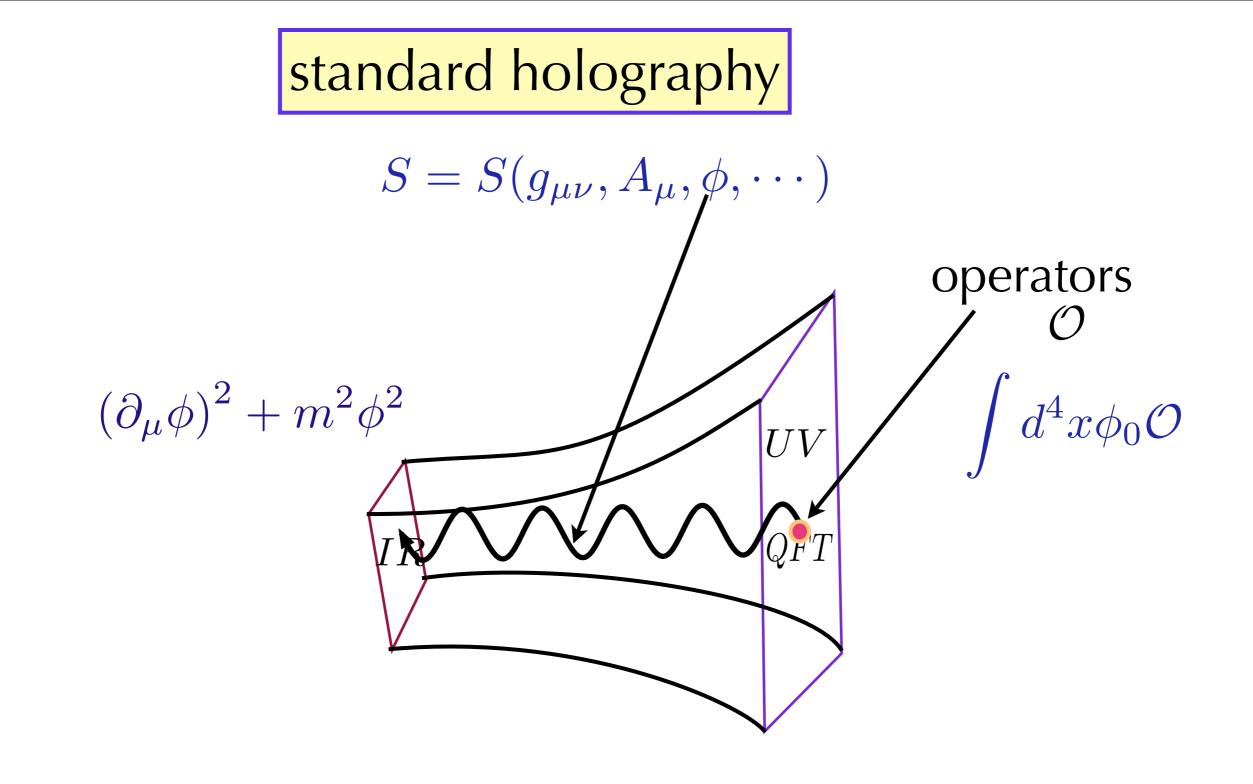
$$S = S(g_{\mu\nu}, A_{\mu}, \phi, \cdots)$$

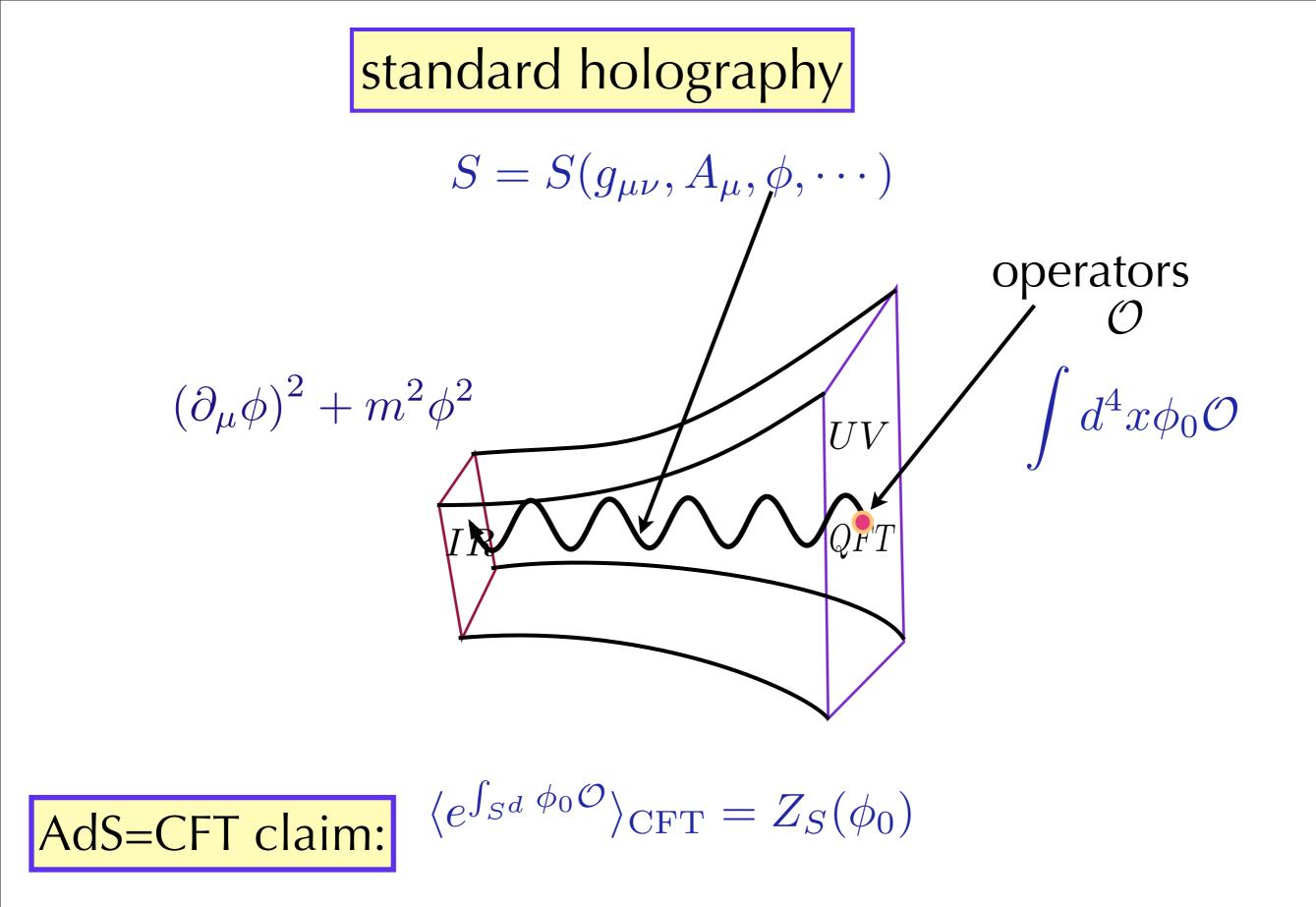
standard holography











 $Z_S(\phi_0)$

 $Z_S(\phi_0)$

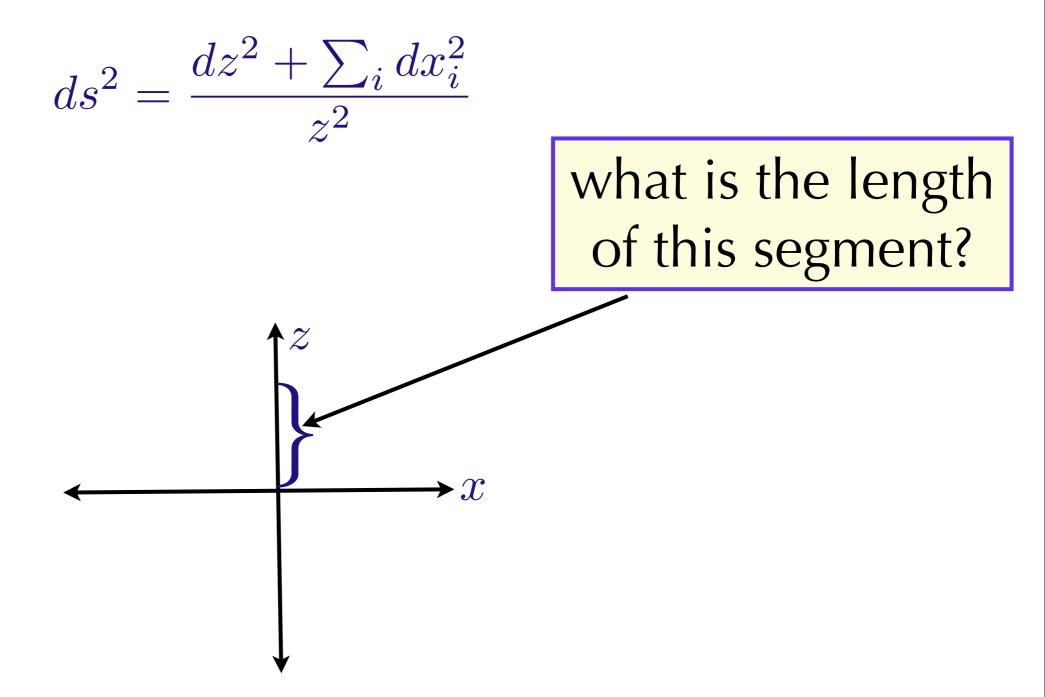
super-gravity partition function averaged over all double-pole metrics that impose boundary conformality

 $Z_S(\phi_0)$

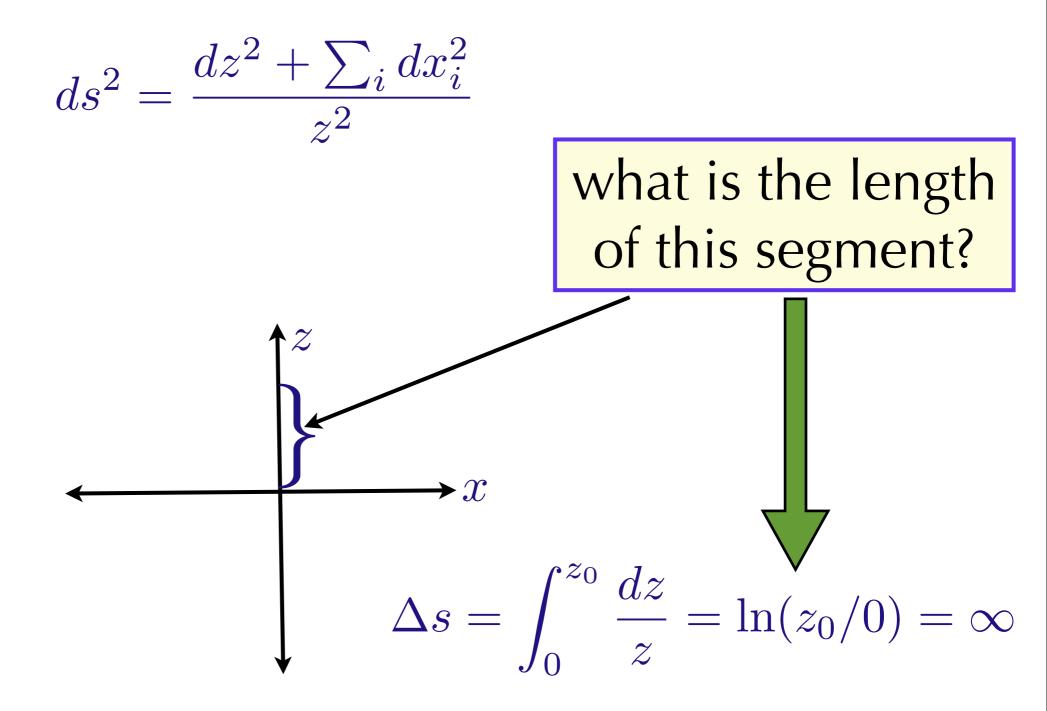
super-gravity partition function averaged over all double-pole metrics that impose boundary conformality

Why should the boundary be conformal?

AdS metric: Euclidean signature

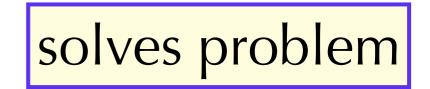


AdS metric: Euclidean signature



metric at boundary is not well defined

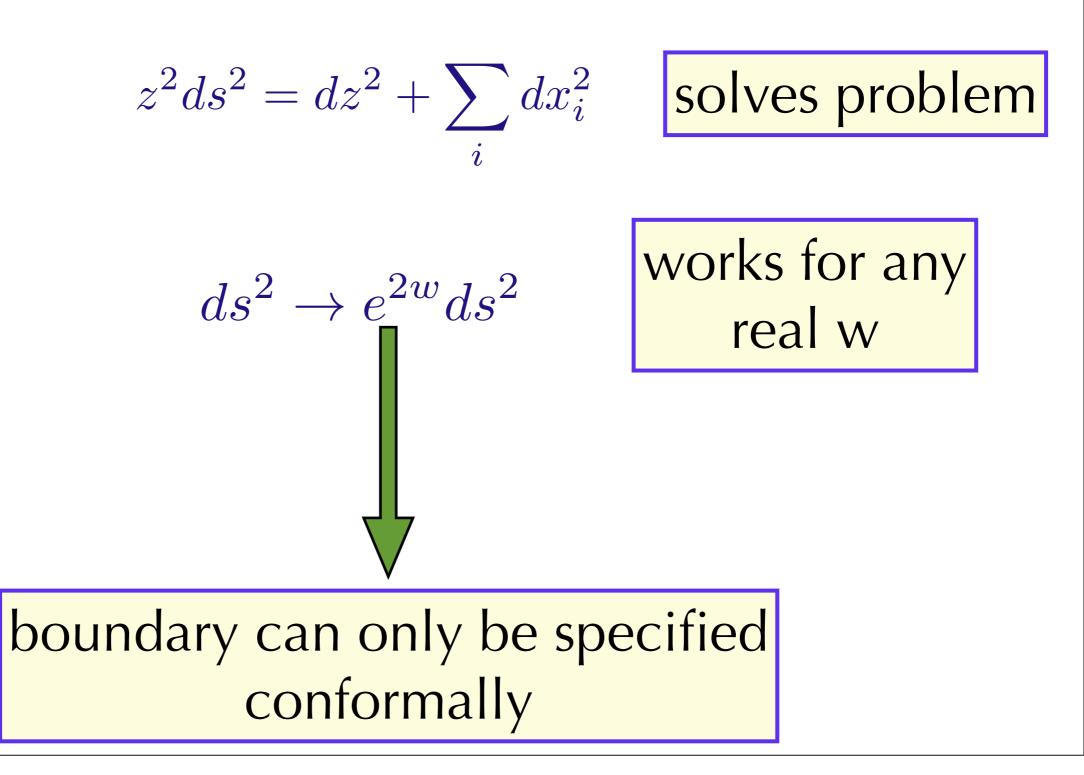
 $z^2 ds^2 = dz^2 + \sum dx_i^2$ solves problem



metric at boundary is not well defined

$$z^{2}ds^{2} = dz^{2} + \sum_{i} dx_{i}^{2}$$
 solves problem
 $ds^{2} \rightarrow e^{2w}ds^{2}$ works for any
real w

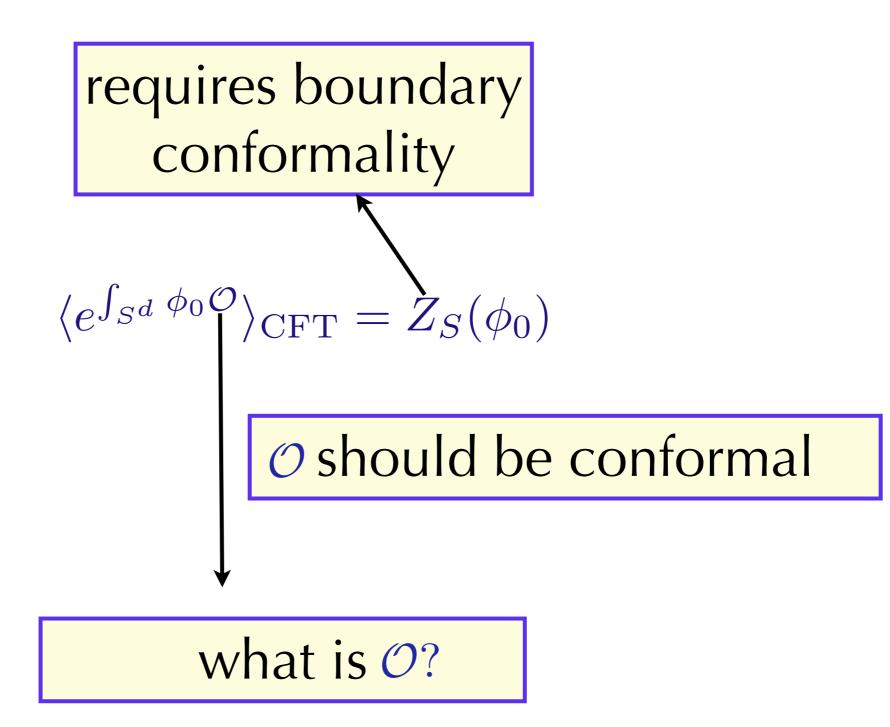
metric at boundary is not well defined

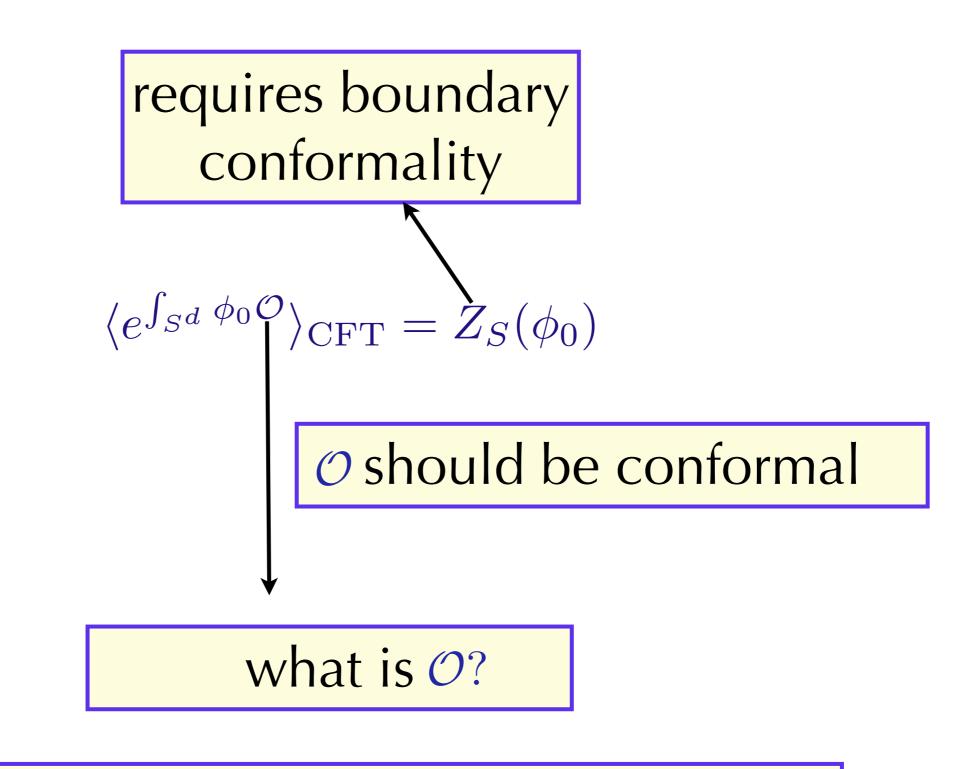


requires boundary conformality $\langle e^{\int_{S^d} \phi_0 \mathcal{O}} \rangle_{\mathrm{CFT}} = Z_S(\phi_0)$

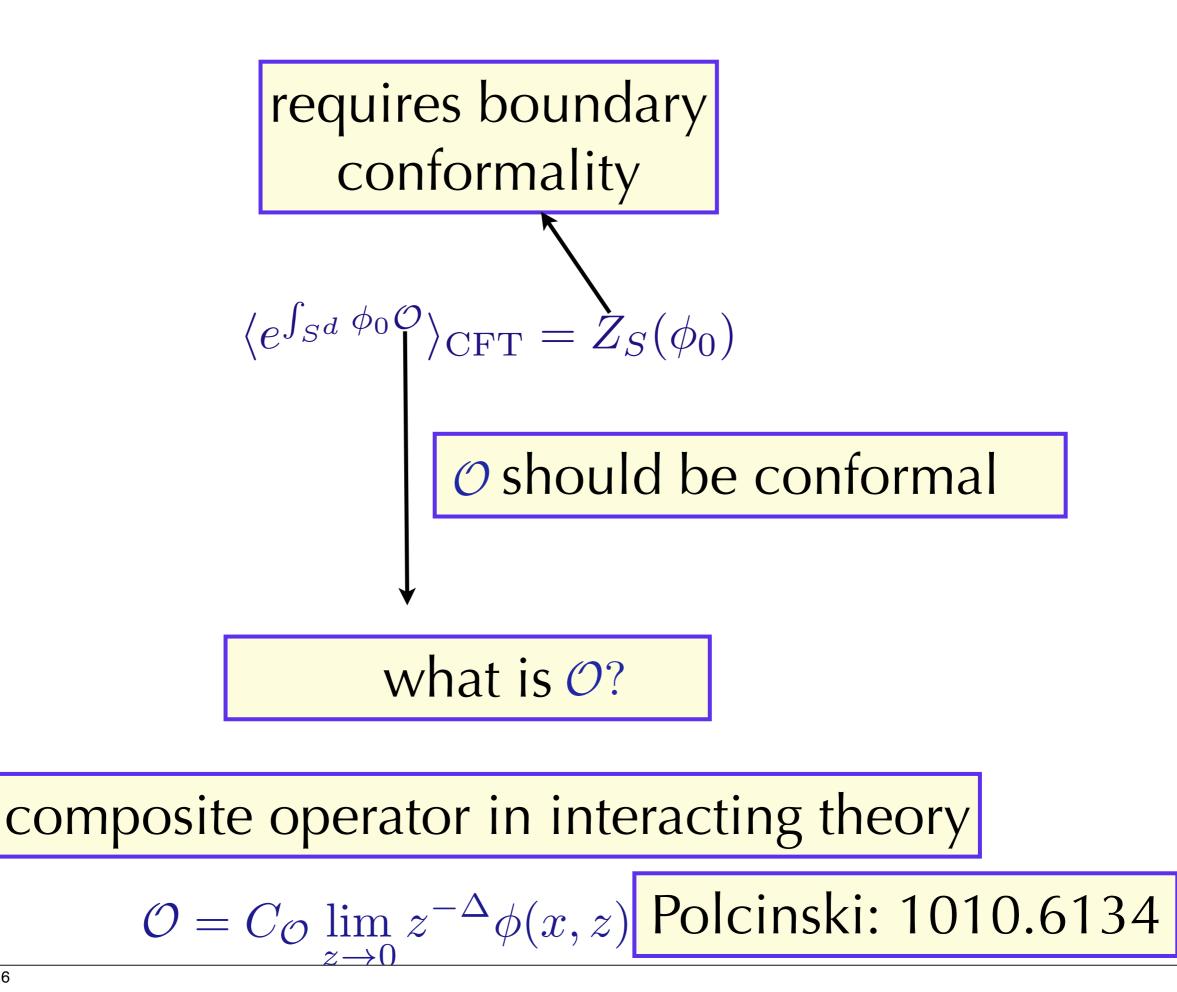
requires boundary
conformality
$$\langle e^{\int_{S^d} \phi_0 \mathcal{O}} \rangle_{\mathrm{CFT}} = Z_S(\phi_0)$$

O should be conformal





composite operator in interacting theory



can *O* be determined exactly in some cases?

redo Witten's massive scalar field calculation explicitly

$$S_{\phi} = \frac{1}{2} \int d^{d+1} u \sqrt{g} \left(|\nabla \phi|^2 + m^2 \phi^2 \right)$$
$$dV_g$$

to establish correspondence

redo Witten's massive scalar field calculation explicitly

$$S_{\phi} = \frac{1}{2} \int d^{d+1} u \sqrt{g} \left(|\nabla \phi|^2 + m^2 \phi^2 \right)$$
$$dV_g$$

to establish correspondence

$$\langle e^{\int_{S^d} \phi_0 \mathcal{O}} \rangle_{CFT} = Z_S(\phi_0)$$
$$(-\nabla)^{\gamma} \phi_0 \quad \text{Reisz fractional Laplacian}$$

$$(-\Delta)^{\gamma} f(x) = C_{d,s} \int_{\mathbf{R}^{\mathbf{d}}} \frac{f(x) - f(\xi)}{|x - \xi|^{d + 2\gamma}} d\xi$$

Reisz fractional Laplacian

$$(-\Delta)^{\gamma} f(x) = C_{d,s} \int_{\mathbf{R}^{\mathbf{d}}} \frac{f(x) - f(\xi)}{|x - \xi|^{d + 2\gamma}} d\xi$$

$$S_{\phi} = \frac{1}{2} \int d^{d+1} u \sqrt{g} \left(|\nabla \phi|^2 + m^2 \phi^2 \right)$$

integrate by parts

$$S_{\phi} = \frac{1}{2} \int d^{d+1} u \sqrt{g} \left(|\nabla \phi|^2 + m^2 \phi^2 \right)$$

integrate by parts

$$S_{\phi} = \frac{1}{2} \int dV_g \left(-\phi \partial_{\mu}^2 \phi + m^2 \phi^2 + \phi \partial_{\mu} \phi \right)$$

$$S_{\phi} = \frac{1}{2} \int d^{d+1} u \sqrt{g} \left(|\nabla \phi|^2 + m^2 \phi^2 \right)$$

integrate by parts

$$S_{\phi} = \frac{1}{2} \int dV_g \left(-\phi \partial_{\mu}^2 \phi + m^2 \phi^2 + \phi \partial_{\mu} \phi \right)$$

$$S_{\phi} = \frac{1}{2} \int d^{d+1}u\sqrt{g} \left(|\nabla \phi|^{2} + m^{2}\phi^{2} \right)$$

integrate by parts
$$S_{\phi} = \frac{1}{2} \int dV_{g} \left(-\phi \partial_{\mu}^{2}\phi + m^{2}\phi^{2} + \phi \partial_{\mu}\phi \right)$$

equations
of motion
$$-\Delta \phi - s(d-s)\phi = 0 \qquad -\Delta \phi = \nabla_{i}\nabla^{i}\phi$$
$$m^{2} = -s(d-s) \qquad s = \frac{d}{2} + \frac{1}{2}\sqrt{d^{2} + 4m^{2}}$$

bound
$$m^{2} \ge -d^{2}/4$$

BF bound

solutions

$$\phi = Fz^{d-s} + Gz^s, \quad F, G \in \mathcal{C}^{\infty}(\mathbb{H}),$$
$$F = \phi_0 + O(z^2), \quad G = g_0 + O(z^2)$$

solutions

$$\phi = Fz^{d-s} + Gz^s, \quad F, G \in \mathcal{C}^{\infty}(\mathbb{H}),$$
$$F = \phi_0 + O(z^2), \quad G = g_0 + O(z^2)$$

$$\phi_0 = \lim_{z \to 0} \phi$$
 boundary of AdS_{d+1}

solutions
$$\phi = Fz^{d-s} + Gz^s, \quad F, G \in \mathcal{C}^{\infty}(\mathbb{H}),$$

 $F = \phi_0 + O(z^2), \quad G = g_0 + O(z^2)$ restriction $\phi_0 = \lim_{z \to 0} \phi$ boundary of AdS_{d+1} $S_{\phi} = \frac{1}{2} \int dV_g \left(-\phi \partial_{\mu}^2 \phi + m^2 \phi^2 + \phi \partial_{\mu} \phi\right)$ $\int_{z > \epsilon} dV_g \phi \partial_{\mu} \phi$

restriction pf
$$\int_{z>\epsilon} \left(|\partial \phi|^2 - s(d-s)\phi^2 \right) dV_g = -d \int_{z=0} \phi_0 g_0$$

restriction
$$\inf_{z>\epsilon} \int_{z>\epsilon} (|\partial \phi|^2 - s(d-s)\phi^2) dV_g = -d \int_{z=0} \phi_0 g_0$$

finite part from integration
by parts

restriction
$$\inf_{z>\epsilon} \int_{z>\epsilon} (|\partial \phi|^2 - s(d-s)\phi^2) dV_g = -d \int_{z=0} \phi_0 g_0$$

finite part from integration
by parts

$$g(x,0) = f(x)$$
$$\Delta_x g + \frac{a}{z} \partial_z g + \partial_z^2 g = 0$$

restriction
$$\inf_{z>\epsilon} \int_{z>\epsilon} \left(|\partial \phi|^2 - s(d-s)\phi^2 \right) dV_g = -d \int_{z=0} \phi_0 g_0$$

finite part from integration
by parts

$$g(x,0) = f(x)$$
$$\Delta_x g + \frac{a}{z} \partial_z g + \partial_z^2 g = 0$$
$$\bigvee_{z \to 0^+} z^a \frac{\partial g}{\partial z} = C_{d,\gamma} (-\nabla)^{\gamma} f$$
$$\gamma = \frac{1-a}{2}$$

restriction pf
$$\int_{z>\epsilon} (|\partial \phi|^2 - s(d-s)\phi^2) dV_g = -d \int_{z=0} \phi_0 g_0$$

finite part from integration
by parts
$$g(x,0) = f(x)$$

$$\Delta_x g + \frac{a}{z} \partial_z g + \partial_z^2 g = 0$$

$$\lim_{z \to 0^+} z^a \frac{\partial g}{\partial z} = C_{d,\gamma} (-\nabla)^{\gamma} f$$

$$\gamma = \frac{1-a}{2}$$

Saturday, June 11, 16

$$\begin{bmatrix} z \\ \lim_{z \to 0^+} z^a \frac{\partial g}{\partial z} \\ \end{bmatrix}$$

$$\begin{bmatrix}
z \\
\lim_{z \to 0^{+}} z^{a} \frac{\partial g}{\partial z} \\
\downarrow C_{d,\gamma} (-\nabla)^{\gamma} f \\
\downarrow x$$

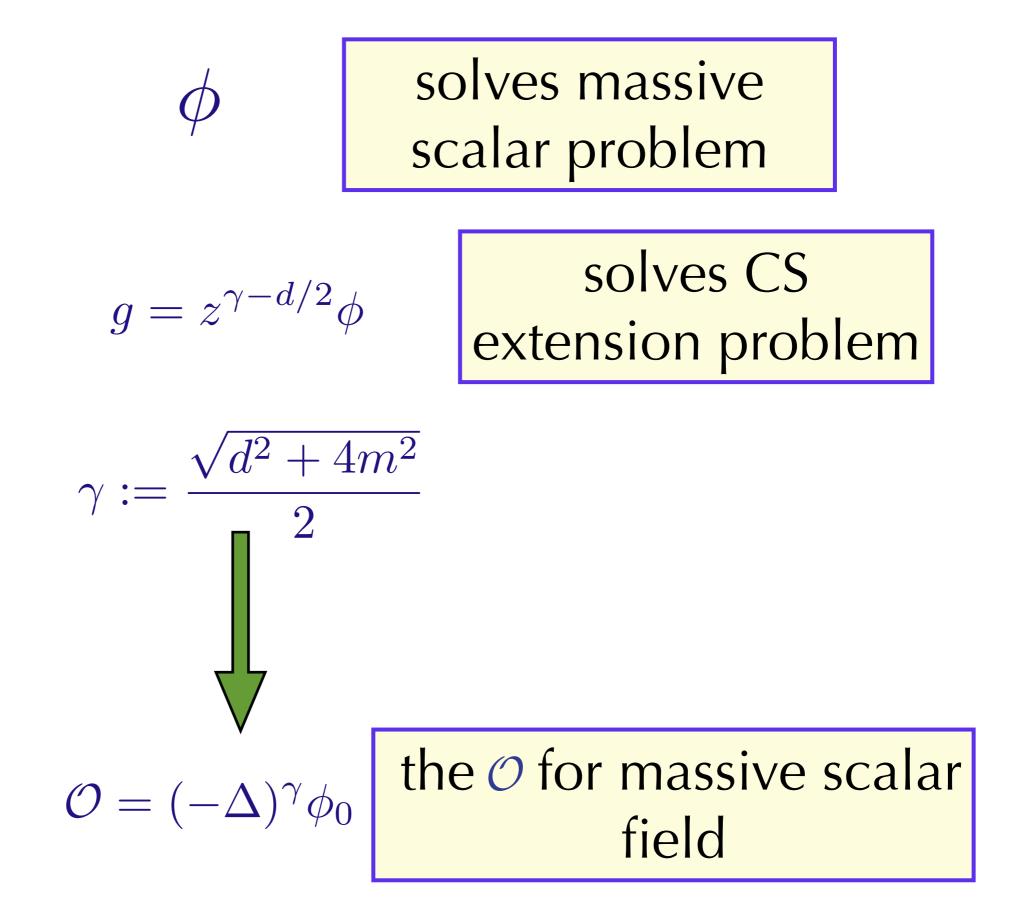
$$\begin{bmatrix} z \\ \lim_{z \to 0^+} z^a \frac{\partial g}{\partial z} \\ \downarrow C_{d,\gamma} (-\nabla)^{\gamma} f \\ \downarrow x \end{bmatrix}$$

$$g(z = 0, x) = f(x)$$
$$\gamma = \frac{1 - a}{2}$$

solves massive scalar problem

$$\phi$$
 solves massive
scalar problem
$$g = z^{\gamma - d/2} \phi$$
 solves CS
extension problem
 $\sqrt{d^2 + 4m^2}$

$$\gamma := \frac{\sqrt{d^2 + 4m^2}}{2}$$

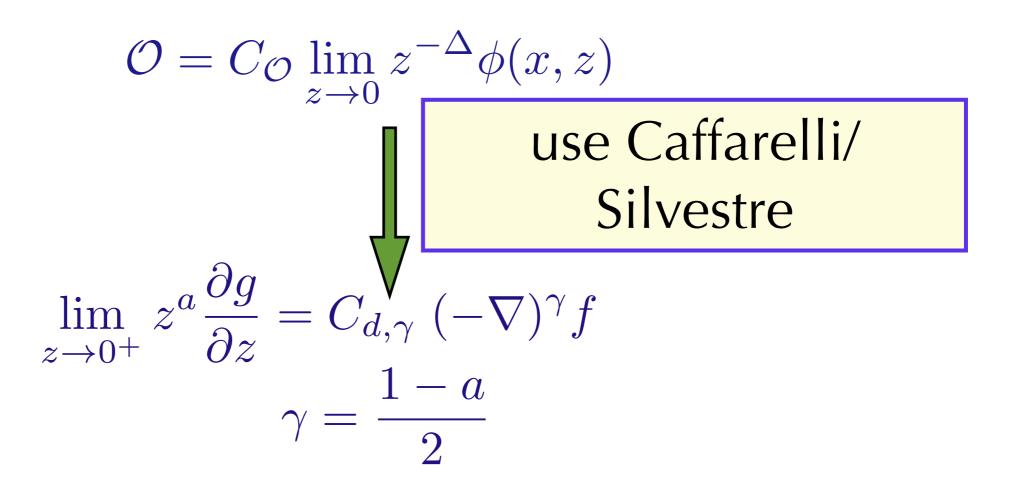


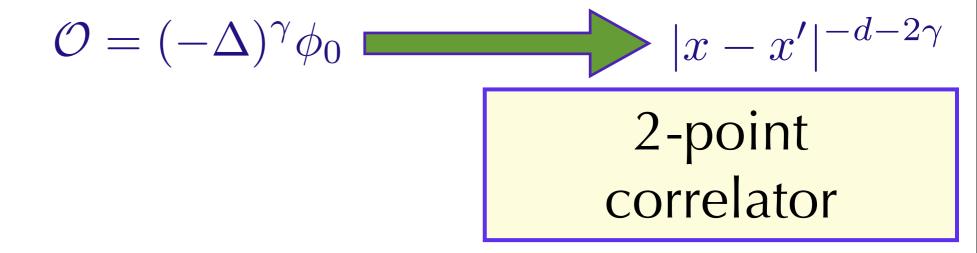
consistency with Polcinski

$$\mathcal{O} = C_{\mathcal{O}} \lim_{z \to 0} z^{-\Delta} \phi(x, z)$$

use Caffarelli/
Silvestre

consistency with Polcinski





$$\mathcal{O} = (-\Delta)^{\gamma} \phi_0$$

 $|x - x'|^{-d-2\gamma}$
 2-point
correlator

$$\langle e^{\int_{S^d} \phi_0 \mathcal{O}} \rangle_{\rm CFT} = Z_S(\phi_0)$$

AdS-CFT correspondence but operators are non-local !!

simpler proof:

Reisz fractional Laplacian

$$(-\Delta)^{\gamma} f(x) = C_{d,s} \int_{\mathbf{R}^{\mathbf{d}}} \frac{f(x) - f(\xi)}{|x - \xi|^{d + 2\gamma}} d\xi$$

simpler proof:
Reisz fractional Laplacian

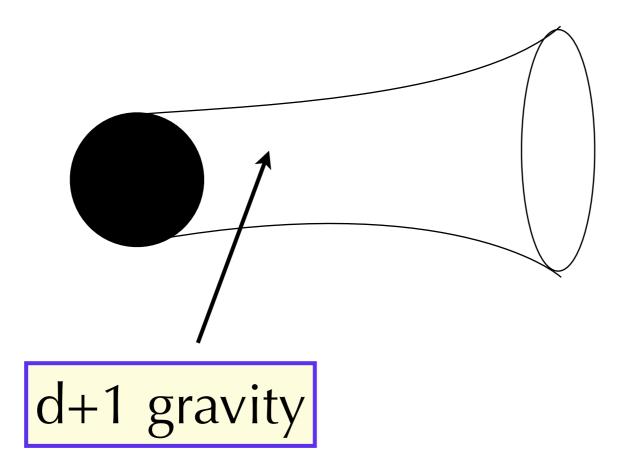
$$(-\Delta)^{\gamma} f(x) = C_{d,s} \int_{\mathbf{R}^{\mathbf{d}}} \frac{f(x) - f(\xi)}{|x - \xi|^{d + 2\gamma}} d\xi$$
pseudo-differential operator
$$\left[\widehat{(-\nabla)^{s}}f(\xi) = |\xi|^{2s}\widehat{f}(\xi)\right]$$

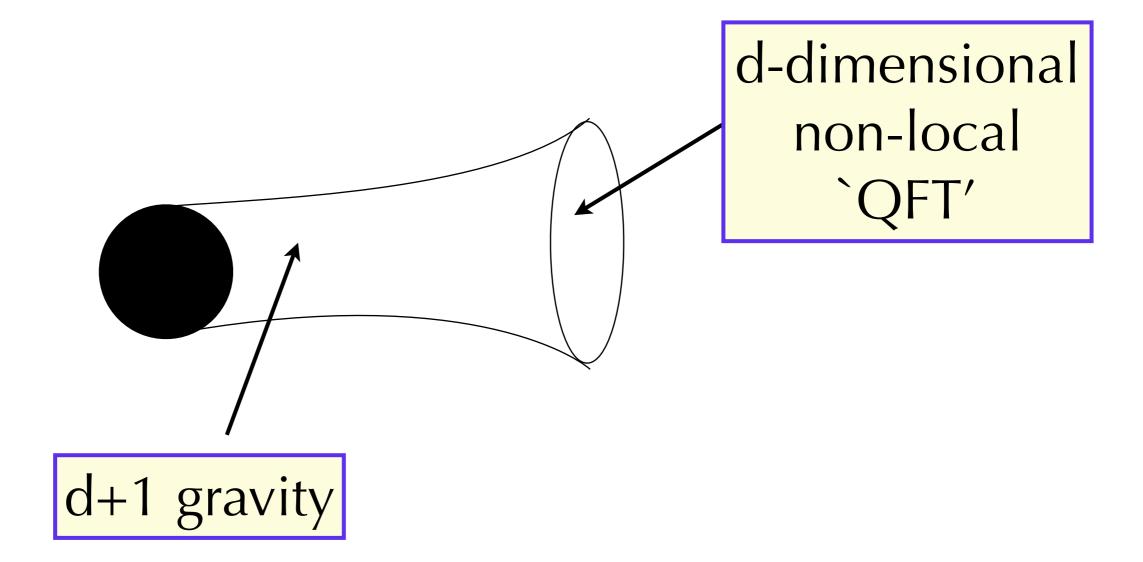
simpler proof:
Reisz fractional Laplacian

$$(-\Delta)^{\gamma} f(x) = C_{d,s} \int_{\mathbf{R}^{\mathbf{d}}} \frac{f(x) - f(\xi)}{|x - \xi|^{d + 2\gamma}} d\xi$$
pseudo-differential operator

$$\begin{bmatrix} (-\nabla)^{s} f(\xi) = |\xi|^{2s} \widehat{f}(\xi) \end{bmatrix}$$
undo convolution

$$I(\phi) \propto \int d\mathbf{x} d\mathbf{x}' \frac{\phi_{\mathbf{0}}(\mathbf{x})\phi_{\mathbf{0}}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^{2(\lambda + \mathbf{d})}}$$





bulk conformality

$$S = S_{\rm gr}[g] + S_{\rm matter}(\phi)$$

$$S_{\text{matter}} = \int_M d^{d+1} x \sqrt{g} \mathcal{L}_m$$

conformal sector

bulk conformality

$$S = S_{\rm gr}[g] + S_{\rm matter}(\phi)$$

$$S_{\text{matter}} = \int_{M} d^{d+1}x \sqrt{g} \mathcal{L}_m$$
 conformal sector

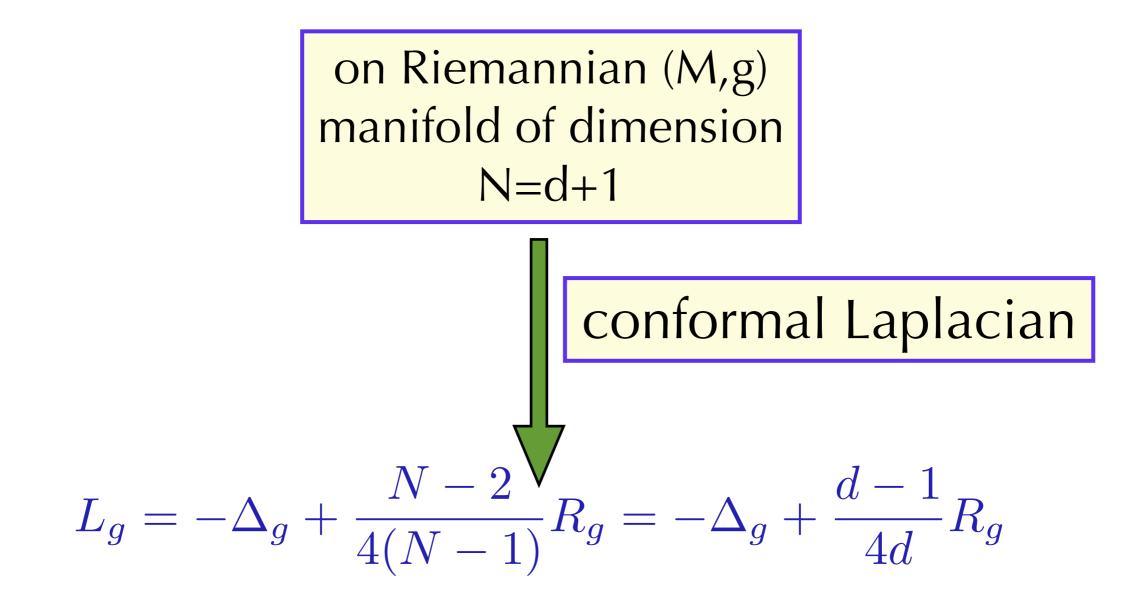
$$\mathcal{L}_{m} := |\partial \phi|^{2} + \left(m^{2} + \frac{d-1}{4d}R(g)\right)\phi^{2}$$
scalar curvature

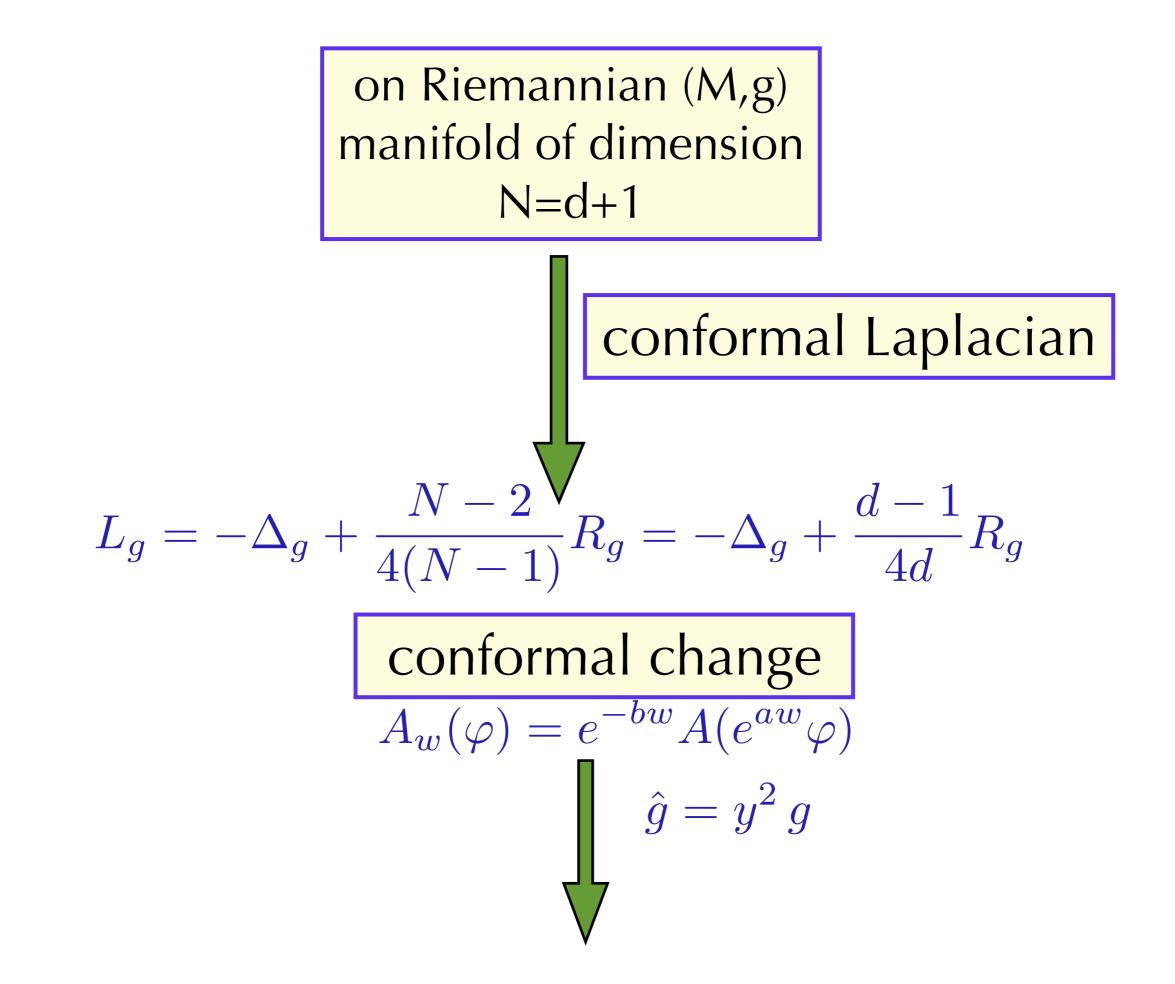
bulk conformality

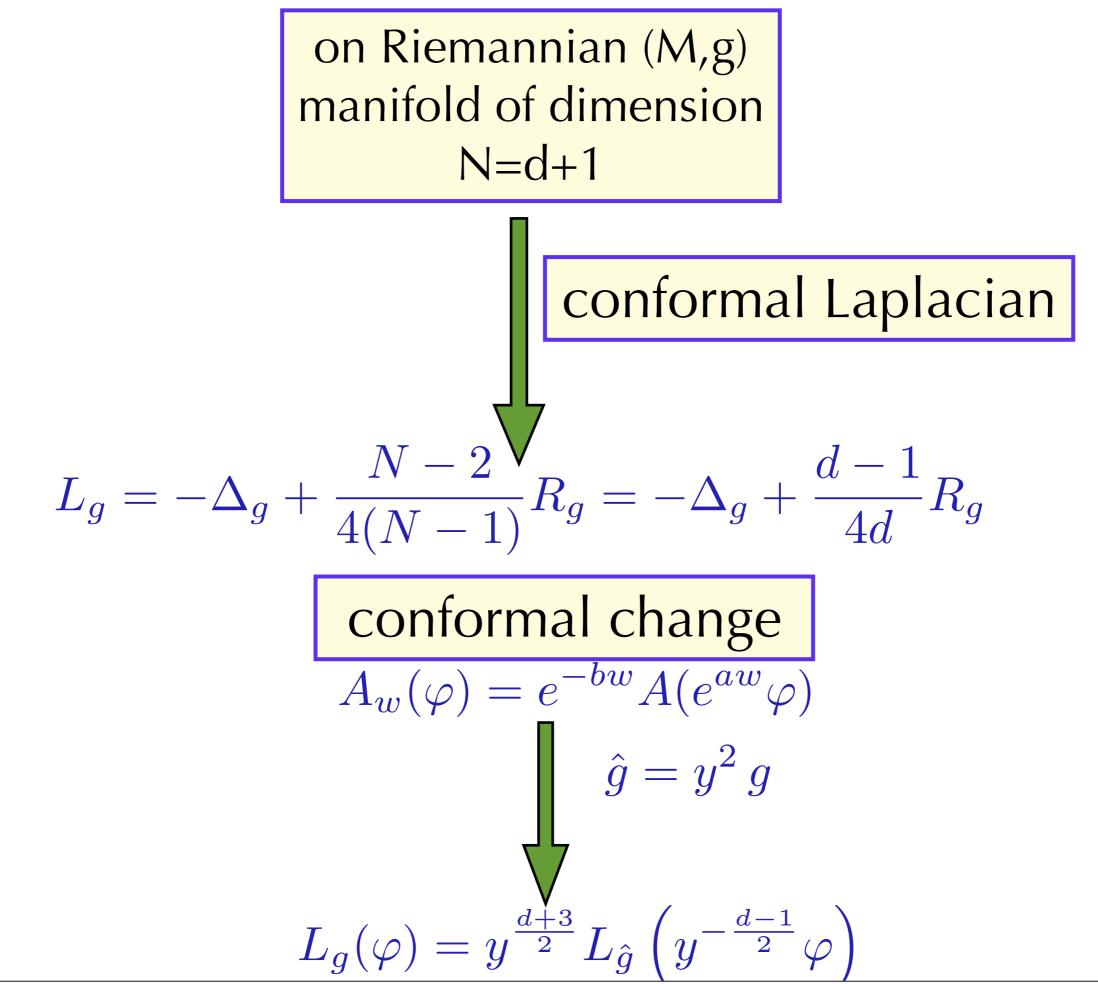
$$S = S_{\rm gr}[g] + S_{\rm matter}(\phi)$$

$$S_{\text{matter}} = \int_{M} d^{d+1}x \sqrt{g} \mathcal{L}_m$$
 conformal sector

$$\mathcal{L}_{m} := |\partial \phi|^{2} + \left(m^{2} + \frac{d-1}{4d}R(g)\right)\phi^{2}$$
`conformal mass' scalar curvature







hyperbolic metric
$$L_g = -\Delta_g + \frac{N-2}{4(N-1)}R_g = -\Delta_g + \frac{d-1}{4d}R_g$$

$$L_{g} = -\Delta_{g} + \frac{N-2}{4(N-1)}R_{g} = -\Delta_{g} + \frac{d-1}{4d}R_{g}$$
$$R_{g_{\mathbb{H}}} = -d(d+1)$$
$$L_{g_{\mathbb{H}}} = -\Delta_{g_{\mathbb{H}}} - \frac{d^{2}-1}{4}$$

hyperbolic metric

$$L_{g} = -\Delta_{g} + \frac{N-2}{4(N-1)}R_{g} = -\Delta_{g} + \frac{d-1}{4d}R_{g}$$

$$R_{g_{\mathbb{H}}} = -d(d+1)$$

$$L_{g_{\mathbb{H}}} = -\Delta_{g_{\mathbb{H}}} - \frac{d^{2}-1}{4}$$

$$m^{2} - \frac{d^{2}-1}{4} = -s(d-s)$$

hyperbolic metric

$$L_{g} = -\Delta_{g} + \frac{N-2}{4(N-1)}R_{g} = -\Delta_{g} + \frac{d-1}{4d}R_{g}$$

$$R_{g_{\mathbb{H}}} = -d(d+1)$$

$$L_{g_{\mathbb{H}}} = -\Delta_{g_{\mathbb{H}}} - \frac{d^{2}-1}{4}$$

$$m^{2} - \frac{d^{2}-1}{4} = -s(d-s)$$

$$s = \frac{d}{2} + \frac{\sqrt{4m^{2}+1}}{2} \longrightarrow m^{2} > -1/4$$
stability independent of dimensionality

construct ()

$$-\Delta_g \phi + \frac{d-1}{4d} R_g \phi = m^2 \phi$$

$$-\Delta\phi + \left(m^2 - \frac{d^2 - 1}{4}\right)\phi = 0$$

construct ()

$$-\Delta_g \phi + \frac{d-1}{4d} R_g \phi = m^2 \phi$$

$$-\Delta\phi + \left(m^2 - \frac{d^2 - 1}{4}\right)\phi = 0$$

solutions
$$\gamma = \sqrt{4m^2 + 1}$$

 $\phi = Fy^{\frac{d}{2} - \gamma} + Gy^{\frac{d}{2} + \gamma}, \quad F, G \in \mathcal{C}^{\infty}(\mathbb{H}), \quad F = \phi_0 + O(y^2), \quad G = g_0 + O(y^2)$

construct *O*

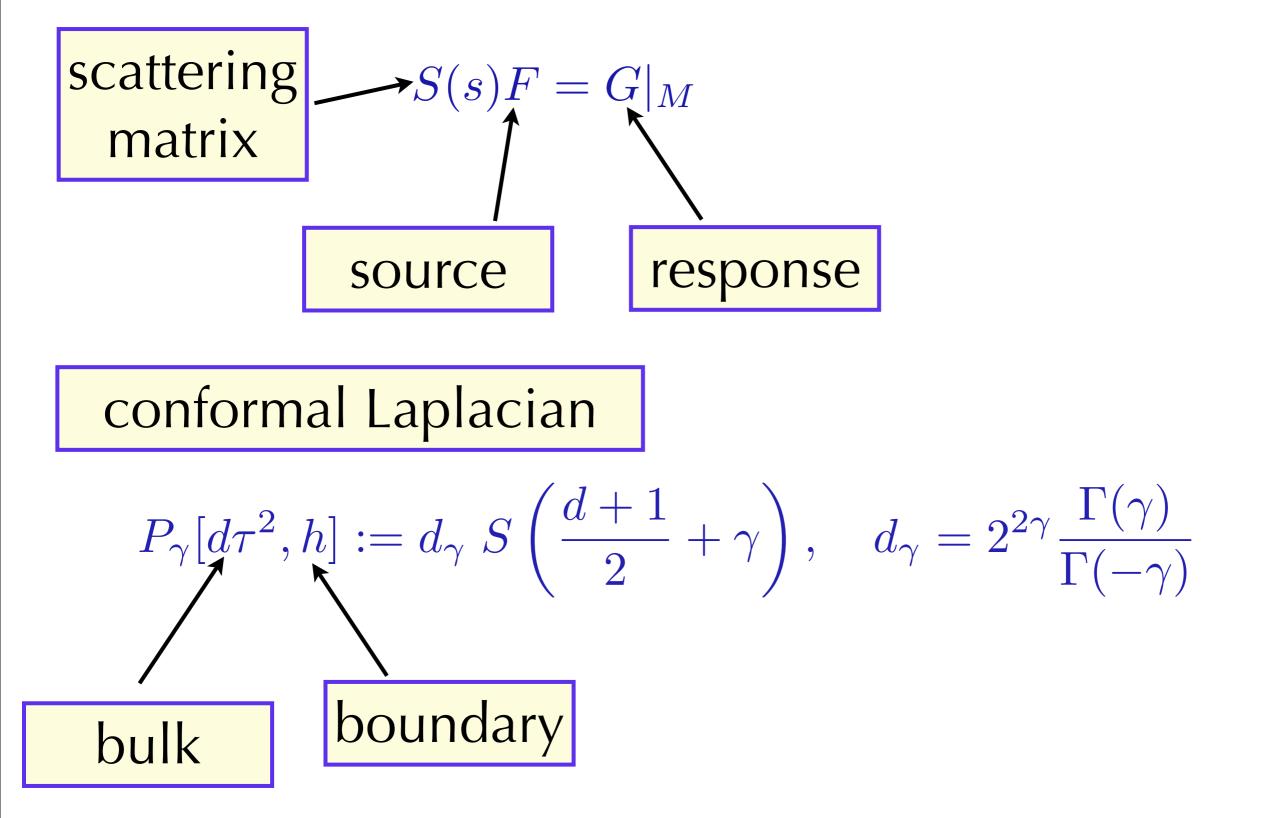
$$-\Delta_g \phi + \frac{d-1}{4d} R_g \phi = m^2 \phi$$

$$-\Delta\phi + \left(m^2 - \frac{d^2 - 1}{4}\right)\phi = 0$$

solutions
$$\gamma = \sqrt{4m^2 + 1}$$

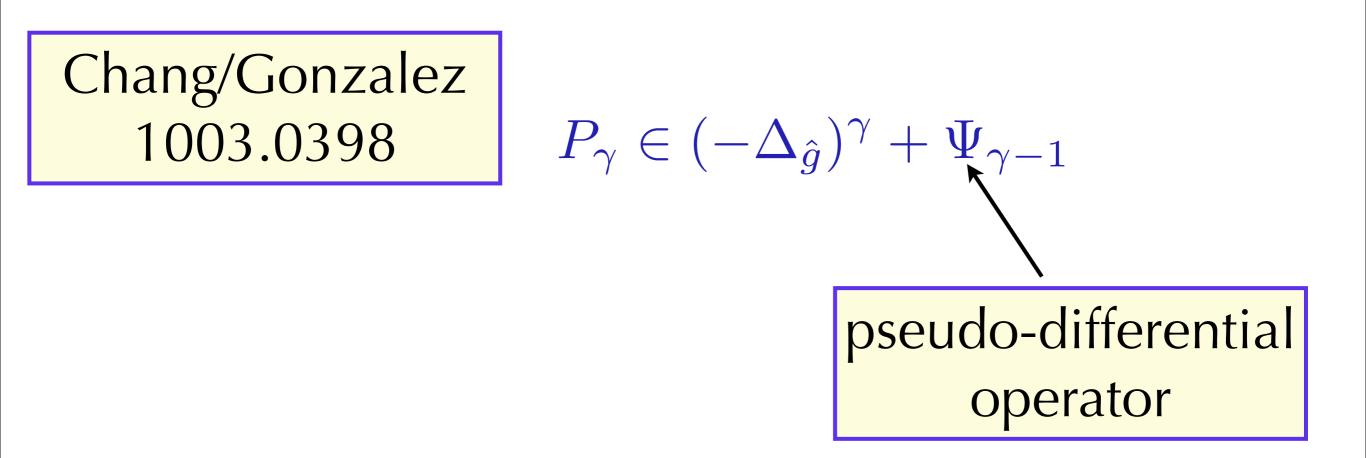
 $\phi = Fy^{\frac{d}{2} - \gamma} + Gy^{\frac{d}{2} + \gamma}, \quad F, G \in \mathcal{C}^{\infty}(\mathbb{H}), \quad F = \phi_0 + O(y^2), \quad G = g_0 + O(y^2)$

redefinition
$$g = y^{\gamma - \frac{d}{2}} \phi$$
, $\sum_{y \to 0} \lim_{y \to 0} y^{1 - 2\gamma} \frac{\partial g}{\partial y} = 2\gamma g_0$ CS extension problem

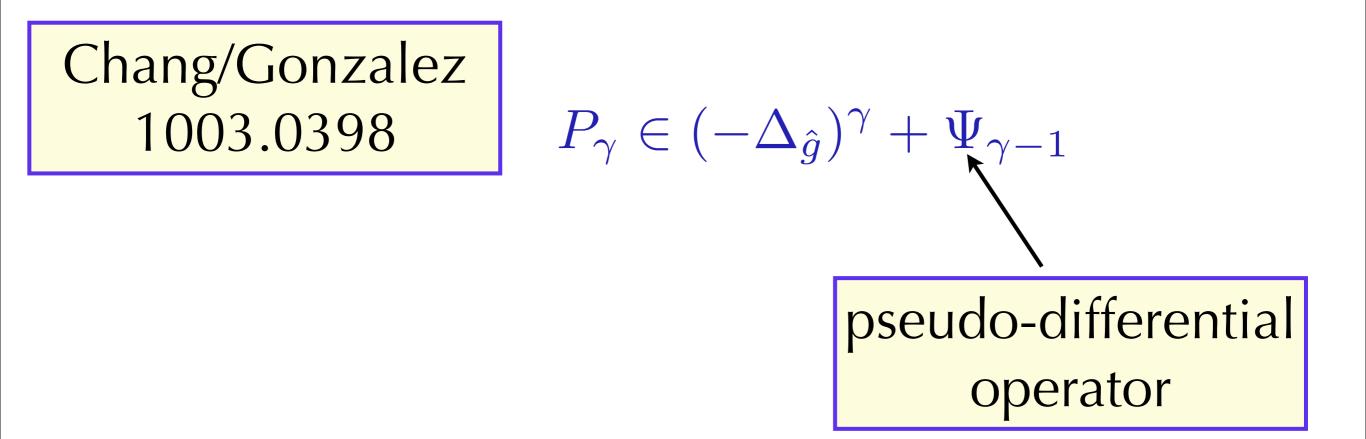


Chang/Gonzalez 1003.0398

 $P_{\gamma} \in (-\Delta_{\hat{g}})^{\gamma} + \Psi_{\gamma-1}$ pseudo-differential operator



in general $P_k = (-\Delta)^k + \text{lower order terms}$



in general $P_k = (-\Delta)^k + \text{lower order terms}$

$$P_1 = -\Delta + \frac{d-1}{4(d-1)}R_g$$

scattering problem

$$P_{\gamma}f = d_{\gamma}S\left(\frac{d}{2} + \gamma\right) = d_{\gamma}h$$

scattering problem

$$P_{\gamma}f = d_{\gamma}S\left(\frac{d}{2} + \gamma\right) = d_{\gamma} h$$

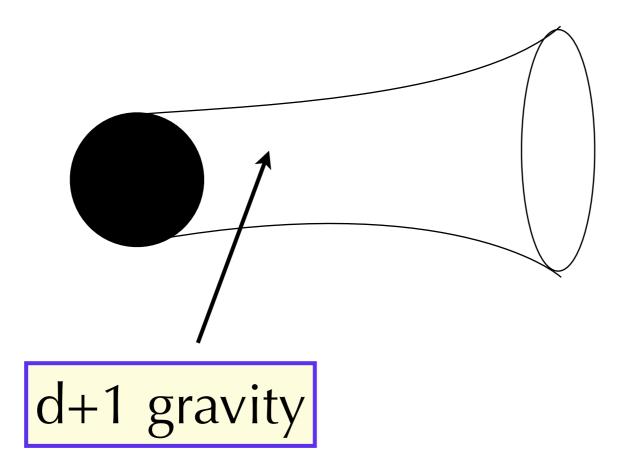
$$\int_{y>\epsilon} [|\partial\phi|^{2} - \left(s(d-s) + \frac{d-1}{4d}R(g)\right)\phi^{2}]dV_{g} = -d\int_{\partial X}dV_{h}f P_{\gamma}[g^{+},\hat{g}]f$$

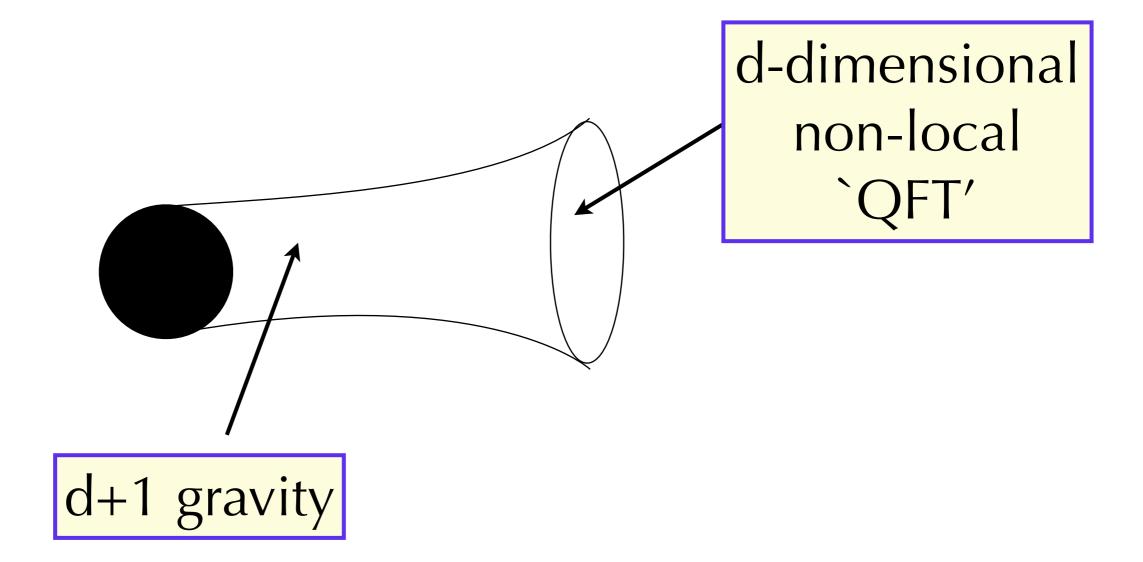
scattering problem

$$P_{\gamma}f = d_{\gamma}S\left(\frac{d}{2} + \gamma\right) = d_{\gamma}h$$

$$\int_{y>\epsilon} [|\partial\phi|^{2} - \left(s(d-s) + \frac{d-1}{4d}R(g)\right)\phi^{2}]dV_{g} = -d\int_{\partial X}dV_{h}fP_{\gamma}[g^{+},\hat{g}]f$$

$$fractional \ conformal \ Laplacian$$





$$S = \int d^{10}x \sqrt{-g} \left(e^{-2\phi} (R+4|\nabla\phi|^2) - \frac{2e^{2\alpha\phi}}{(D-2)}F^2 \right)$$

$$S = \int d^{10}x \sqrt{-g} \left(e^{-2\phi} (R+4|\nabla\phi|^2) - \frac{2e^{2\alpha\phi}}{(D-2)}F^2 \right)$$
$$D = 7 \qquad \text{extremal solution}$$
$$ds_L^2 = H^{-1/2}(r) \,\eta_{\mu\nu} dx^{\mu} dx^{\nu} + H^{1/2}(r) \,\delta_{mn} dx^m dx^n$$

$$S = \int d^{10}x \sqrt{-g} \left(e^{-2\phi} (R+4|\nabla\phi|^2) - \frac{2e^{2\alpha\phi}}{(D-2)}F^2 \right)$$
$$D = 7 \qquad \text{extremal solution}$$
$$ds_L^2 = H^{-1/2}(r) \eta_{\mu\nu} dx^{\mu} dx^{\nu} + H^{1/2}(r) \delta_{mn} dx^m dx^n$$
$$H = 1 + \frac{L^4}{r^4}, \ L^4 = 4\pi g N \alpha'^2, \ r^2 = \delta_{mn} x^m x^n$$

$$S = \int d^{10}x \sqrt{-g} \left(e^{-2\phi} (R+4|\nabla\phi|^2) - \frac{2e^{2\alpha\phi}}{(D-2)}F^2 \right)$$

$$D = 7 \qquad \text{extremal solution}$$

$$ds_L^2 = H^{-1/2}(r) \eta_{\mu\nu} dx^{\mu} dx^{\nu} + H^{1/2}(r) \delta_{mn} dx^m dx^n$$

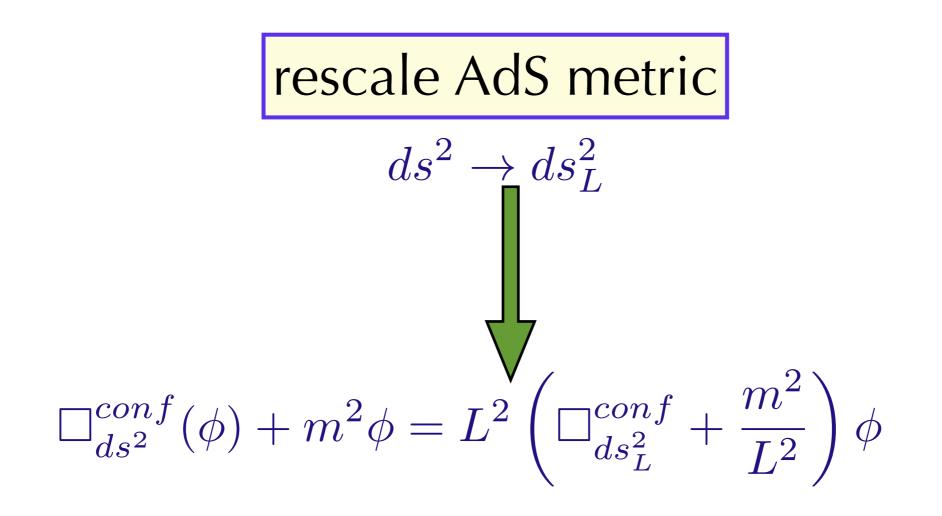
$$H = 1 + \frac{L^4}{r^4}, \ L^4 = 4\pi g N \alpha'^2, \ r^2 = \delta_{mn} x^m x^n$$

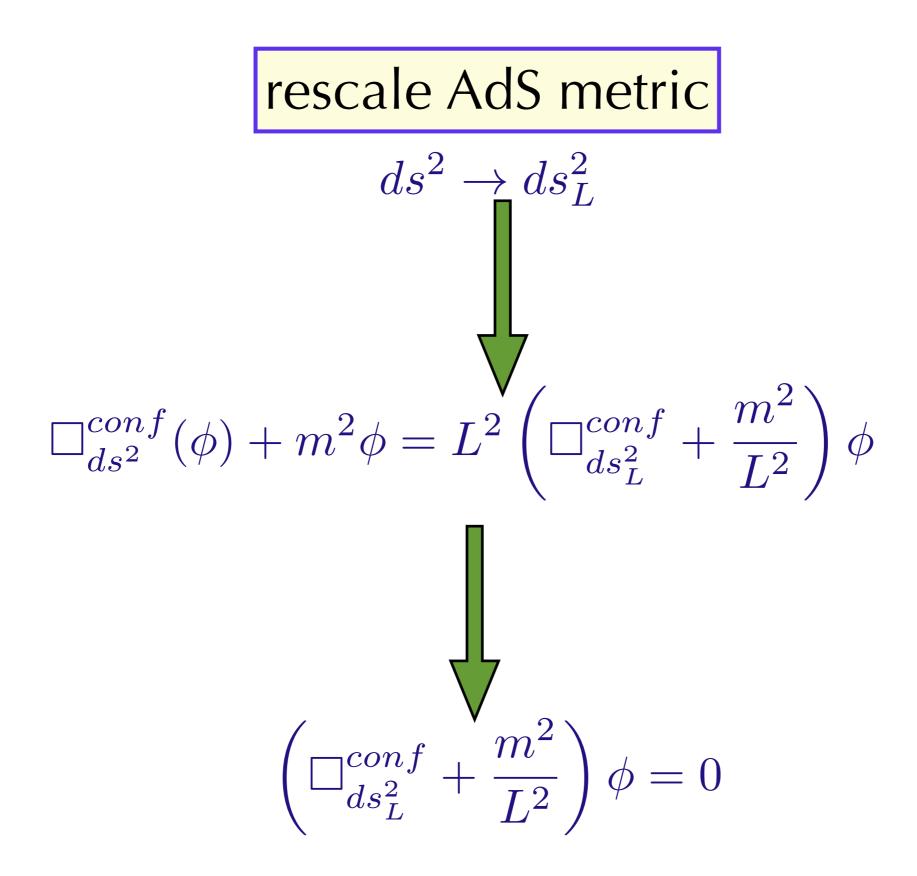
What about Maldacena conjecture?

Type IIB String `action'

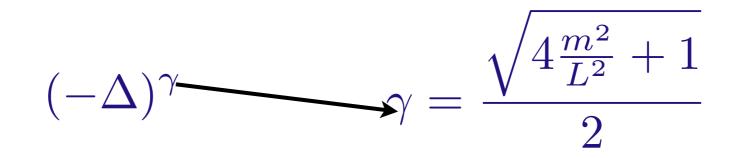
rescale AdS metric

$$ds^2 \to ds_L^2$$

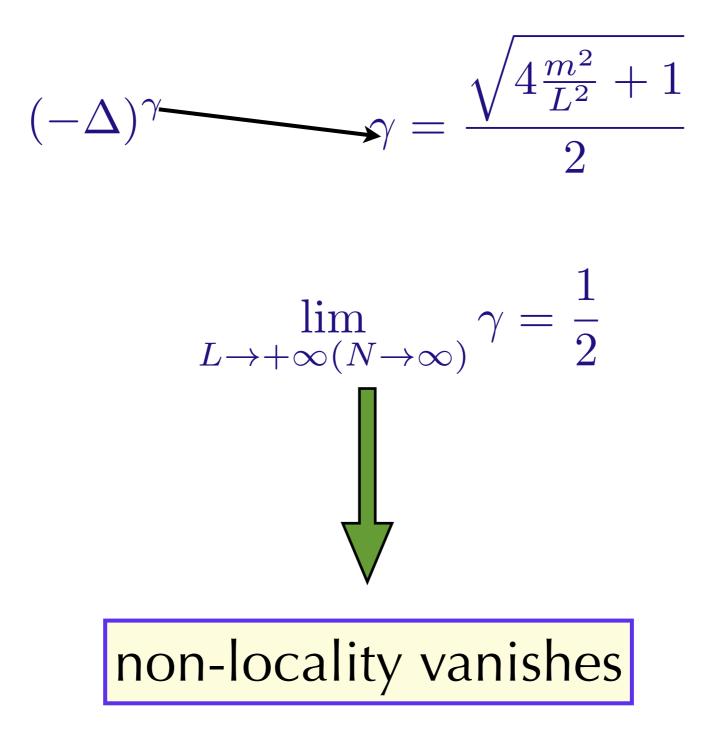


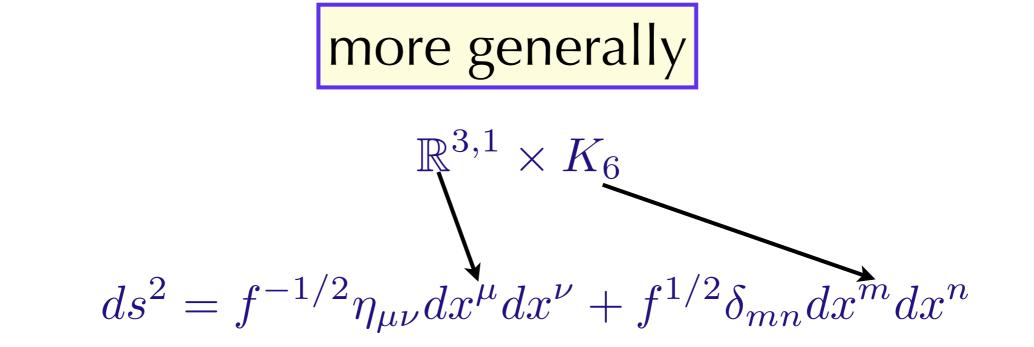


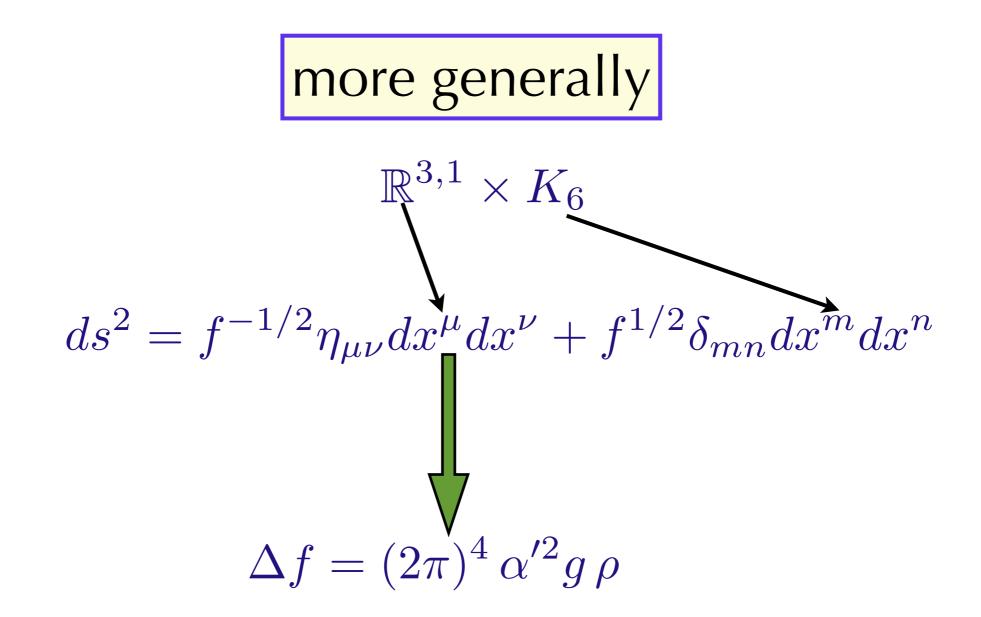
what determines the exponent?

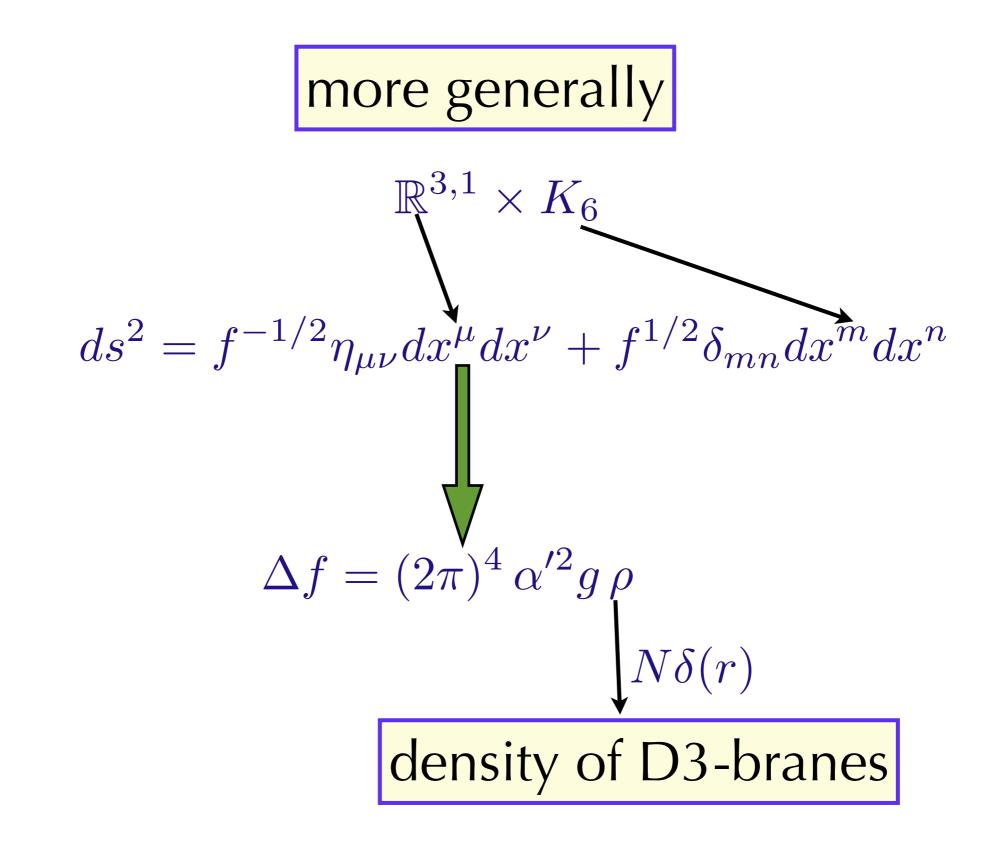


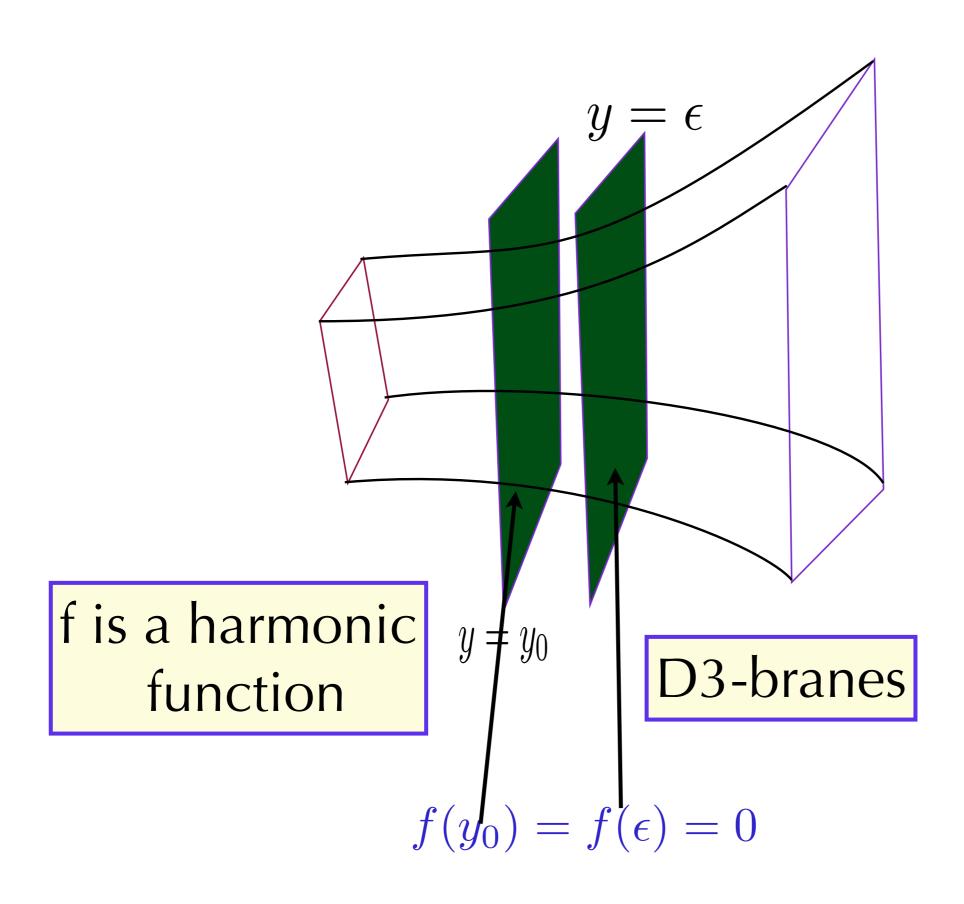
what determines the exponent?

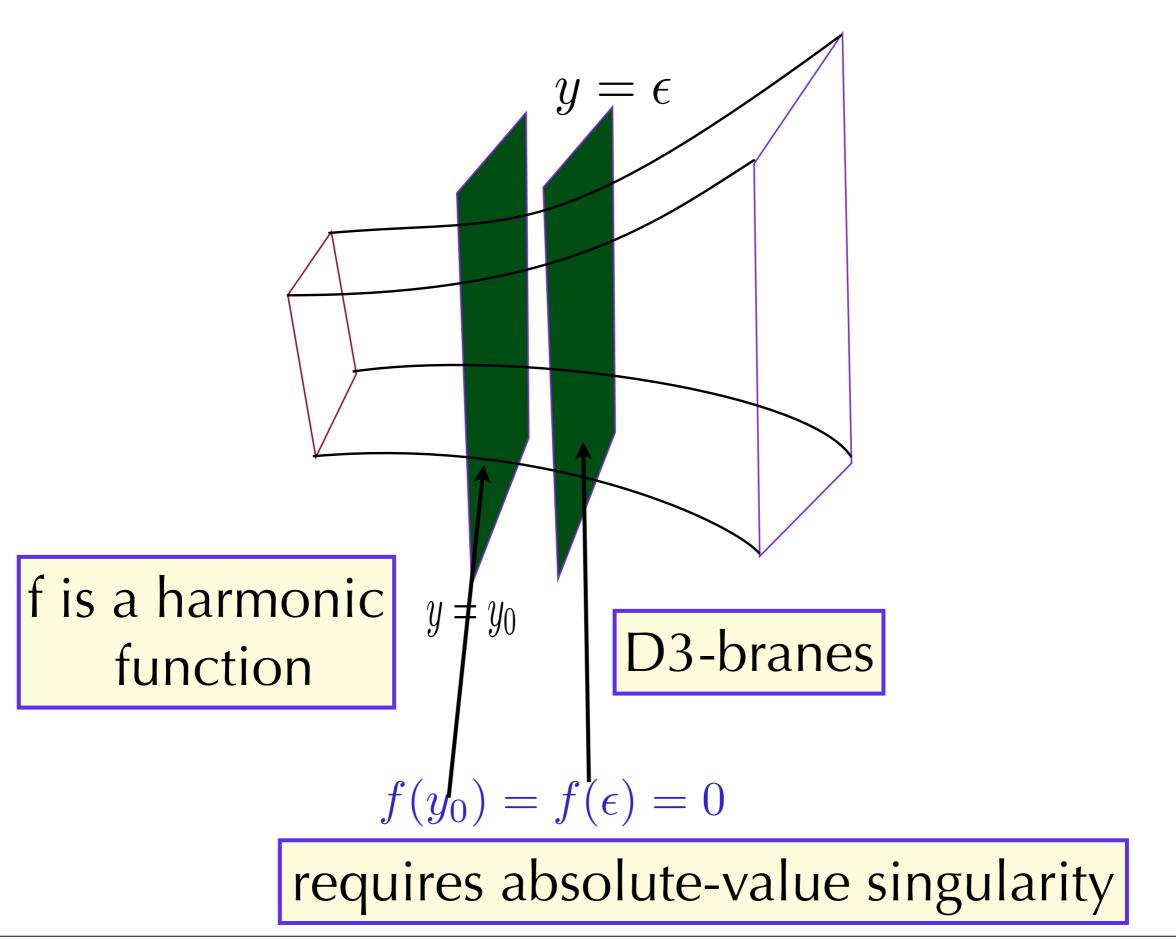












|y| singular metrics (GI)

|y| singular metrics (GI)

Randall-Sundrum

$$ds^{2} = -e^{-2|y|/L}g_{\mu\nu}dx^{\mu}dx^{\nu} + dy^{2}$$
$$y \in [-\pi R, \pi R]$$

|y| singular metrics (GI)

Randall-Sundrum

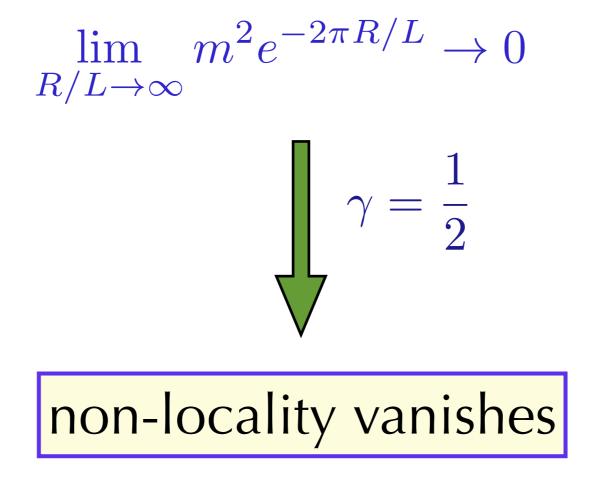
$$ds^{2} = -e^{-2|y|/L}g_{\mu\nu}dx^{\mu}dx^{\nu} + dy^{2}$$

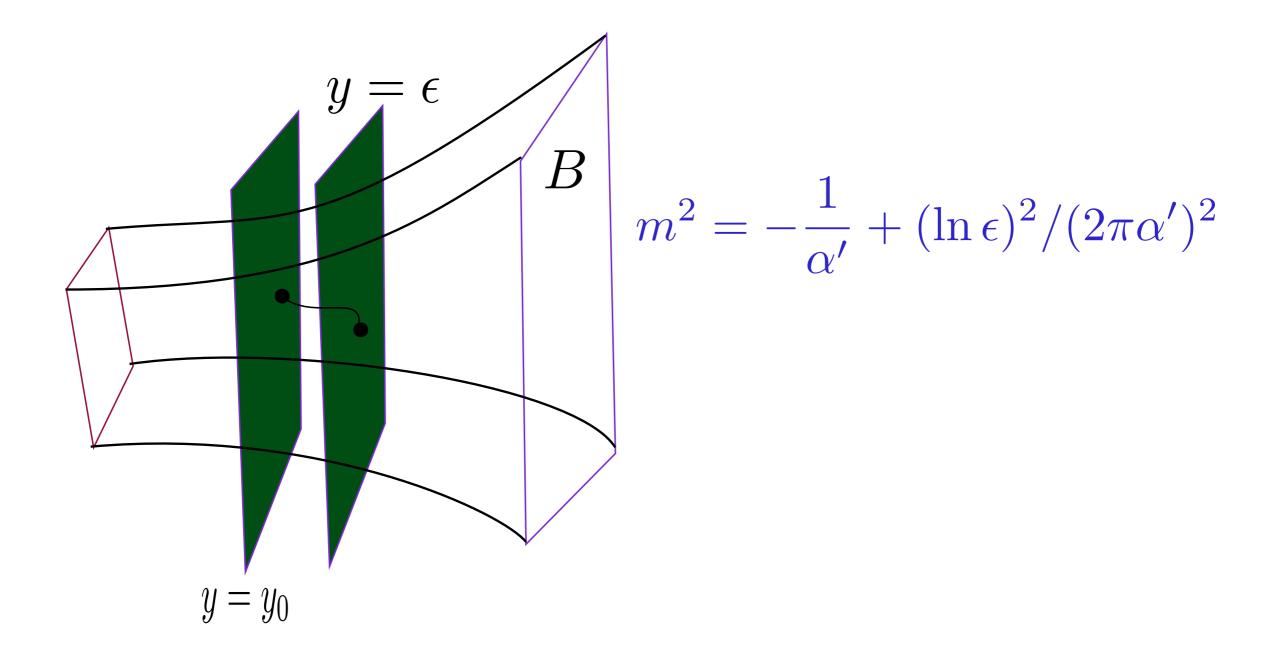
$$y \in [-\pi R, \pi R]$$
massive-particle action at Brane at πR

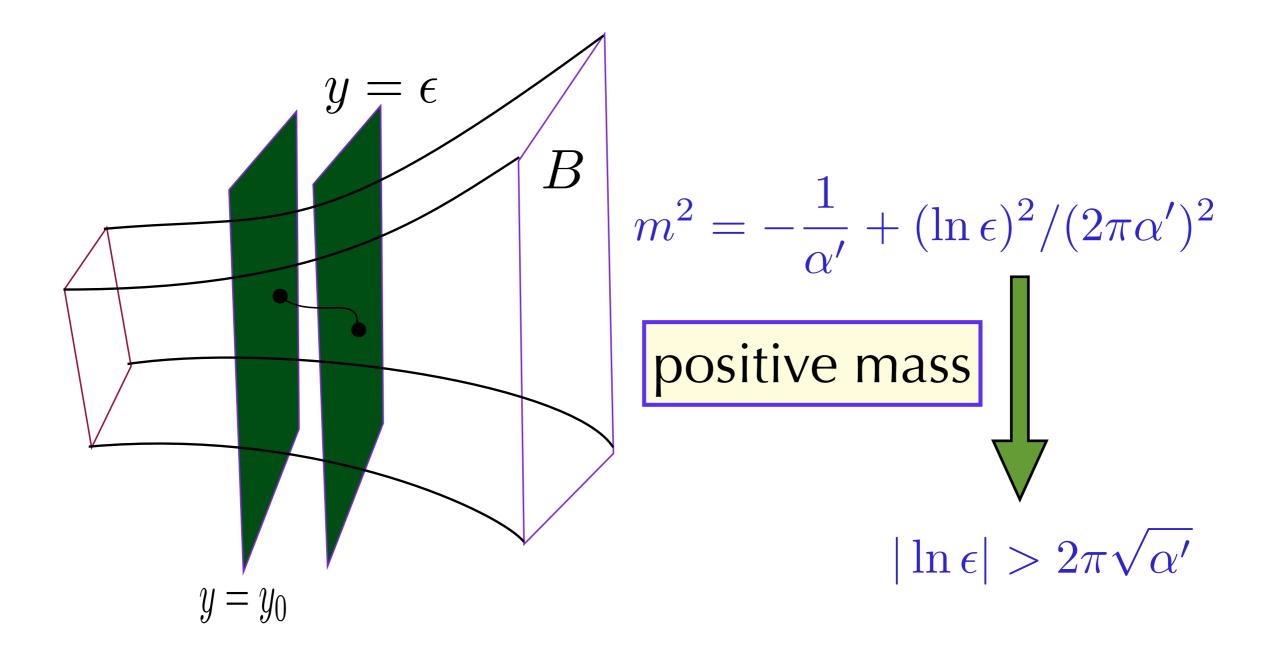
$$\int d^{4}x \sqrt{-g} \left(g^{\mu\nu}\partial_{\mu}\hat{\phi}\partial_{\nu}\hat{\phi} + \frac{m^{2}e^{-2\pi R/L}}{m^{2}e^{-2\pi R/L}}\hat{\phi}^{2}\right),$$

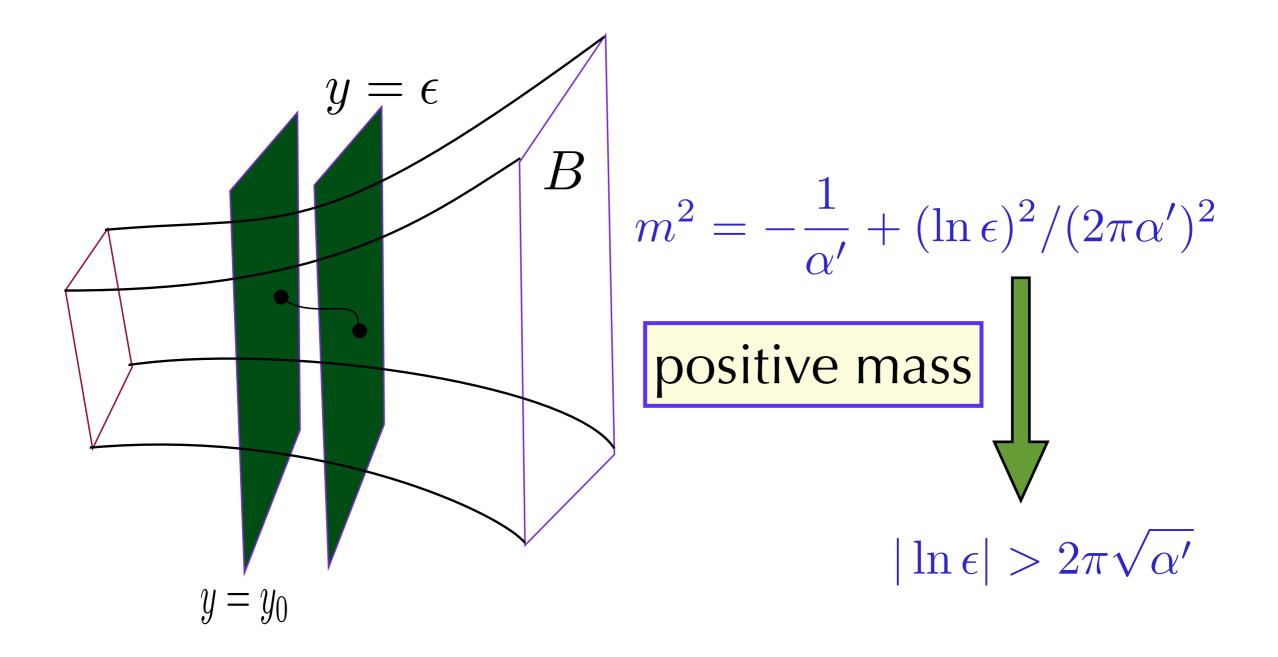
$$\hat{\phi} = e^{-\pi R/L}\phi$$

$$\lim_{R/L \to \infty} m^2 e^{-2\pi R/L} \to 0$$





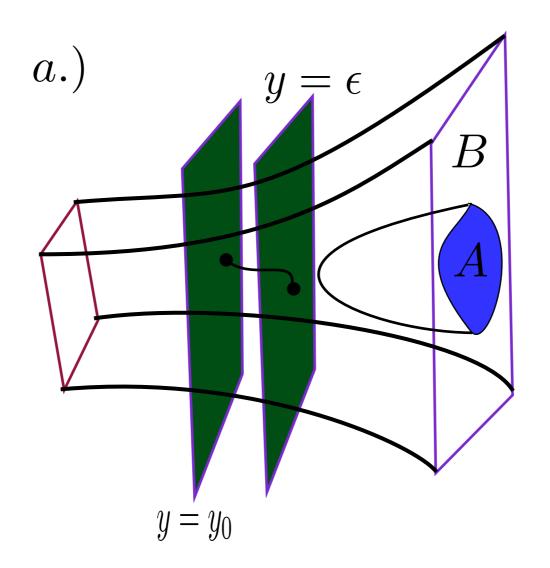




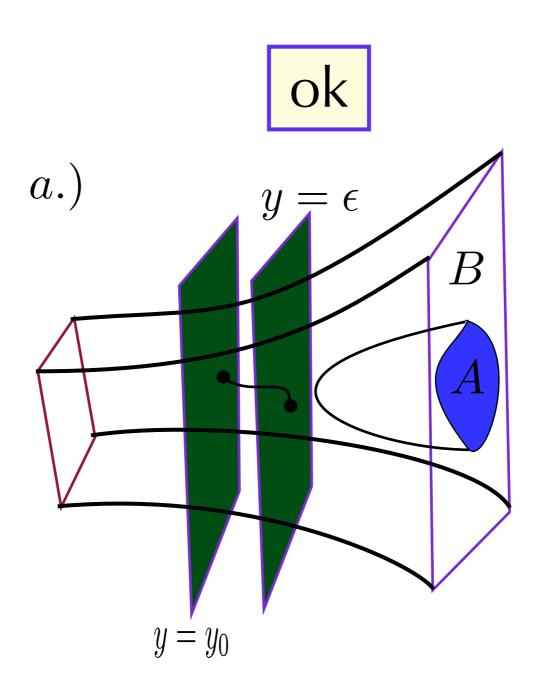
non-locality vanishes

Branes in Type IIB string theory eliminate non-local boundary interactions

are there any consequences for the enganglement entropy?

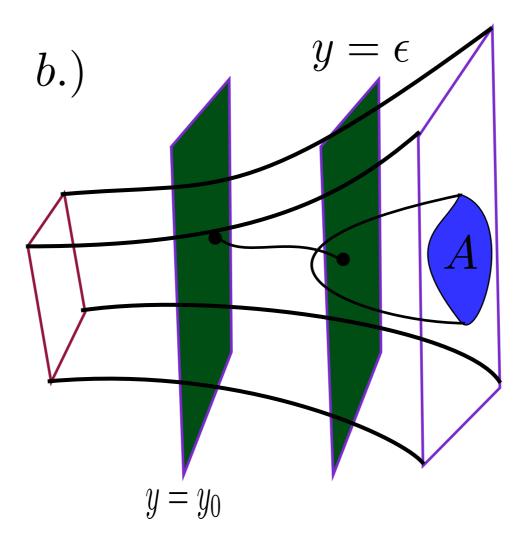


minimal surface avoids the D3brane

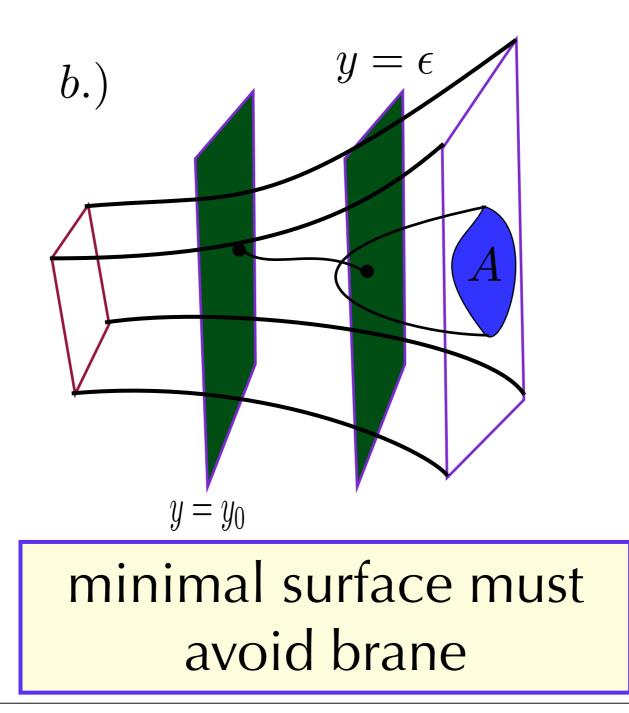


minimal surface avoids the D3brane

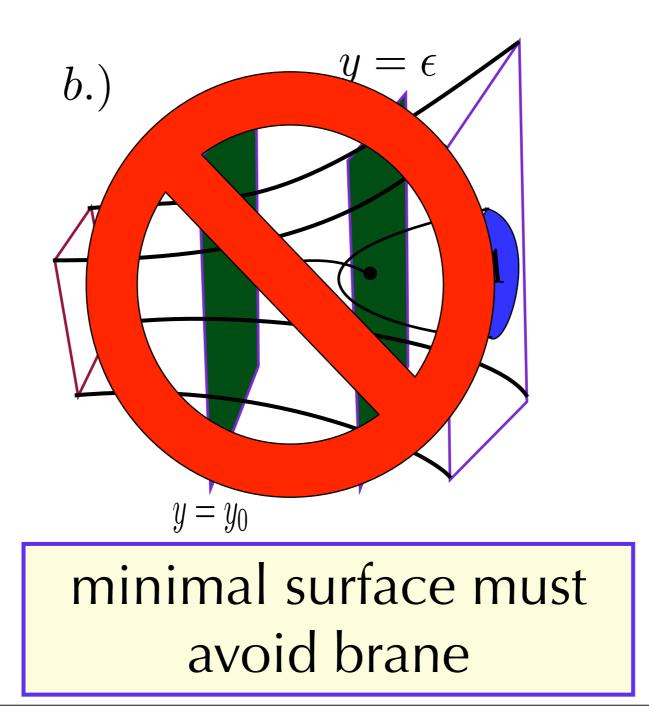
what happens as brane approaches boundary?

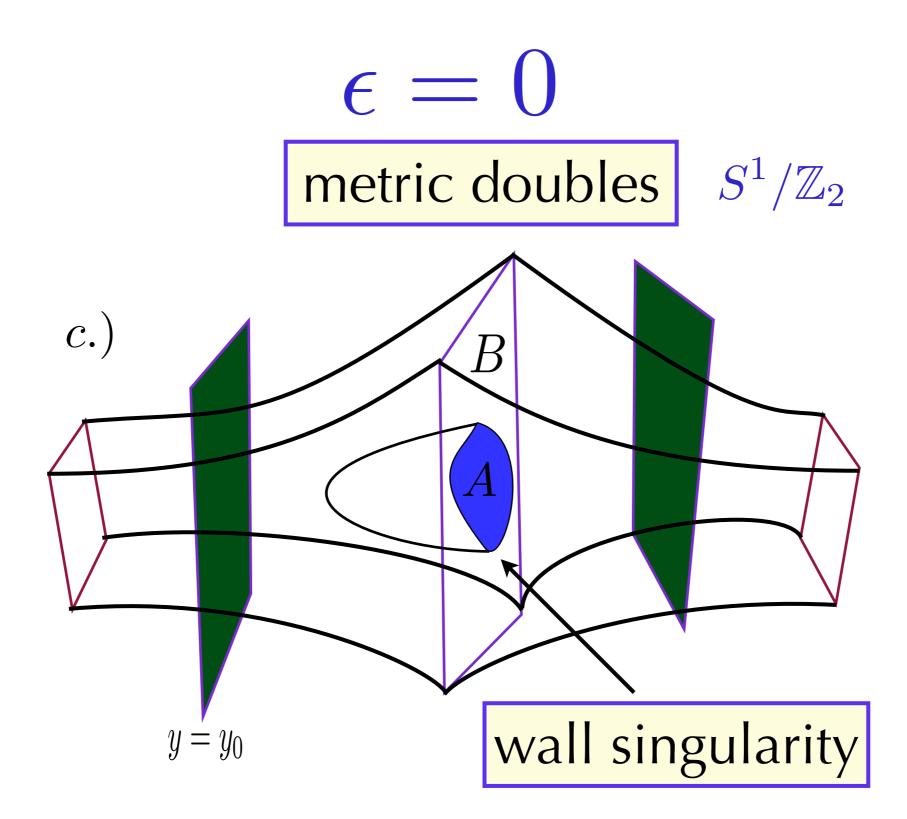


what happens as brane approaches boundary?



what happens as brane approaches boundary?



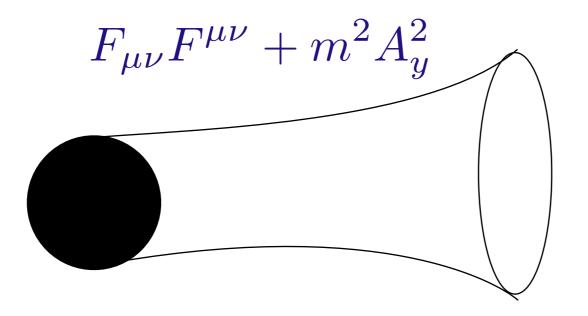


entropy vanishes $R/L = \infty$

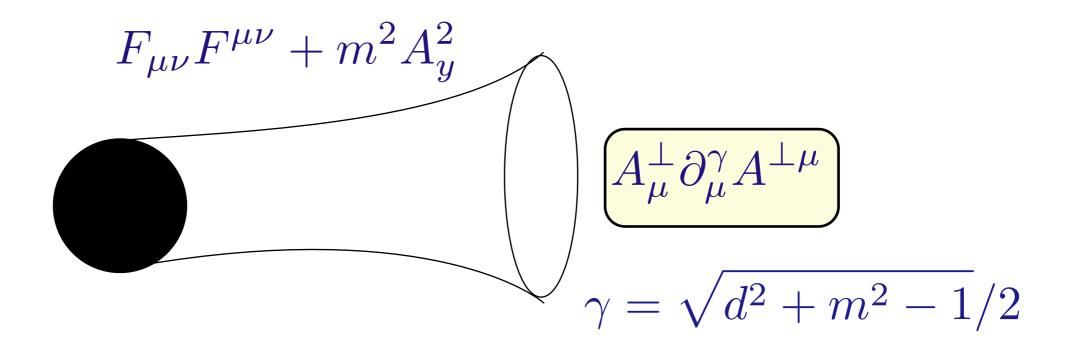
higher-dimensional minimal surfaces can avoid singularities higher-dimensional minimal surfaces can avoid singularities

is this how the entanglement entropy should be formulated??

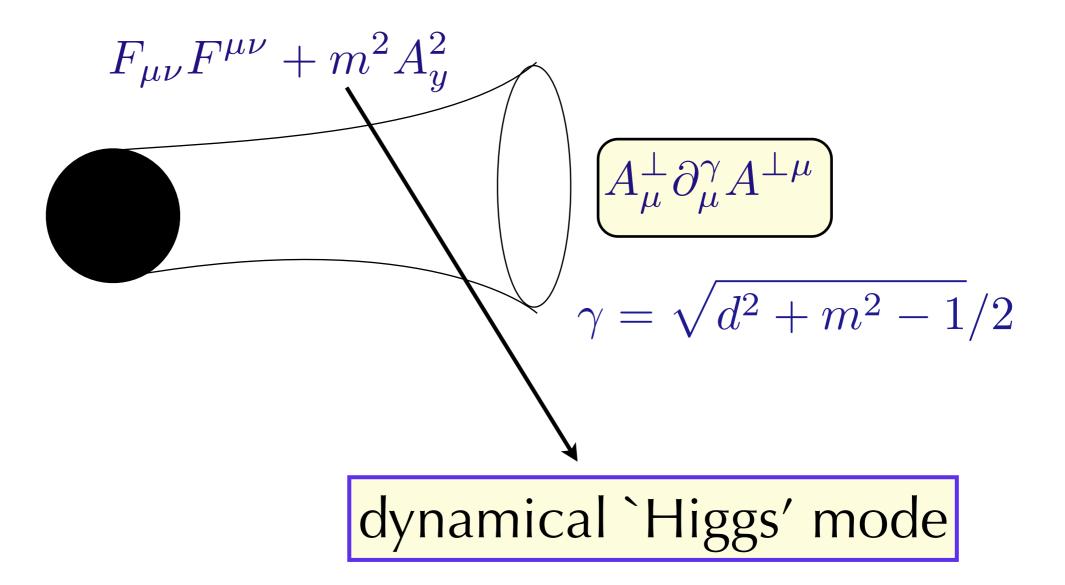
application: gauge fields with anomalous dimensions

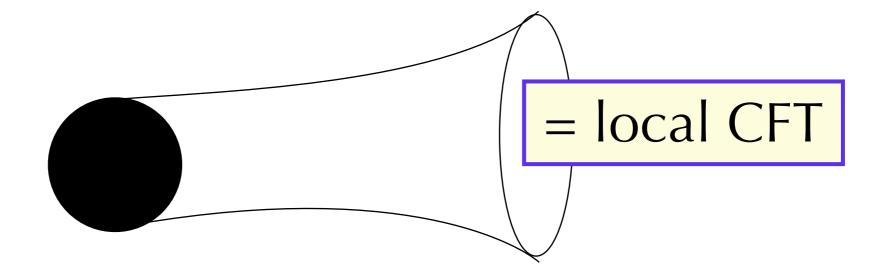


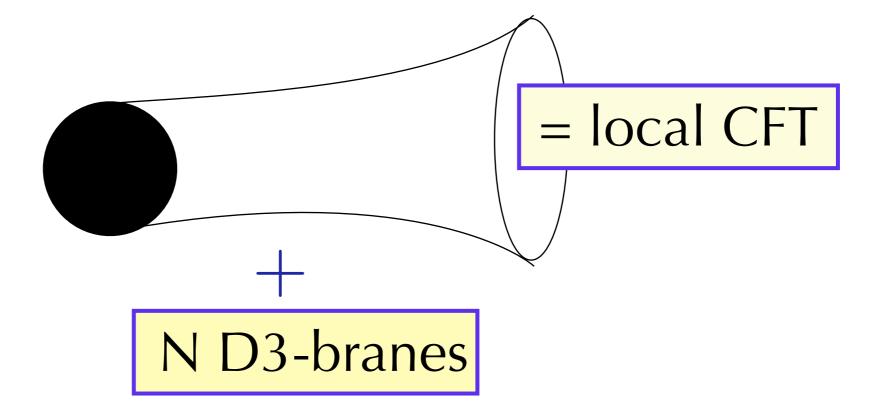
application: gauge fields with anomalous dimensions

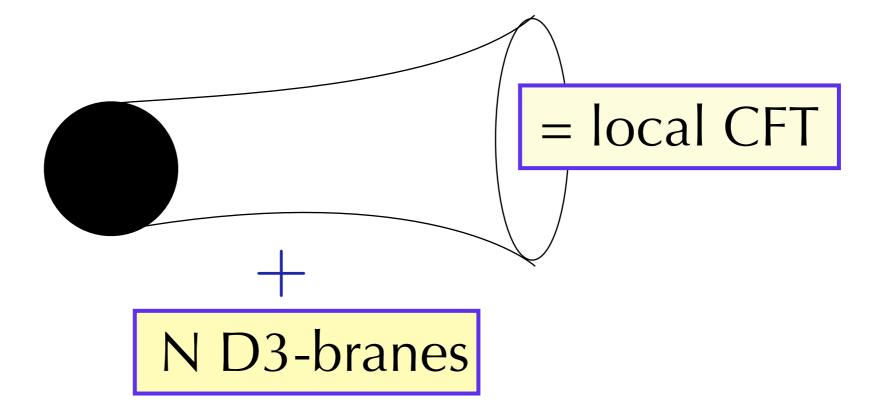


application: gauge fields with anomalous dimensions

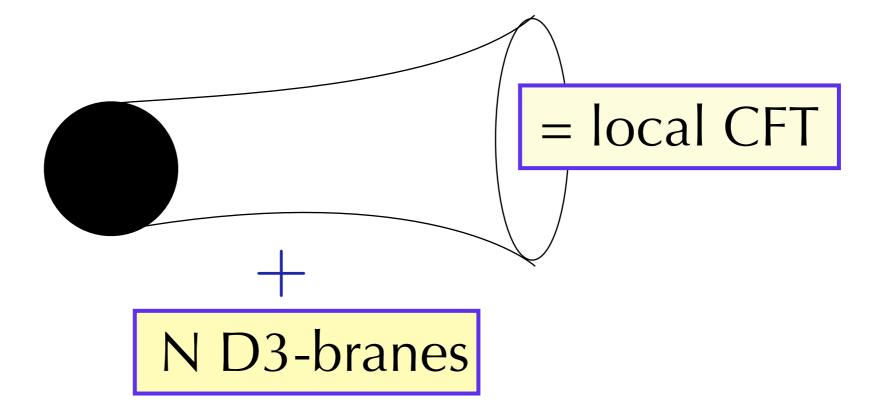








entanglement entropy?



entanglement entropy?

SYK model is different