Light Dark Matter

Kenji Kadota IBS Center for Theoretical Physics of the Universe (CTPU) Institute for Basic Science, Korea

Two concrete examples

✓ Sterile neutrino DM

Production mechanism

✓ Axion(-like) Particle

Radio (SKA-like) survey

Conclusion

Key Missions

- Conduct large-scale, long-term and group research in
- Promote a global basic science network
- Foster the next generation of young talents

Dodels of -Widrow mechanism: Thermal active neutrinos conversion to sterile neutrinos

$$L = -\frac{\overset{0.001}{y}}{\overset{0.001}{N}}LH_{k}(\overset{0.010}{\overset{0.010}{1}}MNN) \qquad \Theta = \frac{y\langle H \rangle}{M}$$

Production from (active-sterile) neutrino oscillation

DM constraints heavily depend on the production mechanism!

1) Active-Sterile neutrino oscillation (e.g. Dodelson-Widrow)

2) Active-Sterile neutrino oscillation with the resonance (e.g. Shi-Fuller)

3) Decay of a heavier particle, Thermal freeze-out, variable mixing angle, ... (e.g. Kusenko, Petraki, Asaka, Shaposhnikov, Merle, Schneider ,Berlin, Hooper,..)

4) Sterile-sterile oscillation! (KK and Kaneta (2017))

Also the left-handed neutrino masses via the seesaw mechanism!

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_N,$$

$$\mathcal{L}_N = \overline{\nu}_R i \partial \!\!\!/ \nu_R - \left[\nu_R^{c T} y_\nu L H - \frac{1}{2} \nu_R^{c T} \mathcal{M}_N \nu_R^c + h.c. \right]$$

$$\Omega_{N1} h^2 \propto \sin^2 2\theta_N M_1 (y_\nu y_\nu^+)_{22}$$

Light Dark Matter

Kenji Kadota IBS Center for Theoretical Physics of the Universe (CTPU) Institute for Basic Science, Korea

Two concrete examples

✓ Sterile neutrino DM

Production mechanism

✓ Axion(-like) Particle

Radio (SKA-like) survey

Conclusion

Key Missions

- Conduct large-scale, long-term and group research in
- Promote a global basic science network
- Foster the next generation of young talents

Previous work:

Relativistic axion converted into photon in presence of B.

Non-relativistic axion decay into two photons for CDM axion.

 $f \sim \frac{m_a}{2\pi} \sim 240 \left(\frac{m_a}{\mu eV}\right)$ MHz SKA 50MHz-14 GHz, S $\sim \mu$ Jy, Axion mass: 0.2 $\sim 60 \ \mu eV$ Line-like radio signal for non-relativistic axion conversion: Non-resonant conversion: Kelley and Quinn (2017), Sigl (2017) Resonant conversion: Huang, KK, Sekiguchi and Tashiro to appear YKIS workshop, Feb 2018 Kenji Kadota (IBS)

Square Kilometer Array

South Africa- Karoo Australia- Western Outback

Construction 2019-2025, Early Science 2022-, Full Science 2025-2030 Cost: ~650 M Euros, Operation ~ 50 M Euros per year.

Model: ALP (Axion-like particles) i.e. Ultra-light scalars

• Ultra-light mass :

 $m_u \sim 10^{-22} eV$

DE (Barbieri et al (2005),...) $m_u \sim H_0 \sim 10^{-33} eV$ Fuzzy DM (Hu (2000),...)

 $m_{\mu} \sim 10^{-22} eV - 10^{-10} eV$ String axiverse (Arvanitaki et al (2009),...)

$$m_{u}, f_{u} = \Omega_{u} / \Omega_{m} \sim O(0.01)$$

$$m_{u} \leq H(t) : \rho_{u} = const$$

$$m_{u} > H(t) : \rho_{u} \propto 1 / a^{3}$$

KK, Mao, Ichiki, Silk (2014)

TIDAL INTERACTIONS IN M81 GROUP

Stellar Light Distribution

21 cm HI Distribution

Brief History of Universe

~300000 (z~1000) Dark Ages ~100 million (z~20-40) Reionization ~1 billion (z~6)

~13 billion

Years since the Big Bang

← Big Bang: the Universe is filled with ionized gas ← Recombination: The gas cools and becomes neutral

 \leftarrow The first structures begin to form.

Reionization starts (z~12)

← Reionization is complete

← Today's structures YKIS workshop, Feb 2018

What can we do with 21cm?

Light Dark Matter

Kenji Kadota IBS Center for Theoretical Physics of the Universe (CTPU) Institute for Basic Science, Korea

Two concrete examples

✓ Sterile neutrino DM

Production mechanism

✓ Axion(-like) Particle

Radio (SKA-like) survey

Conclusion

Let us be open minded. Complimentarity between particle physics and cosmology.

Key Missions

- Conduct large-scale, long-term and group research in
- Promote a global basic science network
- Foster the next generation of young talents