Branes in the AdS/CFT Correspondence

thanks to

Gabriele La Nave

hyperbolic spacetime

hyperbolic spacetime

hyperbolic spacetime

1-1 state correspondence
which theories?

completely different limits

completely different limits

geodesic completeness

$$
d s_{\mathbb{H}}^{2}=\frac{1}{y^{2}}\left(d x^{2}+d y^{2}\right) \quad \mathbb{H}^{2}
$$

$$
d s_{\mathbb{H}}^{2}=\frac{1}{y^{2}}\left(d x^{2}+d y^{2}\right) \quad \mathbb{H}^{2}
$$

non-zero
Christoffel
symbols

\Gamma_{x x}^{y}=-\Gamma_{y y}^{y}=\frac{1}{y}\end{array}\right.\)

$$
d s_{\mathbb{H}}^{2}=\frac{1}{y^{2}}\left(d x^{2}+d y^{2}\right) \quad \mathbb{H}^{2}
$$

non-zero
 Christoffel symbols

$$
d s_{\mathbb{H}}^{2}=\frac{1}{y^{2}}\left(d x^{2}+d y^{2}\right) \quad \mathbb{H}^{2}
$$

non-zero Christoffel symbols geodesics$\left\{\begin{array}{l}\Gamma_{x y}^{x}=\Gamma_{y x}^{x}=-\frac{1}{y} \\ \Gamma_{x x}^{y}=-\Gamma_{y y}^{y}=\frac{1}{y}\end{array}\right.$
cover all spacetime

what if?

$$
d s^{2}=-e^{-2|y| / L} g_{\mu \nu} d x^{\mu} d x^{\nu}+d y^{2}
$$

what if?

$$
\begin{aligned}
d s^{2}= & -e^{-2|y| / L} g_{\mu \nu} d x^{\mu} d x^{\nu}+d y^{2} \\
& \text { singularity }
\end{aligned}
$$

what if?

$$
d s^{2}=-e_{\text {singularity }}^{-2|y| / L}
$$

what if?

$$
\begin{gathered}
d s^{2}=-e^{-2|y| / L} g_{\mu \nu} d x^{\mu} d x^{\nu}+d y^{2} \\
\underbrace{\Gamma_{\mu \nu}^{\rho} \text { ill-defined (GI) }}_{\text {singularity }}+\text { non-compactness }^{2}
\end{gathered}
$$

what if?

$$
d s^{2}=-e_{\text {singularity }}^{-2|y| / L}
$$

$$
+ \text { non-compactness }
$$

boundary locality

Type IIB String theory

does he feel his weight?

No

GR

No

Equivalence principle

GR

No

Equivalence principle

no local measurement can ever tell you about a uniform gravitational field
> any theory with gravity has less observables than a theory without it!

> any theory with gravity has less observables than a theory without it!

any theory with gravity has less observables than a theory without it!

standard holography

$$
S=S\left(g_{\mu \nu}, A_{\mu}, \phi, \cdots\right)
$$

standard holography

standard holography

$$
S=S\left(g_{\mu \nu}, A_{\mu}, \phi, \cdots\right)
$$

standard holography

$$
S=S\left(g_{\mu \nu}, A_{\mu}, \phi, \cdots\right)
$$

operators \mathcal{O}

$$
\left(\partial_{\mu} \phi\right)^{2}+m^{2} \phi^{2}
$$

$\int d^{4} x \phi_{0} \mathcal{O}$

standard holography

$$
S=S\left(g_{\mu \nu}, A_{\mu}, \phi, \cdots\right)
$$

AdS=CFT claim: $\left\langle e^{\int_{S^{d}} \phi_{0} \mathcal{O}}\right\rangle_{\mathrm{CFT}}=Z_{S}\left(\phi_{0}\right)$

$Z_{S}\left(\phi_{0}\right)$

$Z_{S}\left(\phi_{0}\right)$

super-gravity partition function averaged over all double-pole metrics
that impose boundary conformality

$Z_{S}\left(\phi_{0}\right)$

super-gravity partition function averaged over all double-pole metrics
that impose boundary conformality

Why should the boundary be conformal?

AdS metric: Euclidean signature

$$
d s^{2}=\frac{d z^{2}+\sum_{i} d x_{i}^{2}}{z^{2}}
$$

what is the length of this segment?

AdS metric: Euclidean signature

$$
d s^{2}=\frac{d z^{2}+\sum_{i} d x_{i}^{2}}{z^{2}}
$$

what is the length of this segment?

metric at boundary is not well defined

$$
z^{2} d s^{2}=d z^{2}+\sum_{i} d x_{i}^{2}
$$

solves problem

metric at boundary is not well defined

$$
\begin{array}{cc}
z^{2} d s^{2}=d z^{2}+\sum_{i} d x_{i}^{2} & \text { solves problem } \\
d s^{2} \rightarrow e^{2 w} d s^{2} & \begin{array}{c}
\text { works for any } \\
\text { real w }
\end{array}
\end{array}
$$

metric at boundary is not well defined

$$
z^{2} d s^{2}=d z^{2}+\sum_{i} d x_{i}^{2} \quad \text { solves problem }
$$

$$
d s^{2} \rightarrow e^{2 w} d s^{2} \quad \begin{gathered}
\text { Works for any } \\
\text { real w }
\end{gathered}
$$

boundary can only be specified conformally

$$
\begin{aligned}
& \begin{array}{c}
\text { requires boundary } \\
\text { conformality }
\end{array} \\
& \left\langle e^{\int_{S^{d}} \phi_{0} \mathcal{O}}\right\rangle_{\mathrm{CFT}}=Z_{S}\left(\phi_{0}\right)
\end{aligned}
$$

$$
\begin{gathered}
\begin{array}{c}
\text { requires boundary } \\
\text { conformality }
\end{array} \\
\left\langle e^{\int_{S^{d}} \phi_{0} \mathcal{O}}\right\rangle_{\mathrm{CFT}}=Z_{S}\left(\phi_{0}\right)
\end{gathered}
$$

\mathcal{O} should be conformal

composite operator in interacting theory
requires boundary conformality

$$
\begin{aligned}
\left\langle e^{\int_{S^{d}} \phi_{0}} \mathcal{O}\right. & \rangle_{\mathrm{CFT}}=Z_{S}\left(\phi_{0}\right) \\
& \mathcal{O} \text { should be conformal }
\end{aligned}
$$ what is \mathcal{O} ?

composite operator in interacting theory

$$
\mathcal{O}=C_{\mathcal{O}} \lim _{z \rightarrow 0} z^{-\Delta} \phi(x, z) \quad \text { Polcinski: } 1010.6134
$$

$\operatorname{can} \mathcal{O}$ be determined exactly in some cases?

redo Witten's massive scalar field calculation explicitly

$$
S_{\phi}=\frac{1}{2} \int \underbrace{d^{d+1} u \sqrt{g}}_{d V_{g}}\left(|\nabla \phi|^{2}+m^{2} \phi^{2}\right)
$$

to establish correspondence
redo Witten's massive scalar field calculation explicitly

$$
S_{\phi}=\frac{1}{2} \int \underbrace{d^{d+1} u \sqrt{g}}_{d V_{g}}\left(|\nabla \phi|^{2}+m^{2} \phi^{2}\right)
$$

to establish correspondence

$$
\left\langle e^{\int_{S^{d}} \phi_{0}} \mid\right\rangle_{\mathrm{CFT}}=Z_{S}\left(\phi_{0}\right)
$$

$(-\nabla)^{\gamma} \phi_{0}$ Reisz fractional Laplacian

$$
(-\Delta)^{\gamma} f(x)=C_{d, s} \int_{\mathbf{R}^{\mathbf{d}}} \frac{f(x)-f(\xi)}{|x-\xi|^{d+2 \gamma}} d \xi
$$

Reisz fractional Laplacian

$$
(-\Delta)^{\gamma} f(x)=C_{d, s} \int_{\mathbf{R}^{d}} \frac{f(x)-f(\xi)}{|x-\xi|^{d+2 \gamma}} d \xi
$$

$$
S_{\phi}=\frac{1}{2} \int d^{d+1} u \sqrt{g}\left(|\nabla \phi|^{2}+m^{2} \phi^{2}\right)
$$

integrate by parts

$$
S_{\phi}=\frac{1}{2} \int d^{d+1} u \sqrt{g}\left(|\nabla \phi|^{2}+m^{2} \phi^{2}\right)
$$

integrate by parts

$$
S_{\phi}=\frac{1}{2} \int d V_{g}\left(-\phi \partial_{\mu}^{2} \phi+m^{2} \phi^{2}+\phi \partial_{\mu} \phi\right)
$$

$$
S_{\phi}=\frac{1}{2} \int d^{d+1} u \sqrt{g}\left(|\nabla \phi|^{2}+m^{2} \phi^{2}\right)
$$

integrate by parts

$$
S_{\phi}=\frac{1}{2} \int d V_{g}(-\phi \underbrace{-\phi \partial_{\mu}^{2} \phi+m^{2} \phi^{2}}+\phi \partial_{\mu} \phi)
$$

$$
S_{\phi}=\frac{1}{2} \int d^{d+1} u \sqrt{g}\left(|\nabla \phi|^{2}+m^{2} \phi^{2}\right)
$$

integrate by parts

$$
S_{\phi}=\frac{1}{2} \int d V_{g}(-\phi \underbrace{-\phi \partial_{\mu}^{2} \phi+m^{2} \phi^{2}}+\phi \partial_{\mu} \phi)
$$

equations $\quad-\Delta \phi-s(d-s) \phi=0 \quad-\Delta \phi=\nabla_{i} \nabla^{i} \phi$ of motion

$$
m^{2}=-s(d-s)
$$

$$
s=\frac{d}{2}+\frac{1}{2} \sqrt{d^{2}+4 m^{2}}
$$

bound $\quad m^{2} \geq-d^{2} / 4$
BF bound

$$
\begin{array}{ll}
\text { solutions } & \phi=F z^{d-s}+G z^{s},
\end{array} \quad F, G \in \mathcal{C}^{\infty}(\mathbb{H}), ~ 子=\phi_{0}+O\left(z^{2}\right), \quad G=g_{0}+O\left(z^{2}\right)
$$

solutions

$$
\begin{gathered}
\phi=F z^{d-s}+G z^{s}, \quad F, G \in \mathcal{C}^{\infty}(\mathbb{H}), \\
F=\phi_{0}+O\left(z^{2}\right), \quad G=g_{0}+O\left(z^{2}\right)
\end{gathered}
$$

restriction

$$
\phi_{0}=\lim _{z \rightarrow 0} \phi \text { boundary of AdS_\{d+1\}}
$$

solutions $\quad \phi=F z^{d-s}+G z^{s}, \quad F, G \in \mathcal{C}^{\infty}(\mathbb{H})$,

$$
F=\phi_{0}+O\left(z^{2}\right), \quad G=g_{0}+O\left(z^{2}\right)
$$

restriction
$\phi_{0}=\lim _{z \rightarrow 0} \phi$ boundary of AdS_\{d+1\}

$$
\begin{gathered}
S_{\phi}=\frac{1}{2} \int d V_{g}\left(-\phi \partial_{\mu}^{2} \phi+m^{2} \phi^{2}+\phi \partial_{\mu} \phi\right) \\
\int_{z>\epsilon} d V_{g} \phi \partial_{\mu} \phi
\end{gathered}
$$

restriction pf $\int_{z>\epsilon}\left(|\partial \phi|^{2}-s(d-s) \phi^{2}\right) d V_{g}=-d \int_{z=0} \phi_{0} g_{0}$

restriction pf $\int_{z>\epsilon}\left(\|\partial \phi\|^{2}-s(d-s) \phi^{2}\right) d V_{g}=-d \int_{z=0} \phi_{0} g_{0}$
finite part from integration by parts

restriction pf $\int_{z>\epsilon}\left(|\partial \phi|^{2}-s(d-s) \phi^{2}\right) d V_{g}=-d \int_{z=0} \phi_{0} g_{0}$
 finite part from integration by parts

use Caffarelli-Silvestre extension theorem (2006)

$$
\begin{array}{r}
g(x, 0)=f(x) \\
\Delta_{x} g+\frac{a}{z} \partial_{z} g+\partial_{z}^{2} g=0
\end{array}
$$

restriction pf $\int_{z>\epsilon}\left(|\partial \phi|^{2}-s(d-s) \phi^{2}\right) d V_{g}=-d \int_{z=0} \phi_{0} g_{0}$

finite part from integration by parts

use Caffarelli-Silvestre extension theorem
(2006)

$$
\begin{array}{r}
g(x, 0)=f(x) \\
\Delta_{x} g+\frac{a}{z} \partial_{z} g+\partial_{z}^{2} g=0 \\
\lim _{z \rightarrow 0^{+}} z^{a} \frac{\partial g}{\partial z}=C_{d, \gamma}(-\nabla)^{\gamma} f \\
\gamma=\frac{1-a}{2}
\end{array}
$$

restriction pf $\int_{z>\epsilon}\left(|\partial \phi|^{2}-s(d-s) \phi^{2}\right) d V_{g}=-d \int_{z=0} \phi_{0} g_{0}$

finite part from integration by parts

use Caffarelli-Silvestre extension theorem
(2006)

$$
g(x, 0)=f(x)
$$

$$
\Delta_{x} g+\frac{a}{z} \partial_{z} g+\partial_{z}^{2} g=0
$$

$$
\gamma=\frac{1-a}{2}
$$

$$
\begin{gathered}
g(z=0, x)=f(x) \\
\gamma=\frac{1-a}{2}
\end{gathered}
$$

solves massive scalar problem

solves massive scalar problem

$$
g=z^{\gamma-d / 2} \phi
$$

solves CS

extension problem

$$
\gamma:=\frac{\sqrt{d^{2}+4 m^{2}}}{2}
$$

solves massive scalar problem

$$
g=z^{\gamma-d / 2} \phi
$$

solves CS extension problem

$\gamma:=\frac{\sqrt{d^{2}+4 m^{2}}}{2}$
the \mathcal{O} for massive scalar field

consistency with Polcinski

$$
\begin{gathered}
\mathcal{O}=C_{\mathcal{O}} \lim _{z \rightarrow 0} z^{-\Delta} \quad \begin{array}{c}
\text { use Caffarelli/ } \\
\text { Silvestre }
\end{array}
\end{gathered}
$$

consistency with Polcinski

$$
\mathcal{O}=(-\Delta)^{\gamma} \phi_{0} \leadsto\left|x-x^{\prime}\right|^{-d-2 \gamma}
$$

$$
\mathcal{O}=(-\Delta)^{\gamma} \phi_{0} \rightleftharpoons\left|x-x^{\prime}\right|^{-d-2 \gamma}
$$

$$
\left\langle e^{\int_{S^{d}} \phi_{0} \mathcal{O}}\right\rangle_{\mathrm{CFT}}=Z_{S}\left(\phi_{0}\right)
$$

AdS-CFT
 correspondence but operators are non-local !!

simpler proof:

Reisz fractional Laplacian

$$
(-\Delta)^{\gamma} f(x)=C_{d, s} \int_{\mathbf{R}^{d}} \frac{f(x)-f(\xi)}{|x-\xi|^{d+2 \gamma}} d \xi
$$

simpler proof:

Reisz fractional Laplacian

$$
(-\Delta)^{\gamma} f(x)=C_{d, s} \int_{\mathbf{R}^{d}} \frac{f(x)-f(\xi)}{|x-\xi|^{d+2 \gamma}} d \xi
$$

simpler proof:

Reisz fractional Laplacian

$$
(-\Delta)^{\gamma} f(x)=C_{d, s} \int_{\mathbf{R}^{d}} \frac{f(x)-f(\xi)}{|x-\xi|^{d+2 \gamma}} d \xi
$$

pseudo-differential operator

$$
\left[\left(\widehat{-\nabla)^{s}} f(\xi)=|\xi|^{2 s} \widehat{f}(\xi)\right]\right.
$$

$$
I(\phi) \propto \int d \mathbf{x d x}^{\prime} \frac{\phi_{\mathbf{0}}(\mathbf{x}) \phi_{0}\left(\mathrm{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2(\lambda+\mathrm{d})}}
$$

bulk conformality

$$
\begin{aligned}
& S=S_{\mathrm{gr}}[g]+S_{\text {matter }}(\phi) \\
& S_{\text {matter }}=\int_{M} d^{d+1} x \sqrt{g} \mathcal{L}_{m} \quad \text { conformal sector }
\end{aligned}
$$

bulk conformality

$$
\begin{gathered}
S=S_{\mathrm{gr}}[g]+S_{\text {matter }}(\phi) \\
S_{\text {matter }}=\int_{M} d^{d+1} x \sqrt{g} \mathcal{L}_{m} \xrightarrow{\text { conformal sector }} \\
\mathcal{L}_{m}:=|\partial \phi|^{2}+\left(m^{2}+\frac{d-1}{4 d} R(g)\right) \phi^{2} \\
\text { scalar curvature }
\end{gathered}
$$

bulk conformality

$$
S=S_{\mathrm{gr}}[g]+S_{\mathrm{matter}}(\phi)
$$

$$
S_{\text {matter }}=\int_{M} d^{d+1} x \sqrt{g} \mathcal{L}_{m} \text { conformal sector }
$$

$$
\begin{gathered}
\begin{array}{c}
\begin{array}{c}
\text { on Riemannian }(\mathrm{M}, \mathrm{~g}) \\
\text { manifold of dimension } \\
\mathrm{N}=\mathrm{d}+1
\end{array} \\
L_{g}=-\Delta_{g}+\frac{N-2}{4(N-1)} R_{g}=-\Delta_{g}+\frac{d-1}{4 d} R_{g} \\
\text { conformal change } \\
A_{w}(\varphi)=e^{-b w} A\left(e^{a w} \varphi\right) \\
\prod \hat{g}=y^{2} g
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
\begin{array}{c}
\begin{array}{c}
\text { on Riemannian }(\mathrm{M}, \mathrm{~g}) \\
\text { manifold of dimension } \\
\mathrm{N}=\mathrm{d}+1
\end{array} \\
L_{g}=-\Delta_{g}+\frac{N-2}{4(N-1)} R_{g}=-\Delta_{g}+\frac{d-1}{4 d} R_{g} \\
\text { conformal change } \\
A_{w}(\varphi)=e^{-b w} A\left(e^{a w} \varphi\right) \\
L_{g}(\varphi)=y^{\frac{d+3}{2}} L_{\hat{g}}\left(y^{-\frac{d-1}{2}} \varphi\right)
\end{array} \\
\hline \text { conformal Laplacian } \\
y^{2} g
\end{gathered}
$$

$$
\begin{gathered}
\text { hyperbolic metric } \\
L_{g}=-\Delta_{g}+\frac{N-2}{4(N-1)} R_{g}=-\Delta_{g}+\frac{d-1}{4 d} R_{g}
\end{gathered}
$$

$$
\begin{gathered}
L_{g}=-\Delta_{g}+\frac{N-2}{4(N-1)} R_{g}=-\Delta_{g}+\frac{d-1}{4 d} R_{g} \\
R_{g_{H}}=-d(d+1) \\
L_{g_{\mathbb{H}}}=-\Delta_{g_{\mathbb{H}}}-\frac{d^{2}-1}{4}
\end{gathered}
$$

$$
\begin{gathered}
\text { hyperbolic metric } \\
L_{g}=-\Delta_{g}+\frac{N-2}{4(N-1)} R_{g}=-\Delta_{g}+\frac{d-1}{4 d} R_{g} \\
R_{g_{\text {تI }}}=-d(d+1) \\
L_{g_{\text {HI }}}=-\Delta_{g_{\text {HI }}}-\frac{d^{2}-1}{4} \\
m^{2}-\frac{d^{2}-1}{4}=-s(d-s)
\end{gathered}
$$

$$
\begin{gathered}
L_{g}=-\Delta_{g}+\frac{N-2}{4(N-1)} R_{g}=-\Delta_{g}+\frac{d-1}{4 d} R_{g} \\
L_{g_{\text {HI }}}=-\Delta_{g_{\text {HI }}}=-\frac{d^{2}-1}{4} \\
s=\frac{d}{2}+\frac{\sqrt{4 m^{2}+1}}{2} \rightleftharpoons m^{2}-\frac{d^{2}-1}{4}=-s(d-s) \\
\hline m^{2}>-1 / 4
\end{gathered}
$$

stability independent of dimensionality

construct \mathcal{O}

eom

$$
\begin{aligned}
& -\Delta_{g} \phi+\frac{d-1}{4 d} R_{g} \phi=m^{2} \phi \\
& -\Delta \phi+\left(m^{2}-\frac{d^{2}-1}{4}\right) \phi=0
\end{aligned}
$$

construct \mathcal{O}

eom

$$
\begin{aligned}
& -\Delta_{g} \phi+\frac{d-1}{4 d} R_{g} \phi=m^{2} \phi \\
& -\Delta \phi+\left(m^{2}-\frac{d^{2}-1}{4}\right) \phi=0
\end{aligned}
$$

solutions $\quad \gamma=\sqrt{4 m^{2}+1}$
$\phi=F y^{\frac{d}{2}-\gamma}+G y^{\frac{d}{2}+\gamma}, \quad F, G \in \mathcal{C}^{\infty}(\mathbb{H}), \quad F=\phi_{0}+O\left(y^{2}\right), \quad G=g_{0}+O\left(y^{2}\right)$

construct \mathcal{O}

eom

$$
-\Delta_{g} \phi+\frac{d-1}{4 d} R_{g} \phi=m^{2} \phi
$$

$$
-\Delta \phi+\left(m^{2}-\frac{d^{2}-1}{4}\right) \phi=0
$$

solutions $\quad \gamma=\sqrt{4 m^{2}+1}$
$\phi=F y^{\frac{d}{2}-\gamma}+G y^{\frac{d}{2}+\gamma}, \quad F, G \in \mathcal{C}^{\infty}(\mathbb{H}), \quad F=\phi_{0}+O\left(y^{2}\right), \quad G=g_{0}+O\left(y^{2}\right)$
redefinition $g=y^{\gamma-\frac{d}{2}} \phi, \rightleftharpoons \lim _{y \rightarrow 0} y^{1-2 \gamma} \frac{\partial g}{\partial y}=2 \gamma g_{0}$
CS extension problem

conformal Laplacian

Chang/Gonzalez 1003.0398

$$
P_{\gamma} \in\left(-\Delta_{\hat{g}}\right)^{\gamma}+\Psi_{\gamma-1}^{\Psi^{\gamma}}
$$

pseudo-differential operator

Chang/Gonzalez 1003.0398

$$
P_{\gamma} \in\left(-\Delta_{\hat{g}}\right)^{\gamma}+\Psi_{\gamma-1}^{\gamma}
$$ operator

in general $\quad P_{k}=(-\Delta)^{k}+$ lower order terms

Chang/Gonzalez 1003.0398

$$
P_{\gamma} \in\left(-\Delta_{\hat{g}}\right)^{\gamma}+\Psi_{\gamma-1}^{\gamma}
$$ operator

in general $P_{k}=(-\Delta)^{k}+$ lower order terms

$$
P_{1}=-\Delta+\frac{d-1}{4(d-1)} R_{g}
$$

scattering problem

$$
P_{\gamma} f=d_{\gamma} S\left(\frac{d}{2}+\gamma\right)=d_{\gamma} h
$$

scattering problem

$$
P_{\gamma} f=d_{\gamma} S\left(\frac{d}{2}+\gamma\right)=d_{\gamma} h
$$

$$
\mathrm{pf} \int_{y>\epsilon}\left[|\partial \phi|^{2}-\left(s(d-s)+\frac{d-1}{4 d} R(g)\right) \phi^{2}\right] d V_{g}=-d \int_{\partial X} d V_{h} f P_{\gamma}\left[g^{+}, \hat{g}\right] f
$$

scattering problem

$$
P_{\gamma} f=d_{\gamma} S\left(\frac{d}{2}+\gamma\right)=d_{\gamma} h
$$

$$
\text { pf } \int_{y>\epsilon}\left[|\partial \phi|^{2}-\left(s(d-s)+\frac{d-1}{4 d} R(g)\right) \phi^{2}\right] d V_{g}=-d \int_{\partial X} d V_{h} f P_{\gamma}\left[g^{+}, \hat{g}\right] f
$$

fractional conformal Laplacian

What about Maldacena conjecture?

What about Maldacena conjecture?

Type IIB String `action'

$$
S=\int d^{10} x \sqrt{-g}\left(e^{-2 \phi}\left(R+4|\nabla \phi|^{2}\right)-\frac{2 e^{2 \alpha \phi}}{(D-2)} F^{2}\right)
$$

What about Maldacena conjecture?

Type IIB String `action'

$$
\begin{array}{r}
S=\int d^{10} x \sqrt{-g}\left(e^{-2 \phi}\left(R+4|\nabla \phi|^{2}\right)-\frac{2 e^{2 \alpha \phi}}{(D-2)} F^{2}\right) \\
D=7 \underbrace{\text { extremal solution }} \\
d s_{L}^{2}=H^{-1 / 2}(r) \eta_{\mu \nu} d x^{\mu} d x^{\nu}+H^{1 / 2}(r) \delta_{m n} d x^{m} d x^{n}
\end{array}
$$

What about Maldacena conjecture?

Type IIB String `action'

$$
\begin{gathered}
S=\int d^{10} x \sqrt{-g}\left(e^{-2 \phi}\left(R+4|\nabla \phi|^{2}\right)-\frac{2 e^{2 \alpha \phi}}{(D-2)} F^{2}\right) \\
D=7 \text { extremal solution } \\
d s_{L}^{2}=H^{-1 / 2}(r) \eta_{\mu \nu} d x^{\mu} d x^{\nu}+H^{1 / 2}(r) \delta_{m n} d x^{m} d x^{n} \\
H=1+\frac{L^{4}}{r^{4}}, \quad L^{4}=4 \pi g N \alpha^{\prime 2}, r^{2}=\delta_{m n} x^{m} x^{n}
\end{gathered}
$$

What about Maldacena conjecture?

Type IIB String `action’

$$
\begin{gathered}
S=\int d^{10} x \sqrt{-g}\left(e^{-2 \phi}\left(R+4|\nabla \phi|^{2}\right)-\frac{2 e^{2 \alpha \phi}}{(D-2)} F^{2}\right) \\
D=7 \text { extremal solution } \\
d s_{L}^{2}=H^{-1 / 2}(r) \eta_{\mu \nu} d x^{\mu} d x^{\nu}+H^{1 / 2}(r) \delta_{m n} d x^{m} d x^{n} \\
H=1+\frac{L^{4}}{r^{4}}, L^{4}=4 \pi g N \alpha^{\prime 2}, r^{2}=\delta_{m n} x^{m} x^{n}
\end{gathered}
$$

What about Maldacena conjecture?

Type IIB String `action'

$$
\begin{array}{r}
S=\int d^{10} x \sqrt{-g}\left(e^{-2 \phi}\left(R+4|\nabla \phi|^{2}\right)-\frac{2 e^{2 \alpha \phi}}{(D-2)} F^{2}\right) \\
D=7 \| \text { extremal solution }
\end{array}
$$

$$
d s_{L}^{2}={ }^{H^{-1 / 2}}(r) \eta_{\mu \nu} d x^{\mu} d x^{\nu}+H^{1 / 2}(r) \delta_{m n} d x^{m} d x^{n}
$$

$$
\text { horizon at } \mathrm{r}=0 \text {. }
$$

$$
\begin{aligned}
& \text { D3-branes } \\
& H=1+\frac{L^{4}}{r^{4}}, \quad L^{4}=4 \pi g N \alpha^{\prime 2}, r^{2}=\delta_{m n} x^{n} x^{n}
\end{aligned}
$$

rescale AdS metric
 $d s^{2} \rightarrow d s_{L}^{2}$

$$
\begin{gathered}
\text { rescale AdS metric } \\
d s^{2} \rightarrow d s_{L}^{2} \\
\square_{d s^{2}}^{c o n f}(\phi)+m^{2} \phi=L^{2}\left(\square_{d s_{L}^{2}}^{c o n f}+\frac{m^{2}}{L^{2}}\right) \phi
\end{gathered}
$$

$$
\begin{gathered}
\text { rescale AdS metric } \\
d s^{2} \rightarrow d s_{L}^{2} \\
\square_{d s^{2}}^{c o n f}(\phi)+m^{2} \phi=L^{2}\left(\square_{d s_{L}^{2}}^{c o n f}+\frac{m^{2}}{L^{2}}\right) \phi \\
\left(\square_{d s_{L}^{2}}^{c o n f}+\frac{m^{2}}{L^{2}}\right) \phi=0
\end{gathered}
$$

what determines the exponent?

$$
(-\Delta)^{\gamma} \longrightarrow=\frac{\sqrt{4 \frac{m^{2}}{L^{2}}+1}}{2}
$$

what determines the exponent?

$$
(-\Delta)^{\gamma} \longrightarrow \gamma=\frac{\sqrt{4 \frac{m^{2}}{L^{2}}+1}}{2}
$$

$$
\lim _{L \rightarrow+\infty(N \rightarrow \infty)} \gamma=\frac{1}{2}
$$

non-locality vanishes

more generally

$$
d s^{2}=f^{-1 / 2} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+f^{1 / 2} \delta_{m n} d x^{m} d x^{n}
$$

more generally

$$
d s^{2}=f^{-1 / 2} \eta_{\mu \nu} d x_{\overbrace{}^{\mu} d x^{\nu}+f^{1 / 2} \delta_{m n} d x^{m}}^{\mathbb{R}^{3,1} \times K_{6}}
$$

more generally

$$
d s^{2}=f^{-1 / 2} \eta_{\mu \nu} \overbrace{\Delta f=}^{\mathbb{R}^{3,1} \times x_{6}} d x^{\nu}+f^{1 / 2} \delta_{m n} d x^{m} d x^{n} \alpha^{\prime 2} g \rho
$$

f is a harmonic function

|y| singular metrics (GI)

$|\mathrm{y}|$ singular metrics (GI)

Randall-Sundrum

$$
\begin{gathered}
d s^{2}=-e^{-2|y| / L} g_{\mu \nu} d x^{\mu} d x^{\nu}+d y^{2} \\
y \in[-\pi R, \pi R]
\end{gathered}
$$

|y| singular metrics (GI)

Randall-Sundrum

$$
\begin{gathered}
d s^{2}=-e^{-2|y| / L} g_{\mu \nu} d x^{\mu} d x^{\nu}+d y^{2} \\
y \in[-\pi R, \pi R] \\
\int \begin{array}{c}
\text { massive-particle } \\
\text { action at Brane at } \pi R
\end{array} \\
\int d^{4} x \sqrt{-g}\left(g^{\mu \nu} \partial_{\mu} \hat{\phi} \partial_{\nu} \hat{\phi}+m^{2} e^{-2 \pi R / L} \hat{\phi}^{2}\right), \\
\hat{\phi}=e^{-\pi R / L} \phi
\end{gathered}
$$

$$
\lim _{R / L \rightarrow \infty} m^{2} e^{-2 \pi R / L} \rightarrow 0
$$

$$
\begin{array}{r}
\lim _{R / L \rightarrow \infty} m^{2} e^{-2 \pi R / L} \rightarrow 0 \\
\prod \gamma=\frac{1}{2}
\end{array}
$$

non-locality vanishes

non-locality vanishes

are there any consequences for the enganglement entropy?

yes

minimal surface avoids the D3brane

ok

minimal surface avoids the D3brane

what happens as brane approaches boundary?

what happens as brane approaches boundary?

minimal surface must avoid brane

what happens as brane approaches boundary?

minimal surface must avoid brane

$\epsilon=0$

entropy vanishes $R / L=\infty$

higher-dimensional minimal surfaces can avoid singularities

higher-dimensional minimal surfaces can avoid singularities

is this how the entanglement entropy should be formulated??

application: gauge fields with anomalous dimensions

application: gauge fields with anomalous dimensions

$$
F_{\mu \nu} F^{\mu \nu}+m^{2} A_{y}^{2}
$$

$$
A_{\mu}^{\perp} \partial_{\mu}^{\gamma} A^{\perp \mu}
$$

$$
\gamma=\sqrt{d^{2}+m^{2}-1} / 2
$$

application: gauge fields with anomalous dimensions

dynamical `Higgs' mode

gauge-gravity correspondence

gauge-gravity correspondence

gauge-gravity correspondence

entanglement entropy?

gauge-gravity correspondence

entanglement entropy?

SYK model is different

