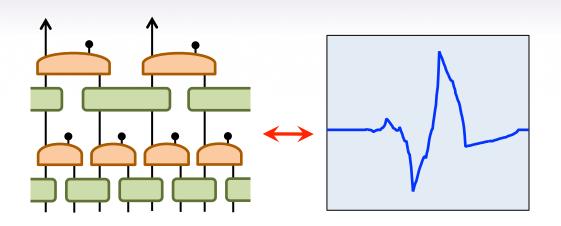
YITP, June 2016

Entanglement Renormalization and Wavelets



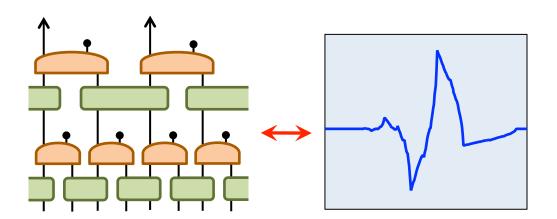
Glen Evenbly

G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (April `16). **G.E.**, Steven. R. White, arXiv: 1605.07312 (May `16).

Entanglement renormalization and wavelets

- real-space renormalization
- quantum circuits
- tensor networks (MERA)

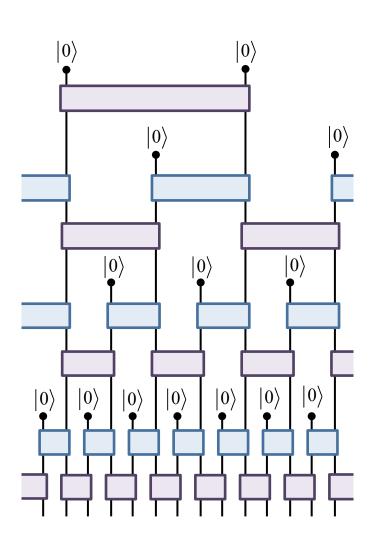
 compact, orthogonal wavelets



G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (April `16). **G.E.**, Steven. R. White, arXiv: 1605.07312 (May `16).

Multi-scale Entanglement Renormalization Ansatz (MERA):

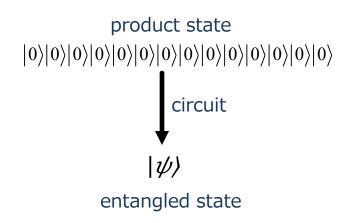
proposed by Vidal to represent ground states of local Hamiltonians



Can be formulated as:

(i) a quantum circuit

(ii) resulting from coarse-graining (entanglement renormalization)

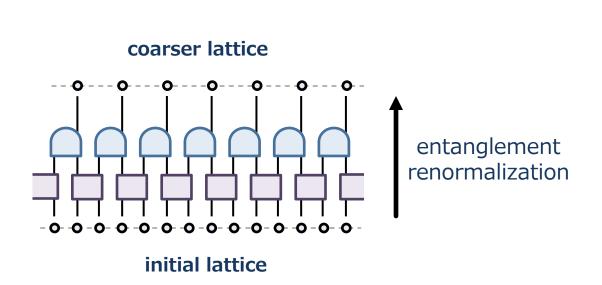


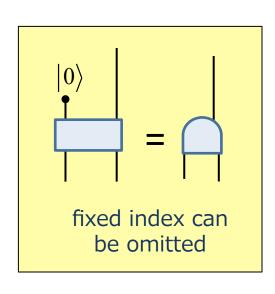
Multi-scale Entanglement Renormalization Ansatz (MERA):

proposed by Vidal to represent ground states of local Hamiltonians

Can be formulated as:

- (i) a quantum circuit
- (ii) resulting from coarse-graining (entanglement renormalization)



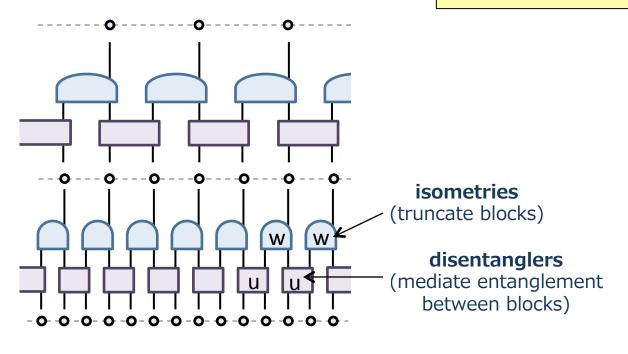


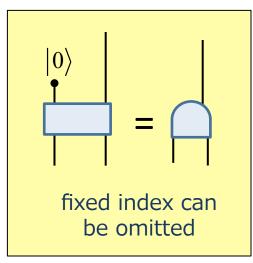
Multi-scale Entanglement Renormalization Ansatz (MERA):

proposed by Vidal to represent ground states of local Hamiltonians

Can be formulated as:

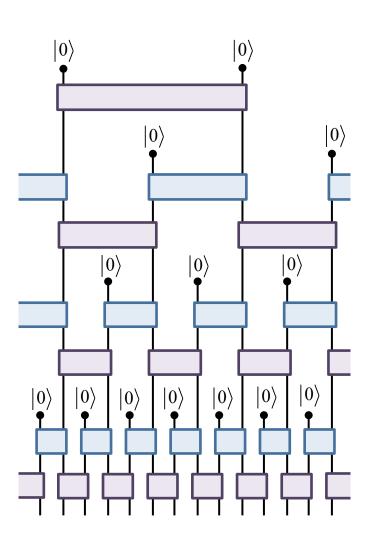
- (i) a quantum circuit
- (ii) resulting from coarse-graining (entanglement renormalization)





Multi-scale Entanglement Renormalization Ansatz (MERA):

proposed by Vidal to represent ground states of local Hamiltonians



Can be formulated as:

- (i) a quantum circuit
- (ii) resulting from coarse-graining (entanglement renormalization)

Key properties:

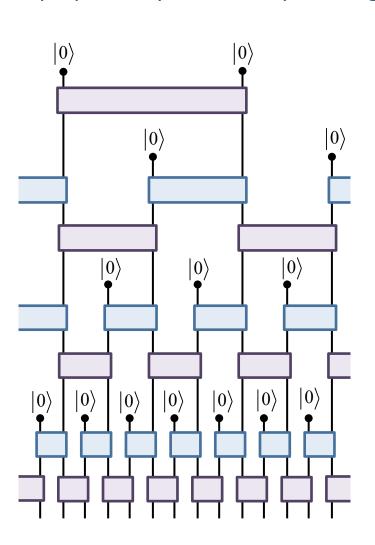
- (i) **efficiently contractible** (for local observables, correlators, etc)
- (ii) reproduce **logarithmic correction** to the area law (for 1D quantum systems)

$$S_L: \log(L)$$

- (iii) reproduce **polynomial** decay of correlations
- (iv) can capture scale-invariance

Multi-scale Entanglement Renormalization Ansatz (MERA):

proposed by Vidal to represent ground states of local Hamiltonians

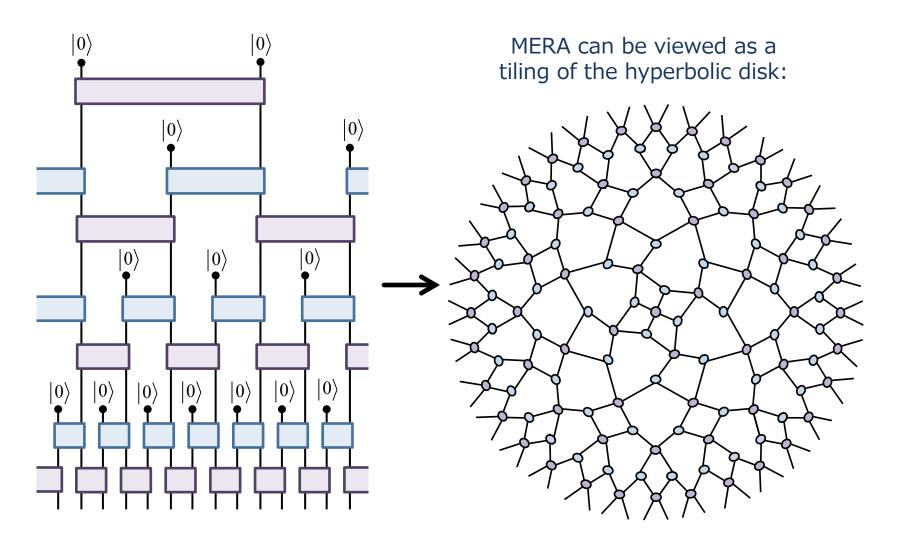


Applications:

- numeric study of quantum critical systems
- error-correcting codes (e.g. holographic codes) and topologically ordered systems
- machine learning (convolutional neural networks)
- data compression (multi-resolution analysis and wavelets)
- holography?

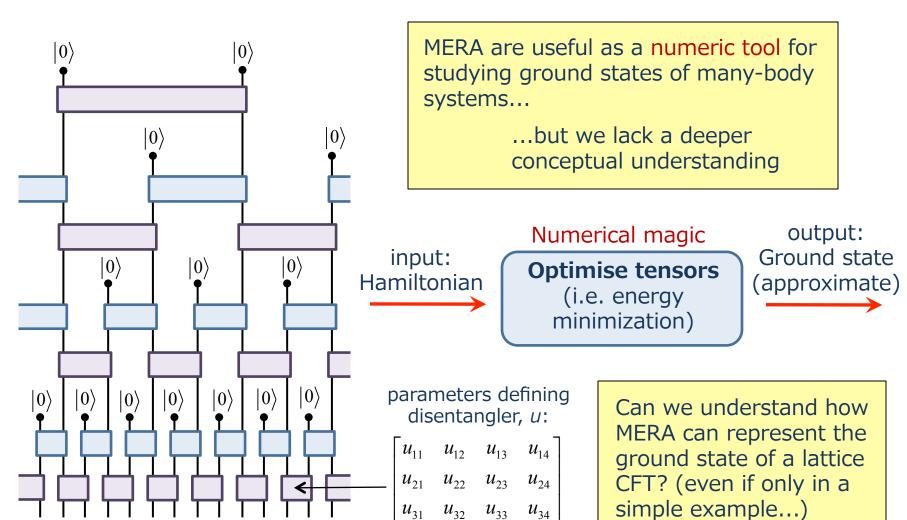
Multi-scale Entanglement Renormalization Ansatz (MERA):

proposed by Vidal to represent ground states of local Hamiltonians



Multi-scale Entanglement Renormalization Ansatz (MERA):

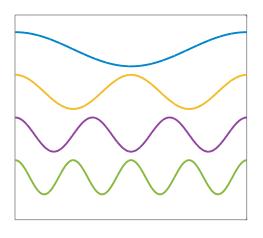
proposed by Vidal to represent ground states of local Hamiltonians



 u_{42} u_{43}

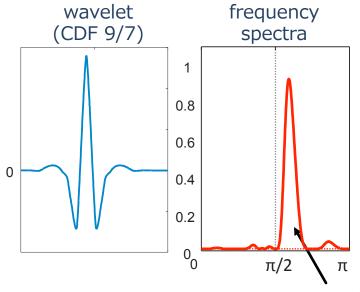
 $u_{{\scriptscriptstyle A}{\scriptscriptstyle A}}$

Introduction: Wavelets



Fourier expansions are ubiquitous in math, science and engineering

- many problems are simplified by expanding in Fourier modes
- smooth functions can be approximated by only a few non-zero Fourier coefficients

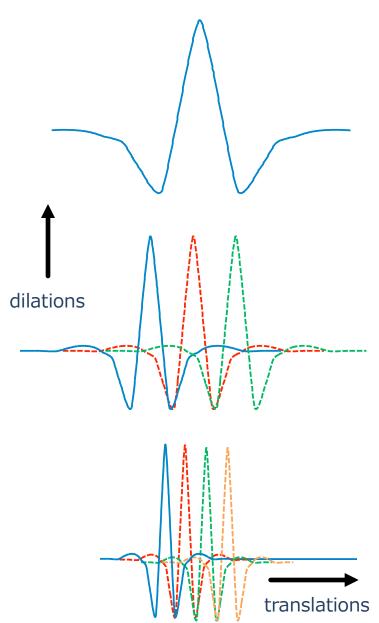


Wavelets are a good compromise between realspace and Fourier-space representations

- compact in real-space and in frequency-space
- developed by math and signal processing communities in late 80's
- applications in signal and image processing, data compression (e.g. JPEG2000 image format)

narrow band in frequency space

Introduction: Wavelets

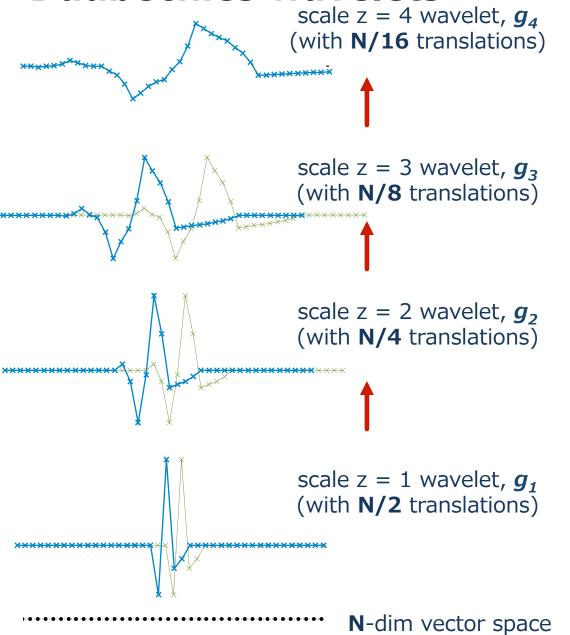


Wavelet basis consists of translations and dilations of the wavelet function

- is a complete, orthonormal basis
- is a multi-resolution analysis (MRA)

Wavelets are a good compromise between realspace and Fourier-space representations

- compact in real-space and in frequency-space
- developed by math and signal processing communities in late 80's
- applications in signal and image processing, data compression (e.g. JPEG2000 image format)

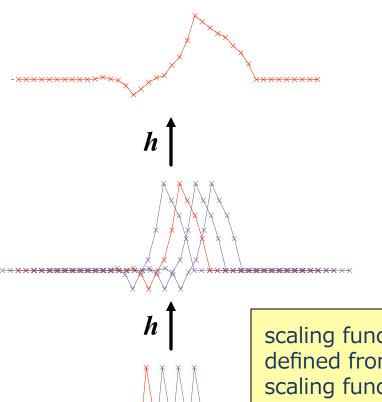


Daubechies D4 wavelets

- complete, orthonormal basis
- have 2 vanishing moments (orthogonal to constant + linear functions)
- useful for resolving information at different scales

large scale wavelets encode long range (low-frequency) information

small scale wavelets encode short range (**high-frequency**) information



How can we construct wavelets?

 first construct scaling functions (allows recursive construction of functions at different scales)

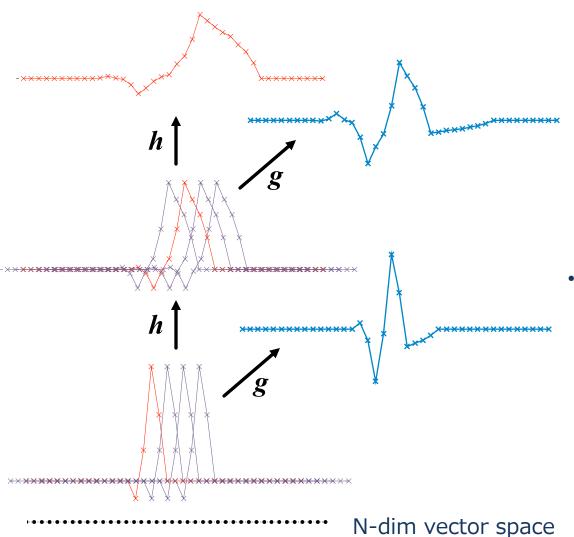
D4 scaling sequence

$$\boldsymbol{h} = \begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \end{bmatrix} = \begin{bmatrix} -0.1294 \\ 0.2241 \\ 0.8365 \\ 0.4830 \end{bmatrix}$$

scaling function at larger scale defined from a linear combination of scaling functions at previous scale

"Refinement equation"

N-dim vector space



How can we construct wavelets?

first construct scaling functions (allows recursive construction of functions at different scales)

D4 scaling sequence

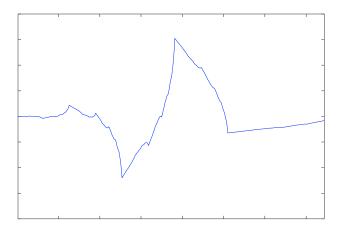
$$\mathbf{h} = \begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \end{bmatrix} = \begin{bmatrix} -0.1294 \\ 0.2241 \\ 0.8365 \\ 0.4830 \end{bmatrix}$$

 wavelets then defined from scaling functions using wavelet sequence

D4 wavelet sequence

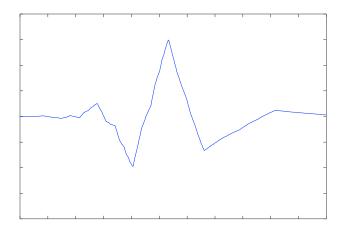
$$\mathbf{g} = \begin{bmatrix} -h_4 \\ h_3 \\ -h_2 \\ h_1 \end{bmatrix} = \begin{bmatrix} -0.4830 \\ 0.8365 \\ -0.2241 \\ -0.1294 \end{bmatrix}$$

D4 Daubechies wavelets (large scale limit)



orthogonal to **constant** + **linear** functions

D6 Daubechies wavelets (large scale limit)



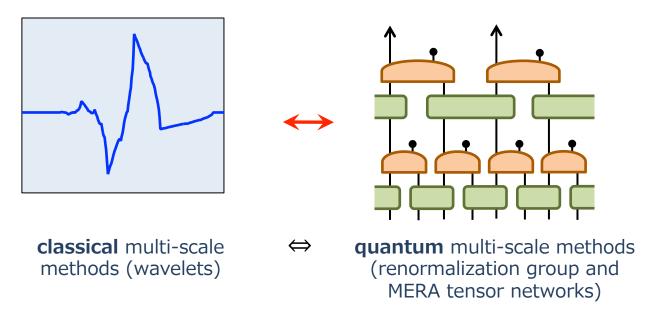
orthogonal to **constant** + **linear** + **quadratic** functions

- higher-order wavelets have more vanishing moments (D2N Daubechies have N vanishing moments)
- higher order may achieve better compression ratios
- many other wavelet families (e.g. Coiflets, Symlets...)

Introduction

G.E., Steven. R. White, **Phys. Rev. Lett 116.** 140403 (April `16). **G.E.**, Steven. R. White, arXiv: 1605.07312 (May `16).

Real-space renormalization and wavelets have many conceptual similarities... ... but can one establish a precise connection?



Free fermion systems:

Wavelet transform of fermionic modes precisely corresponds to **Gaussian MERA**

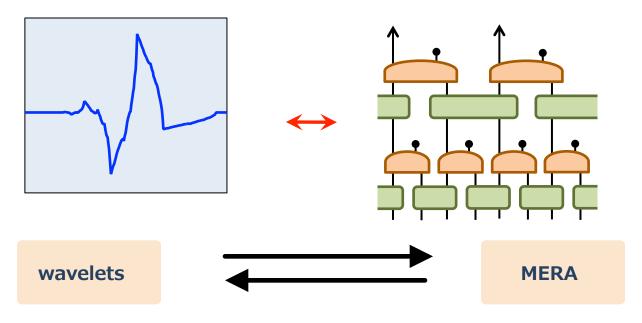
More generally:

MERA can be interpreted as the **generalization of wavelets** from ordinary functions to many-body wavefunctions

Introduction

G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (April `16).G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

Real-space renormalization and wavelets have many conceptual similarities... ... but can one establish a precise connection?



Applications: •

better understanding of MERA

→

- construction of analytic examples of MERA (e.g. for Ising CFT)
- analytic error bounds for MERA?

Applications:

design of better wavelets (e.g. for image compression)

Outline: Entanglement renormalization and Wavelets

G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (April `16).G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

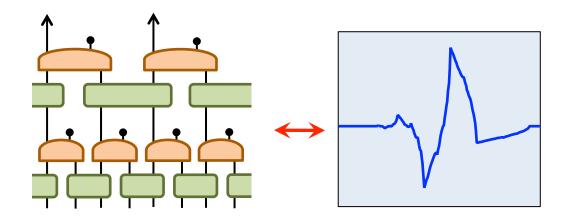
Introduction

Wavelet solution to free fermion model

Representation of wavelets as unitary circuits

Benchmark calculations from wavelet based MERA

Further application of wavelet – MERA connection



Can we expand the ground state of free spinless fermions as wavelets?

$$H_{\text{FF}} = \frac{1}{2} \sum_{r} \left(\hat{a}_{r}^{\dagger} \hat{a}_{r+1} + \text{h.c.} \right)$$
hopping
term

dispersion $\Lambda_k = \cos(2\pi k / N)$ relation:

$$H_{\mathrm{FF}} = \int_{-\pi}^{\pi} \Lambda_{k} \hat{c}_{k}^{\dagger} \hat{c}_{k} dk$$

first consider plane waves:

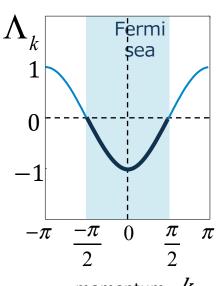
$$\hat{a}_r$$
 spatial modes

Fourier Transform

$$\hat{c}_k = \frac{1}{\sqrt{N}} \sum_r \hat{a}_r e^{-i2\pi kr/N}$$
 fourier modes

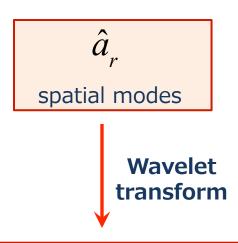
ground state is given by filling in negative energy states (fermi-sea):

$$\langle \psi_{GS} | \hat{c}_k^{\dagger} c_k | \psi_{GS} \rangle = \begin{cases} 0 & \Lambda_k > 0 \\ 1 & \Lambda_k < 0 \end{cases}$$



momentum, k

Can we expand the ground state of free spinless fermions as wavelets?

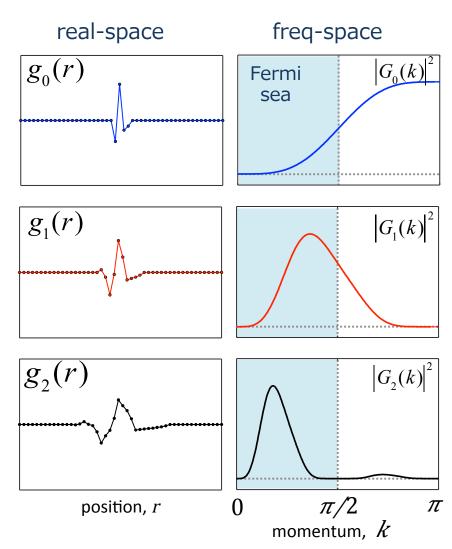


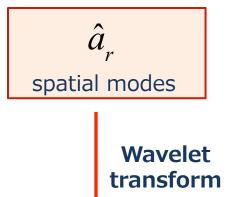
$$\hat{b}_z = \sum_r g_z \hat{a}_r$$
wavelet modes

Not suitable!

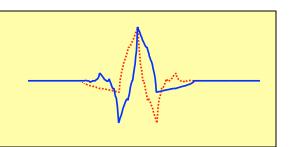
- standard wavelets target k = 0
- want wavelets that target $k = \pm \pi/2$

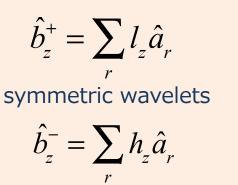
D4 daubechies wavelets



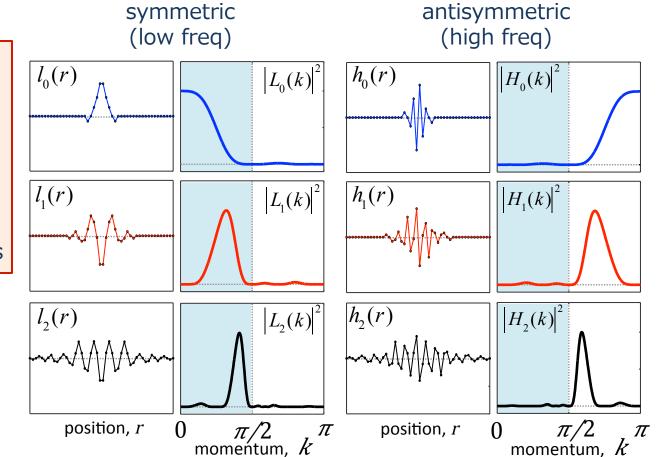


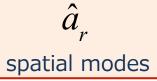
Solution: take symmetric and antisymmetric combination of two copies of D4 daubechies wavelets:





antisymmetric wavelets





ground state is approximated by filling in symmetric (low freq.) wavelet modes:

$$\left| \psi_{GS} \right\rangle = \prod_{z} \hat{b}_{z}^{+} \left| 0 \right\rangle$$

Wavelet transform

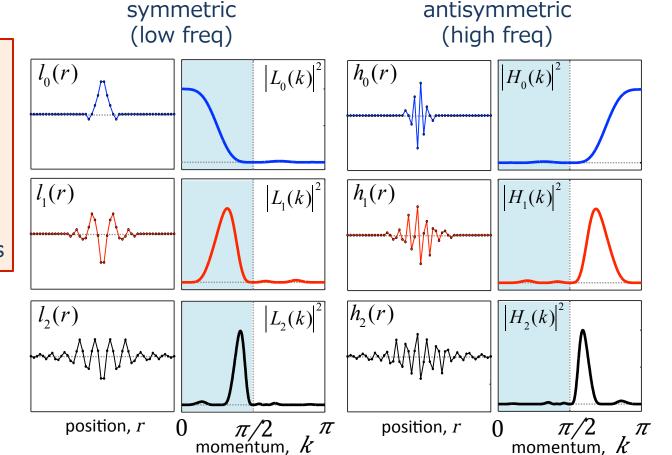
- how accurate is this approximation?
- can this be improved? Later!

 $\hat{b}_z^+ = \sum_r l_z \hat{a}_r$

symmetric wavelets

$$\hat{b}_z^- = \sum_r h_z \hat{a}_r$$

antisymmetric wavelets



Outline: Entanglement renormalization and Wavelets

G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (April `16).G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

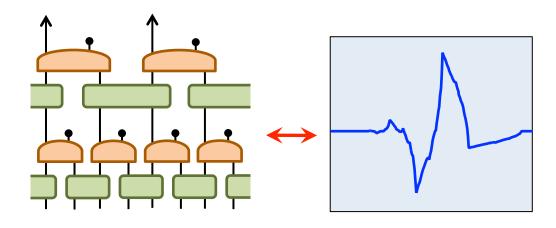
Overview

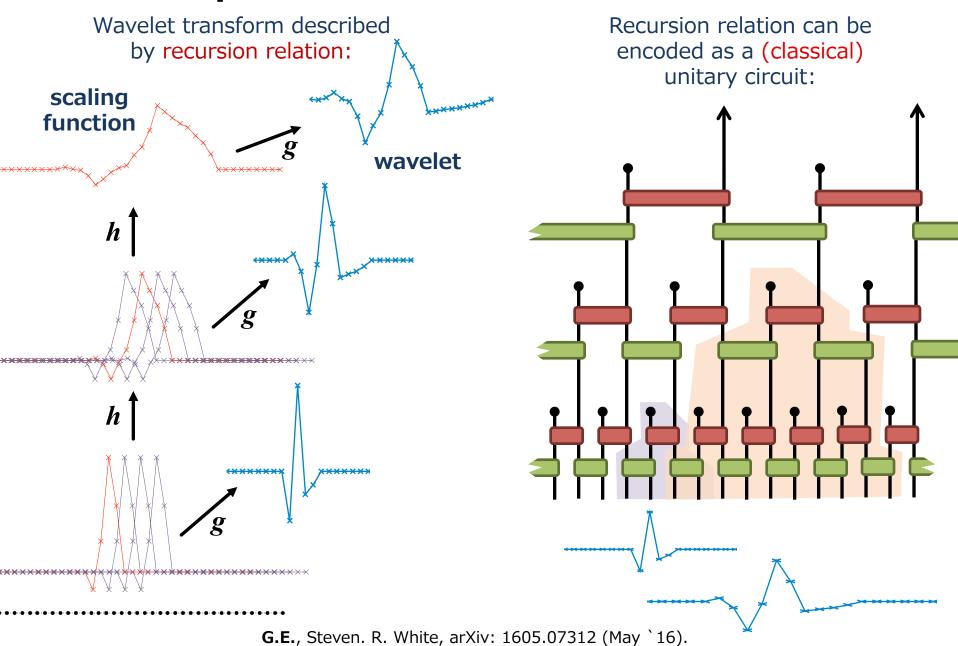
Wavelet solution to free fermion model

Representation of wavelets as unitary circuits

Benchmark calculations from wavelet based MERA

Further application of wavelet – MERA connection





Diagrammatic notation:

$$u(\theta_2) \longrightarrow u(\theta_1) \longrightarrow u(\theta_1) \longrightarrow u(\theta_2)$$

$$u(\theta) = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$



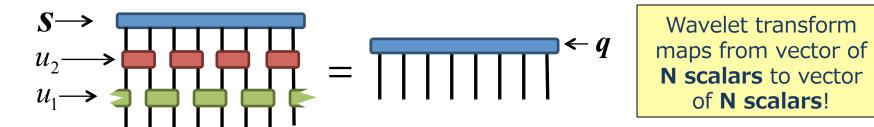
Wavelet transform maps from vector of **N scalars** to vector of **N scalars**!

Classical circuit here represents **direct sum** of unitaries (not **tensor product!**)

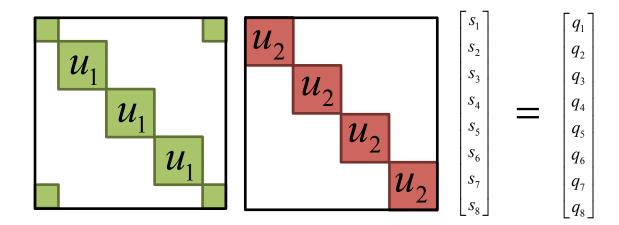
Diagrammatic notation:

$$u(\theta_2) \longrightarrow u(\theta_1) \longrightarrow u(\theta_1) \longrightarrow u(\theta_2)$$

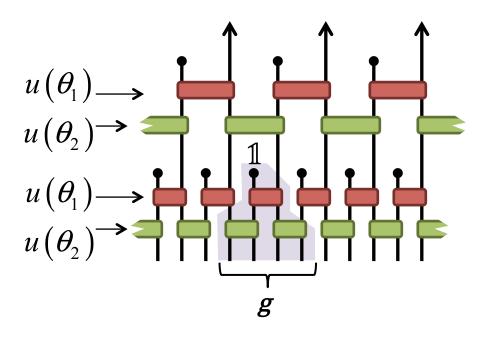
$$u(\theta) = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$



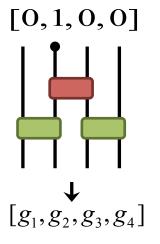
Wavelet transform of N scalars!

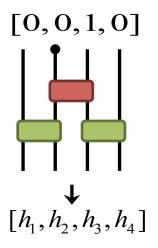


G.E., Steven. R. White, arXiv: 1605.07312 (May `16).



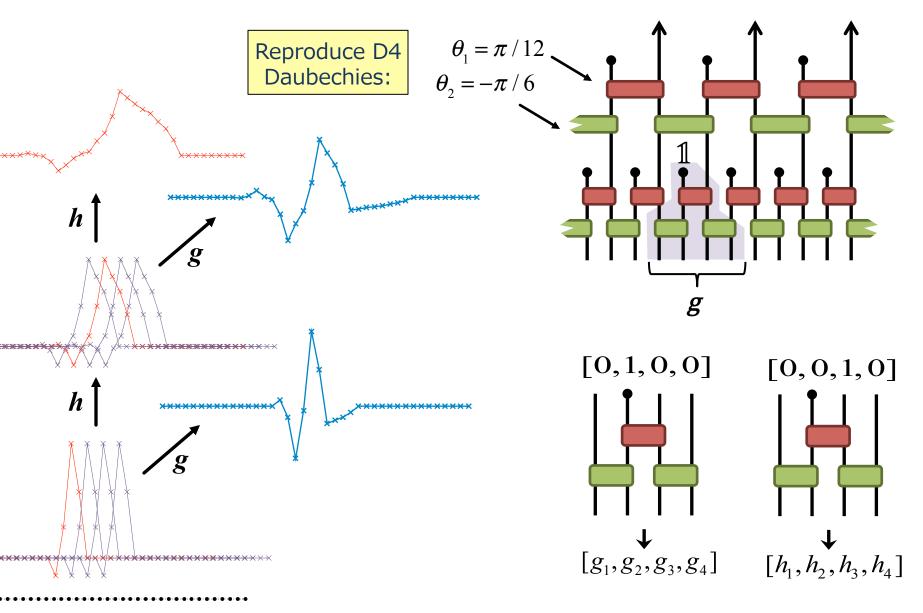
wavelet sequence associated to inverse transforming unit vector (odd sublattice)



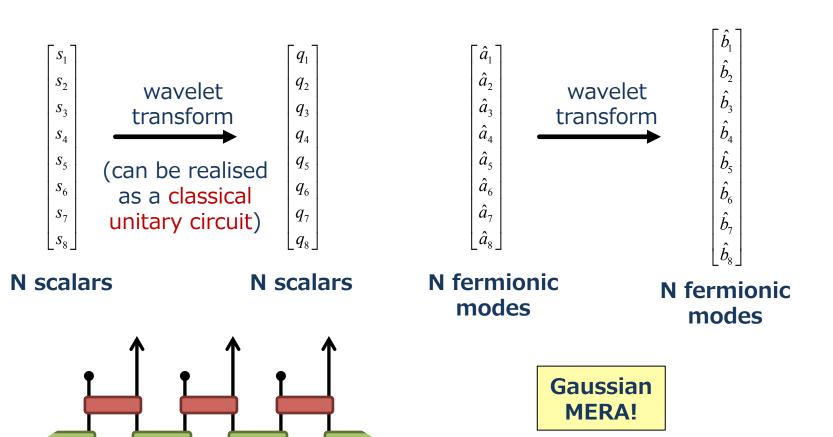


scaling sequence associated to inverse transforming unit vector (even sublattice)

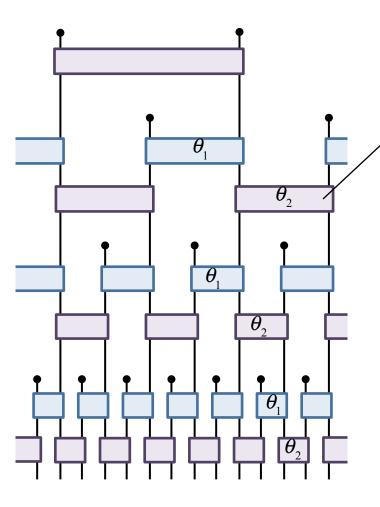
G.E., Steven. R. White, arXiv: 1605.07312 (May `16).



G.E., Steven. R. White, arXiv: 1605.07312 (May `16).



Gaussian MERA



 MERA where unitary gates map fermionic modes linearly:

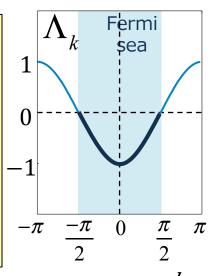
$$\begin{bmatrix} \hat{b}_1 \\ \hat{b}_2 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} \hat{a}_1 \\ \hat{a}_2 \end{bmatrix}$$

 two sites gates are parameterised by a single angle

Free fermions in 1D:

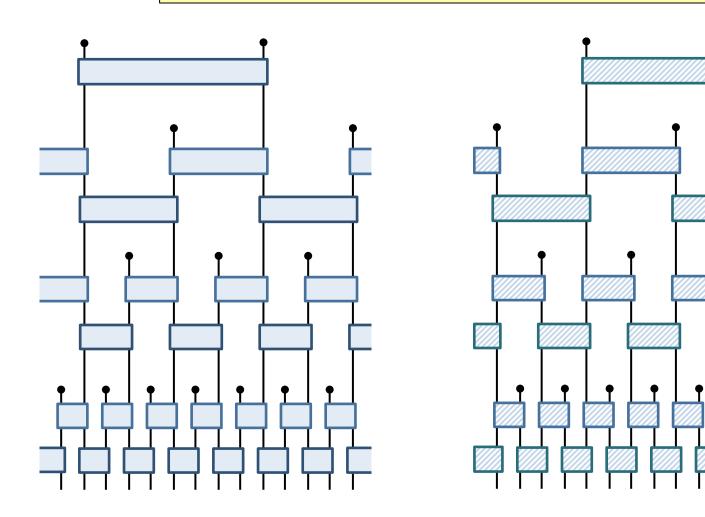
$$H_{\text{FF}} = \frac{1}{2} \sum_{r} (\hat{a}_{r}^{\dagger} \hat{a}_{r+1} + \text{h.c.})$$

Can we express the wavelet solution for the ground state as a MERA?



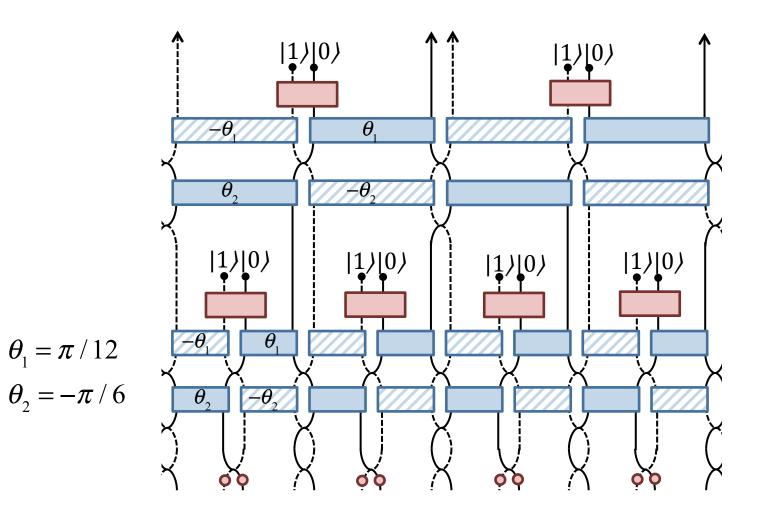
momentum, k

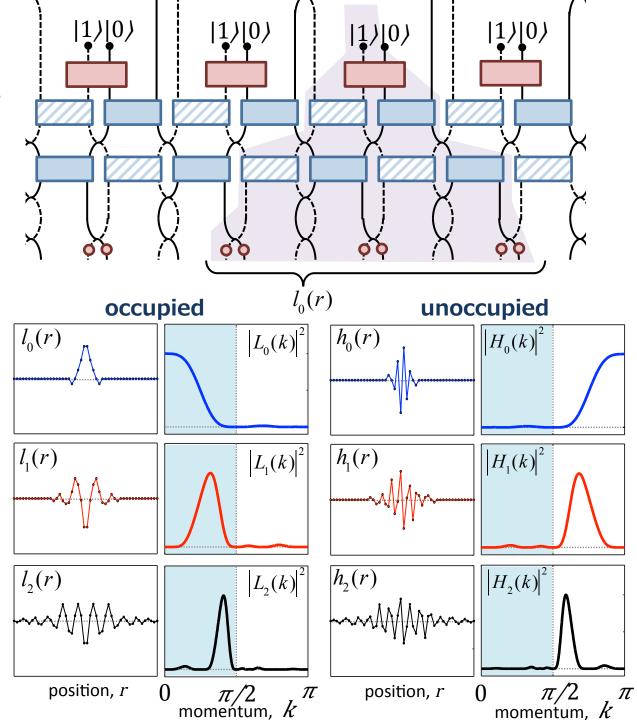
- Take two copies of Gaussian MERA that implement the **D4 Daubechies wavelet** transform
- Combine and then symmetrise



 $= \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)$

Quantum circuit which (approximately) prepares the ground state of 1D free fermions:



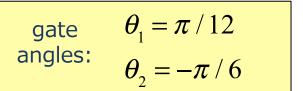


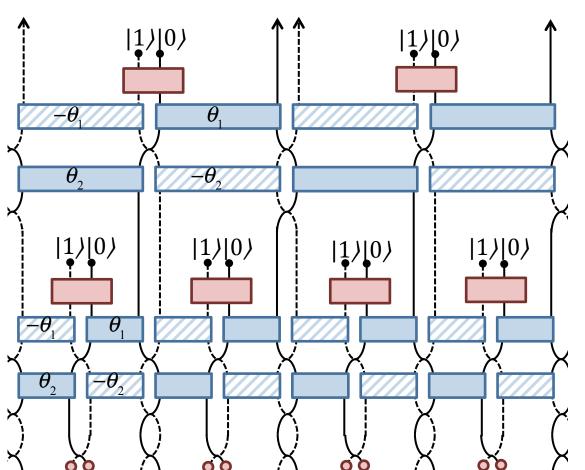
Free fermions at half-filling:

$$H_{FF} = \frac{1}{2} \sum_{r} (\hat{a}_{r+1}^{\dagger} \hat{a}_{r} + h.c.) - \mu \sum_{r} \hat{a}_{r}^{\dagger} \hat{a}_{r}$$

unitary circuit offers accurate (real-space) approximation to the ground state $|\psi_{GS}\rangle$

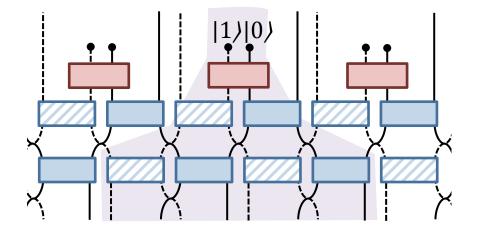
- in terms of: ground energy and local observables
 - entanglement entropy $S_L = \frac{c}{3}\log(L) + \text{const.}$
 - conformal data (scaling dimensions, OPE coefficients, central charge)
 - RG flow of the Hamiltonian (flows to gapless fixed point)





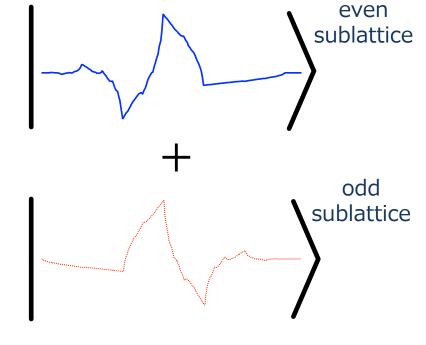
 π /4 gate creates entangled state in the bulk:

$$= \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)$$



Unitary circuit then `smears out' particles on the boundary

single particle wavefunction:

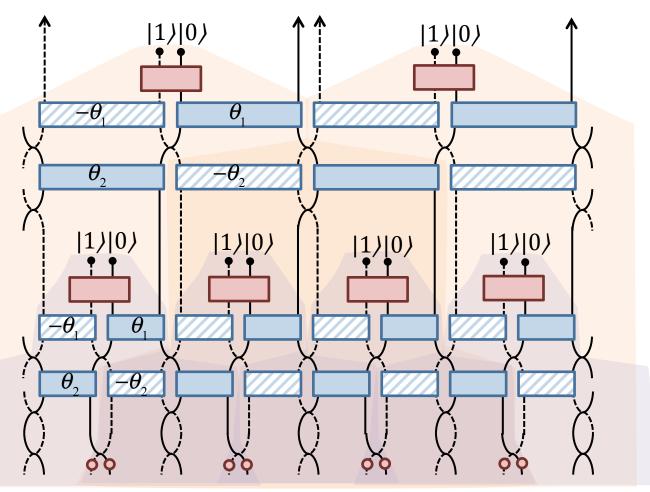


Free fermions at half-filling:

$$H_{\text{FF}} = \frac{1}{2} \sum_{r} (\hat{a}_{r+1}^{\dagger} \hat{a}_{r} + h.c.) - \mu \sum_{r} \hat{a}_{r}^{\dagger} \hat{a}_{r}$$

gate $\theta_1 = \pi/12$ angles: $\theta_2 = \pi/6$

$$\theta_2 = -\pi/6$$



higher-level tensors generate **longer**-ranged entanglement

low-level tensors generate **short**-ranged entanglement

MERA for free fermions

Is this circuit related to the standard (binary) MERA?

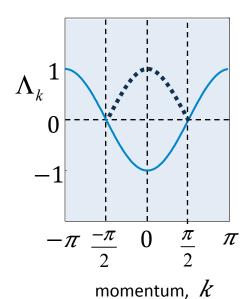


|1)|0)

 $\chi = 4$

Free fermions at half-filling

$$H_{\text{FF}} = \frac{1}{2} \sum_{r} (\hat{a}_{r+1}^{\dagger} \hat{a}_{r} + h.c.)$$



Express as 2N majorana fermions

$$H_{\mathrm{FF}} = \frac{1}{2} \sum_{r} \left(\hat{a}_{r+1}^{\dagger} \hat{a}_{r} + h.c. \right) \longrightarrow H_{\mathrm{FF}} = \sum_{r} i \left(\breve{d}_{2r} \breve{d}_{2r+1} - \breve{d}_{2r-1} \breve{d}_{2r+2} \right) \longrightarrow H_{\mathrm{FM}} = \sum_{r} i \left(\breve{d}_{r} \breve{d}_{r+1} - \breve{d}_{r+1} \breve{d}_{r} \right)$$

Decouple (via local unitaries) into 2 copies of free majorana fermions

$$H_{\rm FM} = \sum_{r} i \left(\vec{d}_r \vec{d}_{r+1} - \vec{d}_{r+1} \vec{d}_r \right)$$

$$H_{\text{Ising}} = \sum_{r} \left(-X_r X_{r+1} + Z_r \right)$$

Quantum critical Ising model

Can one get a representation of the ground state of the quantum critical Ising Model?

Free fermions at half-filling

Express as 2N majorana fermions

Decouple (via local unitaries) into 2 copies of free majorana fermions

$$H_{\mathrm{FF}} = \frac{1}{2} \sum_{r} \left(\hat{a}_{r+1}^{\dagger} \hat{a}_{r}^{} + h.c. \right) \quad \longrightarrow \quad H_{\mathrm{FF}} = \sum_{r} i \left(\breve{d}_{2r} \breve{d}_{2r+1} - \breve{d}_{2r-1} \breve{d}_{2r+2} \right) \quad \longrightarrow \quad H_{\mathrm{FM}} = \sum_{r} i \left(\breve{d}_{r} \breve{d}_{r+1} - \breve{d}_{r+1} \breve{d}_{r} \right)$$

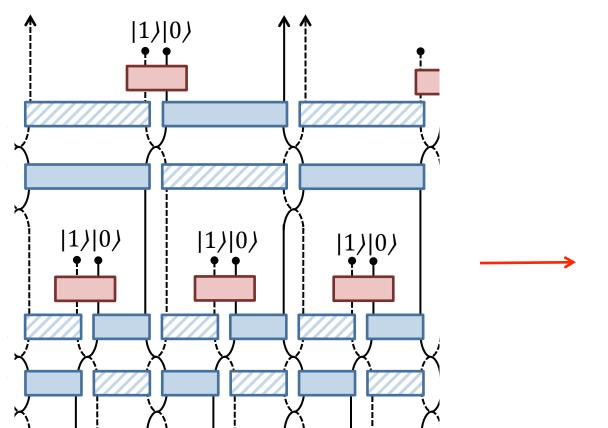
$$H_{\mathrm{FF}} = \sum_{r} i \left(\breve{d}_{2r} \breve{d}_{2r+1} - \breve{d}_{2r-1} \breve{d}_{2r+2} \right)$$

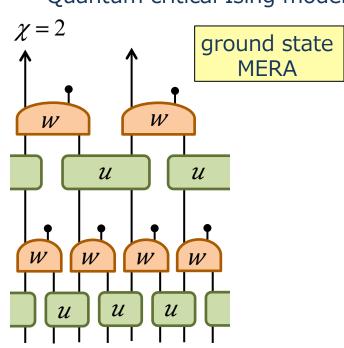
$$H_{\text{FM}} = \sum_{r} i \left(\vec{d}_{r} \vec{d}_{r+1} - \vec{d}_{r+1} \vec{d}_{r} \right)$$

Jordan-Wigner

$$H_{\text{Ising}} = \sum_{r} \left(-X_r X_{r+1} + Z_r \right)$$

Quantum critical Ising model





Quantum critical Ising model

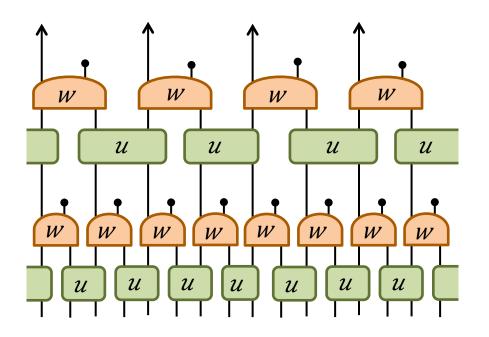
$$H_{\text{Ising}} = \sum_{r} \left(-X_r X_{r+1} + Z_r \right)$$

Expressed in Pauli matrices:

Isometries:
$$w_{r,r+1} = \left(\frac{\sqrt{3}+\sqrt{2}}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-\sqrt{2}}{4}\right)Z_rZ_{r+1} + i\left(\frac{1+\sqrt{2}}{4}\right)X_rY_{r+1} + i\left(\frac{1-\sqrt{2}}{4}\right)Y_rX_{r+1}$$

Disentanglers:
$$u_{r,r+1} = \left(\frac{\sqrt{3}+2}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-2}{4}\right)Z_rZ_{r+1} + \left(\frac{i}{4}\right)X_rY_{r+1} + \left(\frac{i}{4}\right)Y_rX_{r+1}$$

Higher order wavelet solutions can also be expressed as a MERA!



Recap:

- Ground state of 1D free fermions (or critical Ising model) can be approximated as wavelets
- 2. Wavelet solution precisely corresponds to a MERA

Outline: Entanglement renormalization and Wavelets

G.E., Steven. R. White, **Phys. Rev. Lett 116.** 140403 (April `16).

G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

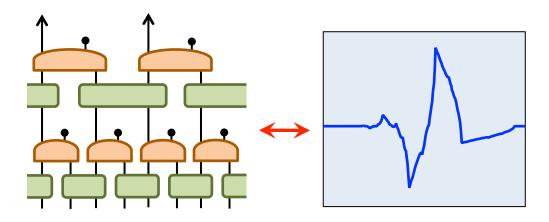
Overview

Wavelet solution to free fermion model

Representation of wavelets as unitary circuits

Benchmark calculations from wavelet based MERA

Further application of wavelet – MERA connection



Quantum critical Ising model

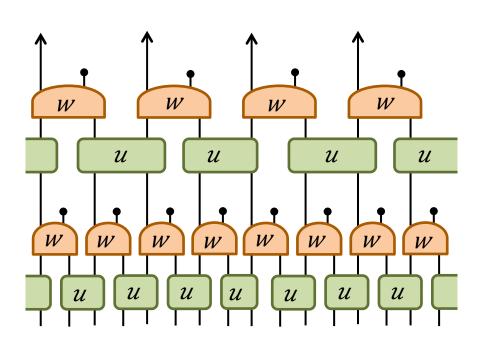
$$H_{\text{Ising}} = \sum_{r} \left(-X_r X_{r+1} + Z_r \right)$$

Expressed in Pauli matrices:

Isometries:
$$w_{r,r+1} = \left(\frac{\sqrt{3}+\sqrt{2}}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-\sqrt{2}}{4}\right)Z_rZ_{r+1} + i\left(\frac{1+\sqrt{2}}{4}\right)X_rY_{r+1} + i\left(\frac{1-\sqrt{2}}{4}\right)Y_rX_{r+1}$$

Disentanglers:
$$u_{r,r+1} = \left(\frac{\sqrt{3}+2}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-2}{4}\right)Z_rZ_{r+1} + \left(\frac{i}{4}\right)X_rY_{r+1} + \left(\frac{i}{4}\right)Y_rX_{r+1}$$

How accurate is the wavelet-based ground state MERA?



ground energy

exact:	-1.27323	
MERA: D4 wavelets	-1.24211	rel. err. 2.4%

Quantum critical Ising model

$$H_{\text{Ising}} = \sum_{r} \left(-X_r X_{r+1} + Z_r \right)$$

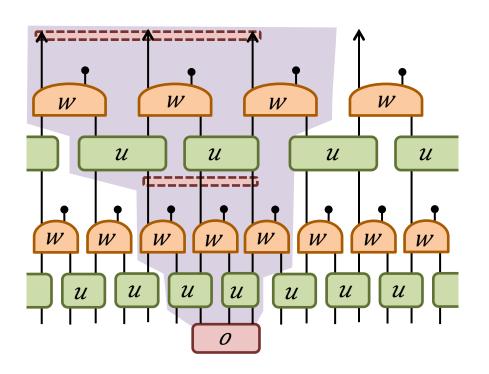
Expressed in Pauli matrices:

Isometries:
$$w_{r,r+1} = \left(\frac{\sqrt{3}+\sqrt{2}}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-\sqrt{2}}{4}\right)Z_rZ_{r+1} + i\left(\frac{1+\sqrt{2}}{4}\right)X_rY_{r+1} + i\left(\frac{1-\sqrt{2}}{4}\right)Y_rX_{r+1}$$

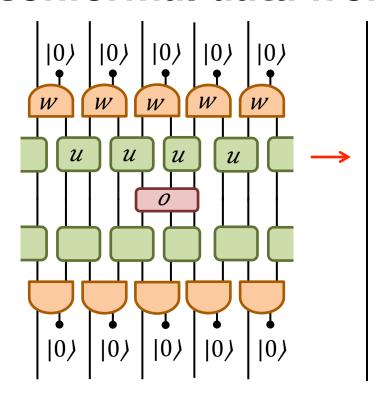
Disentanglers:
$$u_{r,r+1} = \left(\frac{\sqrt{3}+2}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-2}{4}\right)Z_rZ_{r+1} + \left(\frac{i}{4}\right)X_rY_{r+1} + \left(\frac{i}{4}\right)Y_rX_{r+1}$$

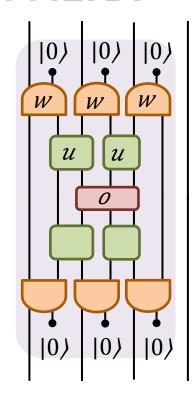
Conformal data from MERA?

Consider coarse-graining local operators...

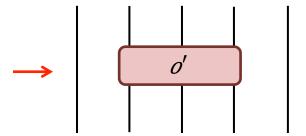


- MERA has bounded causal width (3 sites for binary MERA)
- Local operators coarse-grained through the causal cone





Local operator is coarse-grained into new local operator



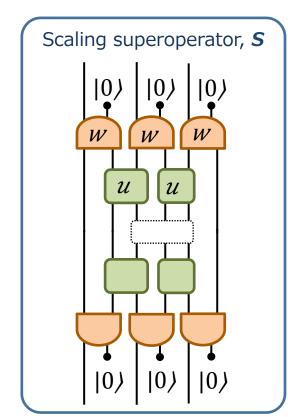
Scaling operators are eigen-operators of *S*

$$S(\phi_{\alpha}) = 2^{-\Delta_{\alpha}} \phi_{\alpha}$$

 ϕ_{α}

scaling operators

$$\Delta_{lpha}$$
 scaling dimensions



Lowest order solution, $\chi = 2$ MERA

Isometries: $w_{r,r+1} = \left(\frac{\sqrt{3}+\sqrt{2}}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-\sqrt{2}}{4}\right)Z_rZ_{r+1} + i\left(\frac{1+\sqrt{2}}{4}\right)X_rY_{r+1} + i\left(\frac{1-\sqrt{2}}{4}\right)Y_rX_{r+1}$

Disentanglers: $u_{r,r+1} = \left(\frac{\sqrt{3}+2}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-2}{4}\right)Z_rZ_{r+1} + \left(\frac{i}{4}\right)X_rY_{r+1} + \left(\frac{i}{4}\right)Y_rX_{r+1}$

MERA exact D4 wavelets

	0 0.140 1 1.136 1.150 2 2 2 2 2.113 2.113 2.131
--	--

- Scaling dimensions of primary fields and some descendants are reproduced
- Integer scaling dimensions reproduced exactly

Quantum critical Ising model

$$H_{\text{Ising}} = \sum_{r} \left(-X_r X_{r+1} + Z_r \right)$$

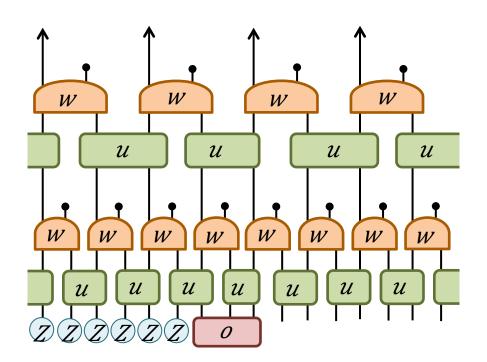
Expressed in Pauli matrices:

Isometries:
$$w_{r,r+1} = \left(\frac{\sqrt{3}+\sqrt{2}}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-\sqrt{2}}{4}\right)Z_rZ_{r+1} + i\left(\frac{1+\sqrt{2}}{4}\right)X_rY_{r+1} + i\left(\frac{1-\sqrt{2}}{4}\right)Y_rX_{r+1}$$

Disentanglers:
$$u_{r,r+1} = \left(\frac{\sqrt{3}+2}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-2}{4}\right)Z_rZ_{r+1} + \left(\frac{i}{4}\right)X_rY_{r+1} + \left(\frac{i}{4}\right)Y_rX_{r+1}$$

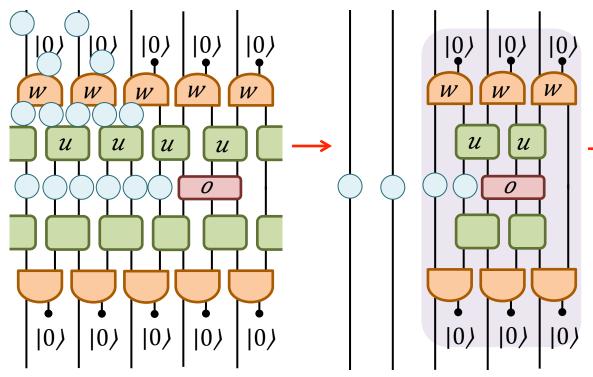
Conformal data from MERA?

Consider coarse-graining local operators...

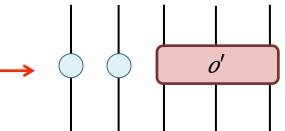


What about **non-local** scaling operators?

 Specifically those that come with a string of Z's (correspond to fermionic operators)



Local operator (with string) is coarse-grained into new local operator (with string)



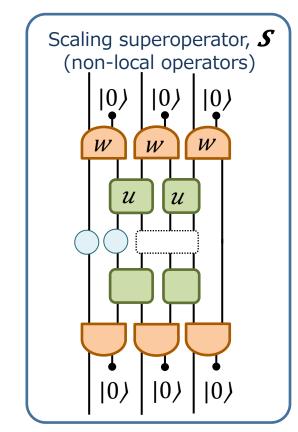
(non-local) Scaling superoperator

$$\tilde{\mathcal{S}}(\tilde{\phi}_{\alpha}) = 2^{-\Delta_{\alpha}} \tilde{\phi}_{\alpha}$$

 $ilde{\phi}_{lpha}$

(non-local) scaling operators

 Δ_lpha scaling dimensions



Lowest order solution, $\chi = 2$ MERA

Isometries: $w_{r,r+1} = \left(\frac{\sqrt{3}+\sqrt{2}}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-\sqrt{2}}{4}\right)Z_rZ_{r+1} + i\left(\frac{1+\sqrt{2}}{4}\right)X_rY_{r+1} + i\left(\frac{1-\sqrt{2}}{4}\right)Y_rX_{r+1}$

Disentanglers: $u_{r,r+1} = \left(\frac{\sqrt{3}+2}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-2}{4}\right)Z_rZ_{r+1} + \left(\frac{i}{4}\right)X_rY_{r+1} + \left(\frac{i}{4}\right)Y_rX_{r+1}$

MERAD4 wavelets

2.5

μ	0.125	0.144
Ψ	0.5	0.5
$ar{\psi}$	0.5	0.5
	1.125	1.100
	1.125	1.133
	1.5	1.5
	1.5	1.5
	2.125	2.085
	2.125	2.085
	2.125	2.127
	2.5	2.5
	2.5	2.5
	2.5	25

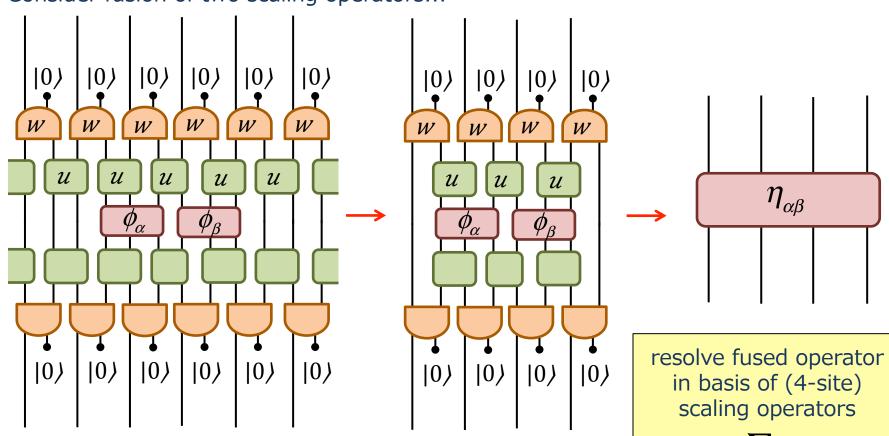
2.5

exact

MERA exact D4 wavelets

_		
I	0	0
σ	0.125	0.140
${\cal E}$	1	1
	1.125	1.136
	1.125	1.150
	2	2
	2	2
	2	2
	2	2
	2.125	2.113
	2.125	2.113
	2.125	2.131

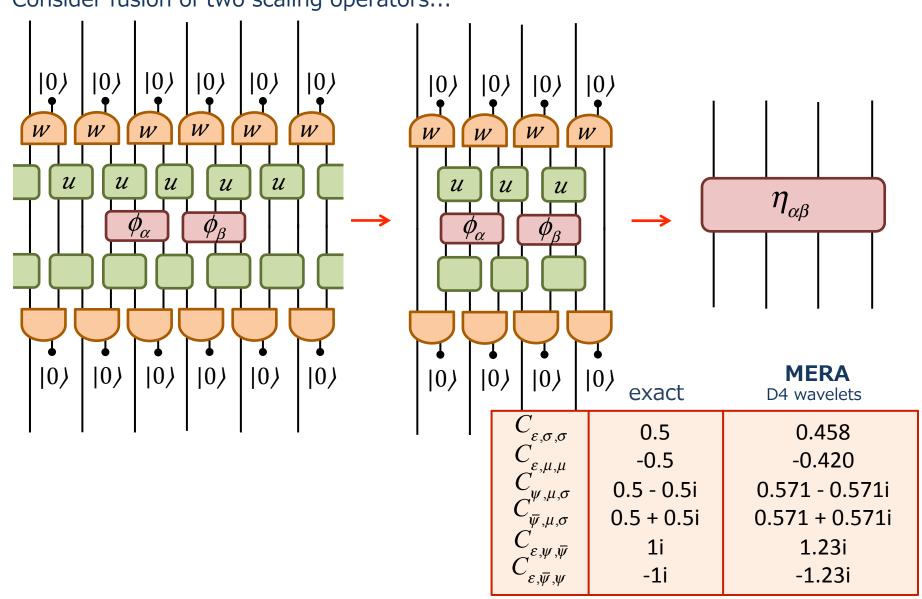
How to extract **OPE coefficients** from MERA? Consider fusion of two scaling operators...



$$\eta_{\alpha\beta} = \sum_{\gamma} C_{\alpha\beta\gamma} \phi_{\gamma}$$

OPE coefficients

How to extract **OPE coefficients** from MERA? Consider fusion of two scaling operators...



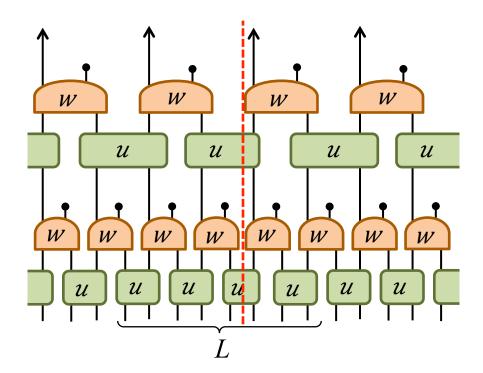
Central charge from MERA?

Many ways to do this (based on scaling of entanglement entropy)...

1. Compute entanglement entropy of different blocks length *L* and use formula:

$$S_L = \frac{c}{3}\log(L) + \text{const.}$$

2. Compute entanglement contribution (per scale) to the density matrix for half-infinite system



central charge

MERAD4 wavelets

c = 0.5

0.495

Quantum critical Ising model

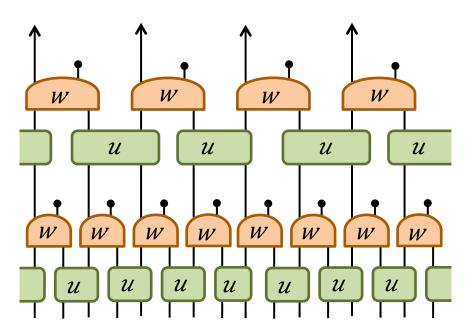
$$H_{\text{Ising}} = \sum_{r} \left(-X_r X_{r+1} + Z_r \right)$$

Expressed in Pauli matrices:

Isometries:
$$w_{r,r+1} = \left(\frac{\sqrt{3}+\sqrt{2}}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-\sqrt{2}}{4}\right)Z_rZ_{r+1} + i\left(\frac{1+\sqrt{2}}{4}\right)X_rY_{r+1} + i\left(\frac{1-\sqrt{2}}{4}\right)Y_rX_{r+1}$$

Disentanglers:
$$u_{r,r+1} = \left(\frac{\sqrt{3}+2}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-2}{4}\right)Z_rZ_{r+1} + \left(\frac{i}{4}\right)X_rY_{r+1} + \left(\frac{i}{4}\right)Y_rX_{r+1}$$

Wavelet based MERA does a remarkably good job of **encoding the Ising CFT!** (considering its simplicity...)

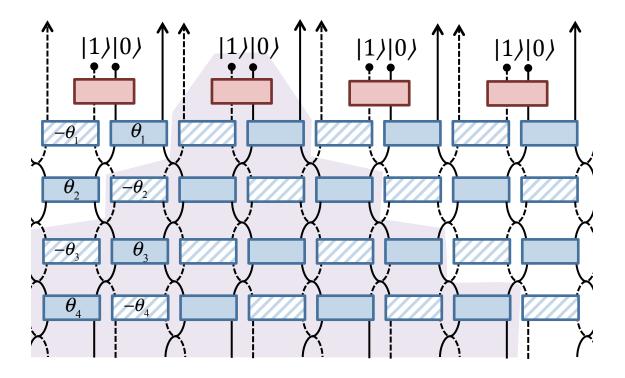


Higher order solutions

Is there a systematic way to generate better approximations to the ground state?

Yes! Use **higher order** wavelets (which correspond to circuits with a greater depth of unitary gates in each layer)

How does MERA with many layers of unitaries relate to standard (binary) MERA?



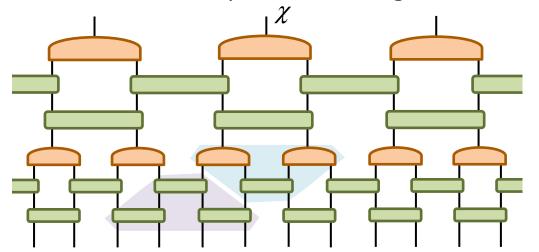
Four free parameters in the ansatz

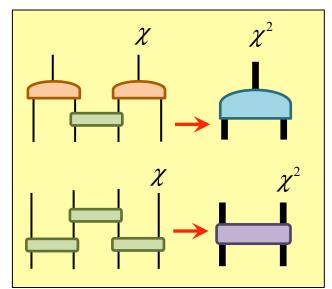
$$\left[\theta_1,\theta_2,\theta_3,\theta_4\right]$$

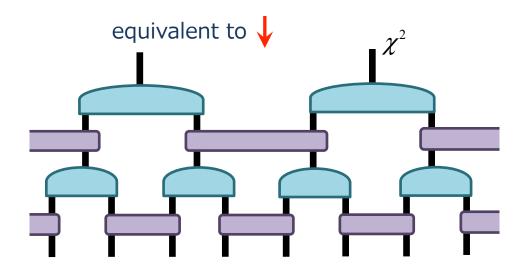
Wavelets have larger support (more compact in momentum space)

Higher order solutions

MERA with two layers of disentanglers:





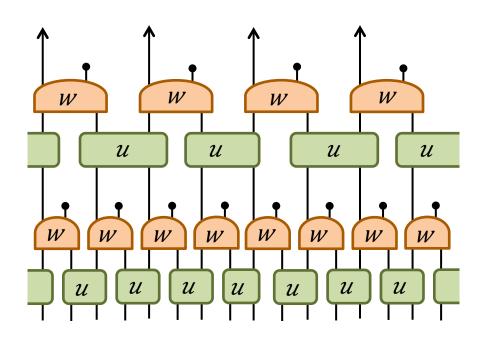


Binary MERA of larger bond dimension

Quantum critical Ising model

$$H_{\text{Ising}} = \sum_{r} \left(-X_r X_{r+1} + Z_r \right)$$

- higher order wavelets = larger bond dimension MERA
- higher order wavelets offer systematic improvement in accuracy



ground energy

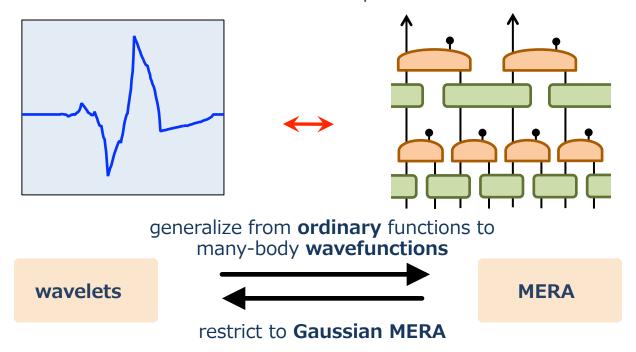
exact:	-1.27323	
MERA:		rel. err.
2 parameter ($\chi = 2$)	-1.24211	2.4%
3 parameter $(\chi = 8)$	-1.26773	0.4%
5 parameter ($\chi = 16$)	-1.27296	0.02%

How accurately can a MERA of finite bond dimension χ approximate the ground state of a CFT? Analytic bounds?

Summary

G.E., Steven. R. White, **Phys. Rev. Lett 116.** 140403 (April `16). **G.E.**, Steven. R. White, arXiv: 1605.07312 (May `16).

Real-space renormalization and wavelets have many conceptual similarities... ... but can one establish a precise connection?



Applications:

better understanding of MERA

→

- construction of analytic examples of MERA (e.g. for Ising CFT)
- analytic error bounds for MERA?

Applications:

design of better wavelets (e.g. for image compression)

Outline: Entanglement renormalization and Wavelets

G.E., Steven. R. White, **Phys. Rev. Lett 116.** 140403 (April `16).

G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

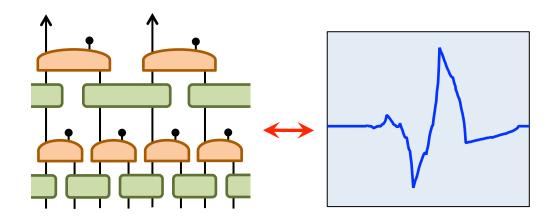
Overview

Wavelet solution to free fermion model

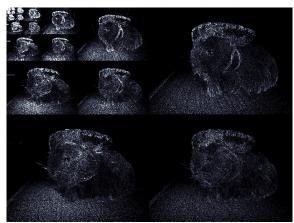
Representation of wavelets as unitary circuits and MERA

Benchmark calculations from wavelet based MERA

Further application of wavelet-MERA connection



Wavelets for image compression



image

transform to wavelet basis

truncate (keep only largest 2% of coefficients)

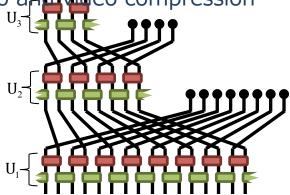
inverse transform

compressed image

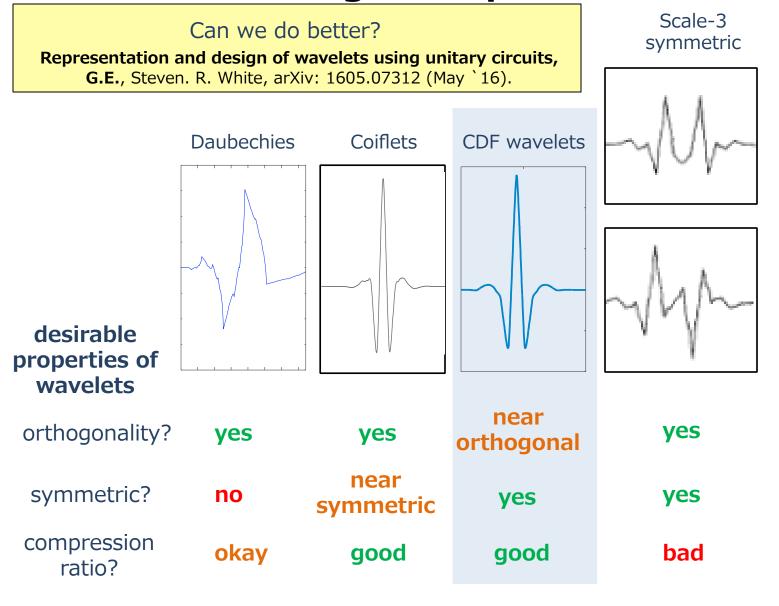
peak signal to noise:

PSNR: 37.0 dB

• This is the key part of **JPEG2000** format, and many other standards for image, audio and when compression



Wavelets for image compression



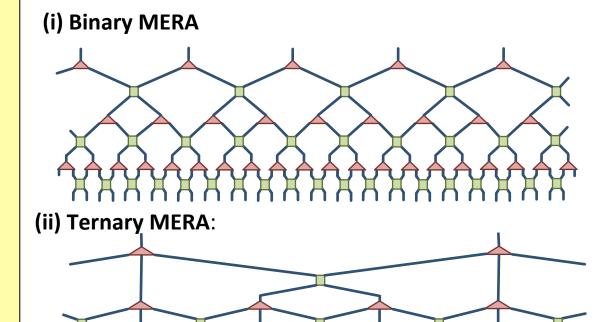
JPEG2000

Application: wavelet design

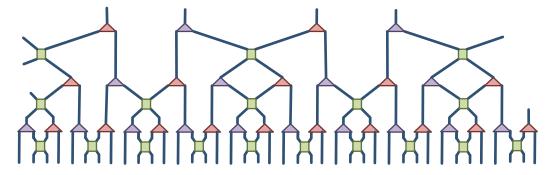
Representation and design of wavelets using unitary circuits, G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

Things learned in the context of tensor networks / MERA:

- how to construct circuits with different forms and scaling factors
- incorporation of spatial and global internal symmetries
- optimization of networks!

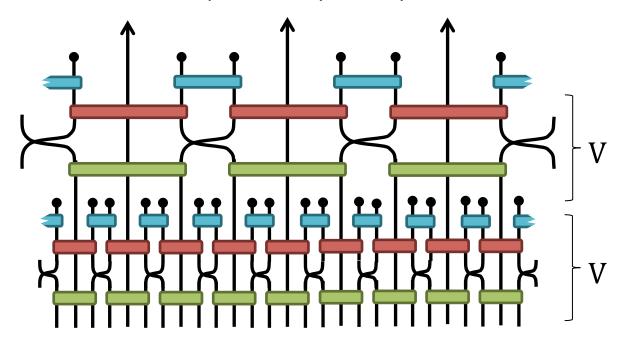


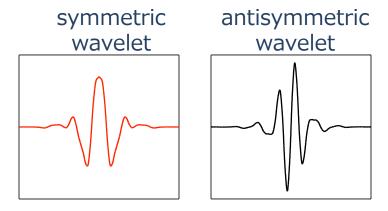
(iii) Modified Binary MERA:



G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

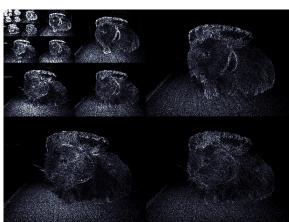
Design a family of symmetric / antisymmetric wavelets based upon ternary unitary circuits:





Wavelets for image compression

JPEG2000 wavelets



image

transform to wavelet basis

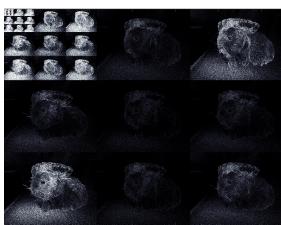
truncate (keep only largest 2% of coefficients)

inverse transform

compressed image

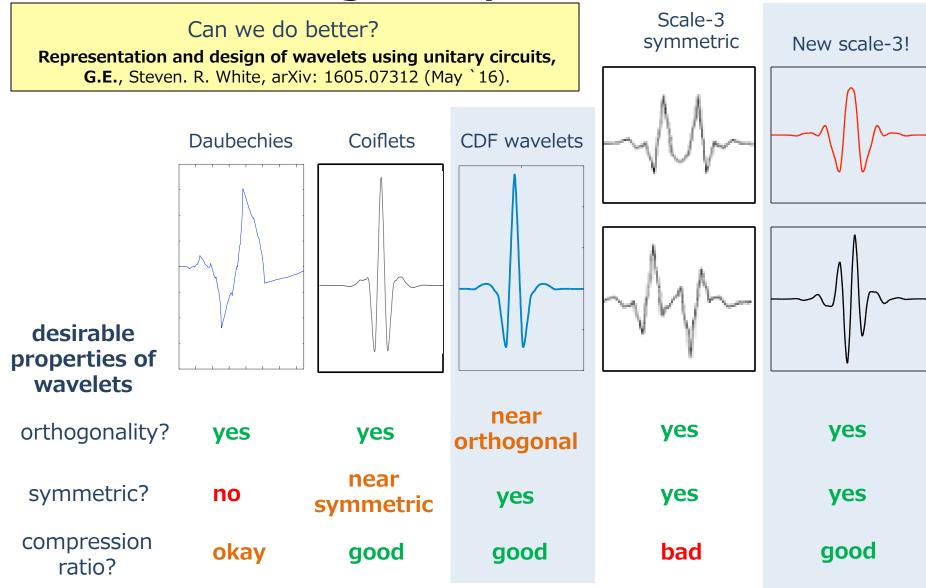
PSNR: 37.0 dB

new scale-3 wavelets



PSNR: 37.4 dB

Wavelets for image compression

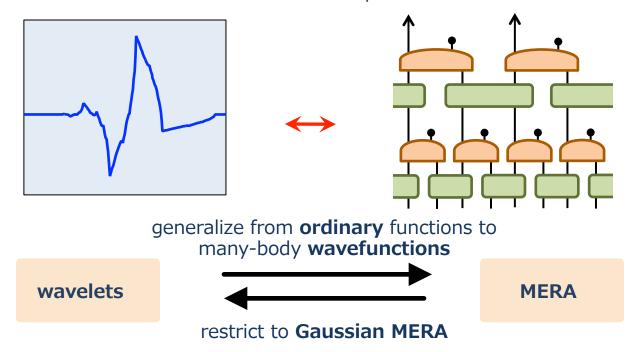


JPEG2000

Summary

G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (April `16).G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

Real-space renormalization and wavelets have many conceptual similarities... ... but can one establish a precise connection?



Applications:

better understanding of MERA

- construction of analytic examples of MERA (e.g. for Ising CFT)
- analytic error bounds for MERA?

Applications:

design of better wavelets (e.g. for image compression)

