Yukawa Workshop, 20 February 2018

Holographic self-tuning of the cosmological constant

Elias Kiritsis

CCTP/ITCP APC, Paris

Bibliography

Ongoing work with

Francesco Nitti, Lukas Witkowski (APC, Paris 7), Christos Charmousis, Evgeny Babichev (U. d'Orsay)

C. Charmousis, E. Kiritsis, F. Nitti JHEP 1709 (2017) 031 http://arxiv.org/abs/arXiv:1704.05075

and based on earlier ideas in

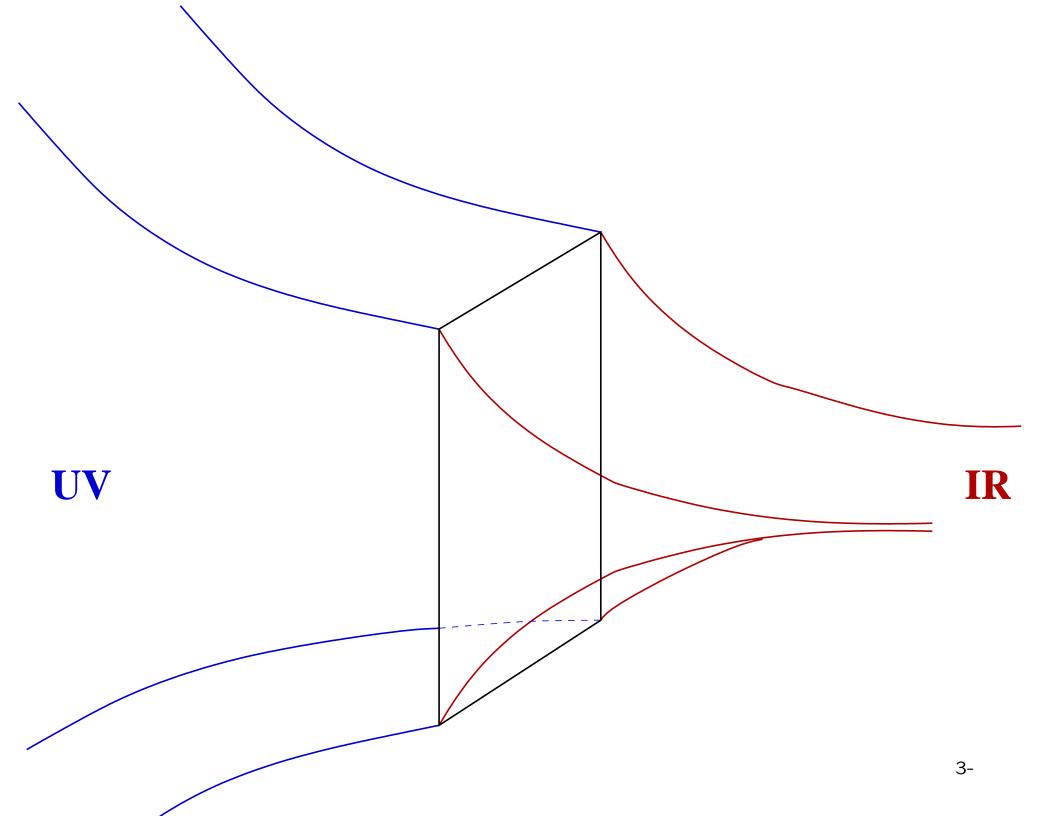
E. Kiritsis EPJ Web Conf. 71 (2014) 00068; e-Print: arXiv:1408.3541 [hep-ph]

Emerging (Holographic) gravity and the SM

• We can envisage the physics of the SM+gravity (plus maybe other ingredients) as emerging from 4d UV complete QFTs:

Kiritsis

- a) A large N/strongly coupled stable (near-CFT)
- b) The Standard Model
- c) A massive sector of mass Λ , (the "messengers") that couples the two theories (in a UV-complete manner).
- (a) has a holographic description in a 5d space-time.
- For $E \ll \Lambda$ we can integrate out the "messenger" sector and obtain directly the SM coupled to the bulk gravity.
- The holographic picture is that of a brane (the SM) embedded in the bulk at $r \gtrsim \frac{1}{\Lambda}$.



- This picture has a UV cutoff: the messenger mass Λ .
- ◆ ∧ will turn out to be essentially the 4d Planck scale.
- The configuration resembles string theory orientifolds and possible SM embeddings have been classified in the past.

Anastasopoulos+Dijkstra+Kiritsis+Schellekens

- The SM couples to all operators/fields of the bulk QFT.
- Most of them they will obtain large masses of $O(\Lambda)$ due to SM quantum effects.
- The only protected fields are the metric, the universal axion $\sim Tr[F \wedge F]$ and possible vectors (aka graviphotos).

Self-tuning 2.0, Elias Kiritsis

3-

The strategy

- We consider a large-N QFT, in its dual gravitational description, in 5 space-time dimensions.
- We consider its coupling to the (4-dimensional) SM brane, embedded in the 5-dimensional bulk.
- We will assume that there is a (large) cosmological constant on the brane (due to SM quantum corrections)
- We will try to find a full solution where the brane metric is flat.
- If successful, then we will worry about many other things.

• Branes in a cutoff-AdS₅ space were used to argue that this offers a context in which brane-world scales run exponentially fast, putting the hierarchy problem in a very advantageous framework.

Randall+Sundrum

• It is in this context that the first attempts of "self tuning" of the brane cosmological constant were made.

Arkani-Hamed+Dimopoulos+Kaloper+Sundrum,Kachru+Schulz+Silverstein,

- The models used a bulk scalar to "absorb" the brane cosmological constant and provide solutions with a flat brane metric despite the non-zero brane vacuum energy.
- The attempts failed as such solutions had invariantly a bad/naked bulk singularity that rendered models incomplete.
- More sophisticated setups were advanced and more general contexts have been explored but without success: the naked bulk singularity was always there.

Csaki+Erlich+Grojean+Hollowood

Bulk equations and RG flows

 We will consider a large N, strongly coupled QFT (a CFT perturbed by a relevant scalar operator)

$$S_{bulk} = M^3 \int d^5x \sqrt{-g} \left[R - \frac{1}{2} (\partial \Phi)^2 - V_{bulk}(\Phi) \right]$$

• We have kept, out of an infinite number of fields, the metric (dual to the stress tensor) and a single scalar (dual to some relevant scalar operator O(x)) in the large-N QFT.

$$S_{QFT} = S_* + \phi_0 \int d^4x \ O(x)$$

- The near-boundary region of the bulk geometry corresponds to the UV region of the QFT.
- The far interior of the bulk geometry corresponds to the IR of the QFT.
- Lorentz invariant solutions lead to the ansatz

$$ds^2 = du^2 + e^{2A(u)}(-dt^2 + d\vec{x}^2)$$
 , $\Phi(u)$

• The independent bulk gravitational scalar-Einstein equations can be written in first order form

$$\dot{A}(u) := -\frac{1}{6}W(\Phi)$$
 , $\dot{\Phi}(u) = W'(\Phi)$

in terms of the "superpotential" $W(\phi)$ that satisfies

$$V_{bulk}(\Phi) = \frac{1}{2}W'^{2}(\Phi) - \frac{1}{3}W^{2}(\Phi)$$

- ullet This is equivalent to the EM everywhere where $\dot{\Phi} \neq 0$
- \bullet One of the integration constants ϕ_1 is hidden in the non-linear superpotential equation.
- It is fixed, by asking the gravitational solution is regular at the interior of the space-time (IR in the QFT).
- Conclusion: given a bulk action, the regular solution is characterized by the unique* superpotential function $W(\Phi)$.
- So far we described the solution that describes the ground state of the QFT without the SM brane.

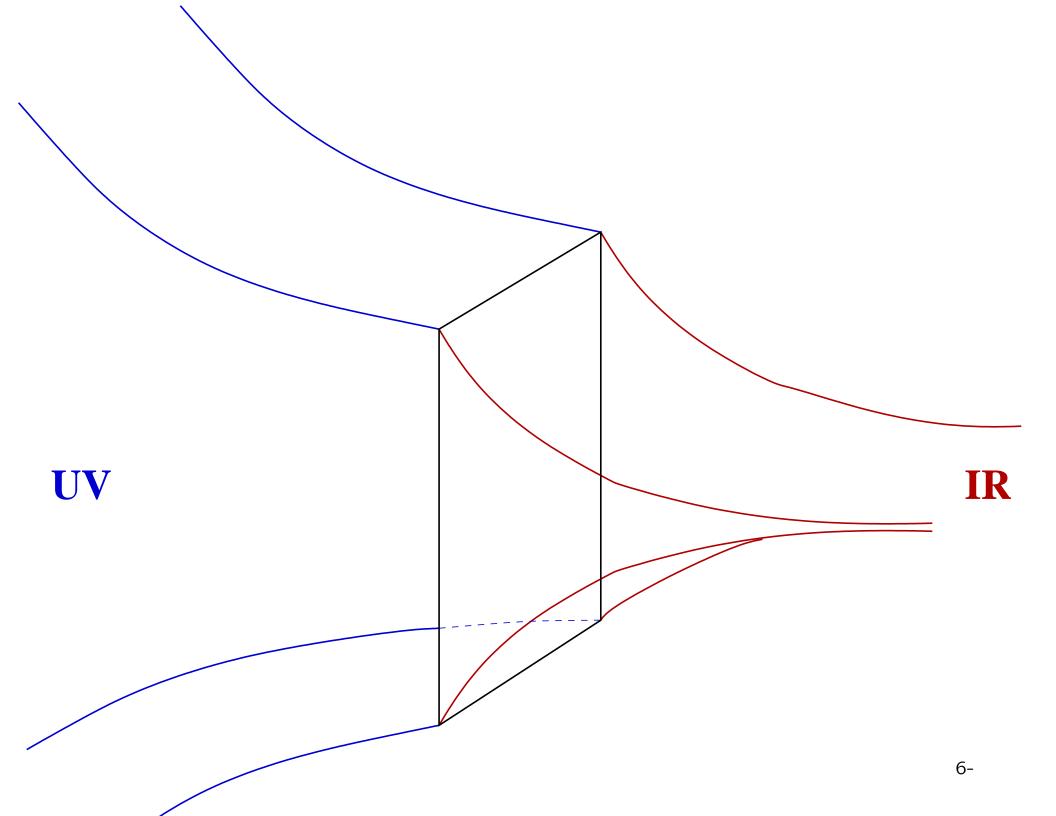
Self-tuning 2.0,

Adding the SM brane

- We add the SM brane inserted at some radial position $u = u_0$.
- The SM fields couple to the bulk fields Φ and $g_{\mu\nu}$.

$$S_{brane} = M^2 \delta(u - u_0) \int d^4 x \sqrt{-\gamma} \left[W_B(\Phi) - \frac{1}{2} Z(\Phi) \gamma^{\mu\nu} \partial_{\mu} \Phi \partial_{\nu} \Phi + U(\Phi) R^B + \cdots \right]$$

• The localized action on the brane is due to quantum effects of the SM fields.



$$S_{brane} = M^2 \delta(u - u_0) \int d^4 x \sqrt{-\gamma} \left[W_B(\Phi) - \frac{1}{2} Z(\Phi) \gamma^{\mu\nu} \partial_{\mu} \Phi \partial_{\nu} \Phi + U(\Phi) R^B + \cdots \right]$$

- $W_B(\phi)$ is the cosmological term.
- The Israel matching conditions are:
 - 1. Continuity of the metric and scalar field:

$$\left[g_{ab}\right]_{IR}^{UV} = 0, \qquad \left[\Phi\right]_{UV}^{IR} = 0$$

2. Discontinuity of the extrinsic curvature and normal derivative of Φ:

$$\left[K_{\mu\nu} - \gamma_{\mu\nu}K\right]_{UV}^{IR} = -\frac{1}{\sqrt{-\gamma}} \frac{\delta S_{brane}}{\delta \gamma^{\mu\nu}}, \qquad \left[n^a \partial_a \Phi\right]_{UV}^{IR} = \frac{\delta S_{brane}}{\delta \Phi},$$

- ullet These conditions involve the first radial derivatives of A and Φ
- ullet We have two W: W_{UV} and W_{IR} .
- They are both solutions to the superpotential equation:

$$\frac{1}{3}W^2 - \frac{1}{2}\left(\frac{dW}{d\Phi}\right)^2 = V(\Phi).$$

- \bullet A, Φ are continuous at the position of the brane.
- The jump conditions are

$$W^{IR} - W^{UV} \Big|_{\Phi_0} = W^B(\Phi_0) \quad , \quad \frac{dW^{IR}}{d\Phi} - \frac{dW^{UV}}{d\Phi} \Big|_{\Phi_0} = \frac{dW^B}{d\Phi}(\Phi_0)$$

ullet Assuming regularity of W_{IR} , the Israel conditions determine W_{UV} and Φ_0 .

Self-tuning 2.0,

Recap

To recapitulate:

- We have shown that generically, a flat brane solution exists irrespective of the details of the "cosmological constant" function $W_B(\Phi)$
- The position of the brane in the bulk, determined via Φ_0 , is fixed by the dynamics. There is typically a single such equilibrium position.
- We must analyze the stability of such an equilibrium position.
- We must analyze the nature of gravity and the equivalence principle on the brane.
- We must then analyze "cosmology" (how to get there).

Induced gravity

 The tensor mode on the brane satisfies the Laplacian equation in the bulk

$$\partial_r^2 \hat{h}_{\mu\nu} + 3(\partial_r A)\partial_r \hat{h}_{\mu\nu} + \partial^\rho \partial_\rho \hat{h}_{\mu\nu} = 0$$

ullet $\hat{h}_{\mu
u}$ is continuous and satisfies the jump condition

$$\left[\hat{h}'_{IR} - \hat{h}'_{UV}\right]_{r_0} = -U(\phi_0) \quad e^{-A_0} \quad \partial^{\mu}\partial_{\mu}\hat{h}(r_0),$$

This is the same condition as in DGP in flat space

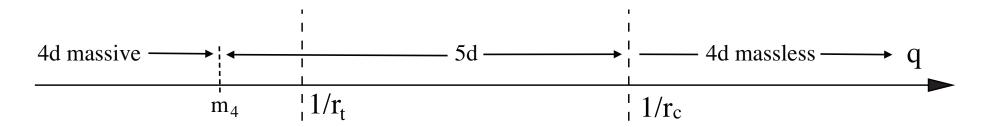
Dvali+Gabadadze+Porrati

- The main difference is that now the bulk is curved.
- This affects the nature of gravity on the brane:

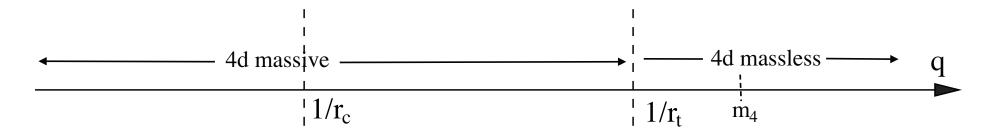
DGP and massive gravity

- ullet There are two relevant scales: the DGP Scale r_c and the "holographic scale r_t .
- When $r_t > r_c$ we have three regimes for the gravitational interaction on the brane:

$$\tilde{G}_{4}(p) \simeq \begin{cases} -\frac{1}{2M_{P}^{2}} & \frac{1}{p^{2}} & p \gg \frac{1}{r_{c}}, & , M_{P}^{2} = r_{c}M^{3} \\ -\frac{1}{2M^{3}} & \frac{1}{p} & \frac{1}{r_{c}} \gg p \gg m_{0} \\ -\frac{1}{2M_{P}^{2}} & \frac{1}{p^{2} + m_{0}^{2}} & p \ll m_{0}, & m_{0}^{2} \equiv \frac{1}{2r_{c}d_{0}} \end{cases}$$



- Massive 4d gravity $(r_t < r_c)$
- In this case, at all momenta above the transition scale, $p\gg 1/r_t>1/r_c$, we are in the 4-dimensional regime of the DGP-like propagator.



- ullet Below the transition, $p \ll 1/r_t$, we have again a massive-graviton propagator.
- The behavior is four-dimensional at all scales, and it interpolates between massless and massive four-dimensional gravity.

EK+Tetradis+Tomaras

Small perturbations summary

- ullet The ratio of the graviton mass to the Planck scale can be made arbitrarily small naturally (taking $N\gg 1$)
- The lighter scalar mode is also healthy under mild assumptions.
- The breaking of the equivalence principle and the Vainshtein mechanism is under current investigation.

Conclusions and Outlook

- A large-N QFT coupled holographically to the SM offers the possibility of tuning the SM vacuum energy.
- The graviton fluctuations have DGP behavior while the graviton is massive at large enough distances.
- There are however many extra constraints that need to be analyzed in detail:
- Constraints from the healthy behavior of scalar modes. Constraints from the equivalence principle and the Vainshtein mechanism
- The cosmological evolution must be elucidated.

THANK YOU

Linear perturbations around a flat brane

We investigate the dynamics of bulk fluctuations equations.

$$ds^{2} = a^{2}(r) \left[(1 + 2\phi)dr^{2} + 2A_{\mu}dx^{\mu}dr + (\eta_{\mu\nu} + h_{\mu\nu})dx^{\mu}dx^{\nu} \right], \Phi(x) = \Phi_{0}(r) + \chi$$

where the fields $\phi, A_{\mu}, h_{\mu\nu}, \chi$ depend on (r, x_{μ}) and are small perturbations.

• We further decompose the bulk modes into tensor, vector and scalar perturbations as usual:

$$A_{\mu} = \partial_{\mu} \mathcal{W} + A_{\mu}^{T}, \quad h_{\mu\nu} = 2\eta_{\mu\nu} \psi + \partial_{\mu} \partial_{\nu} E + 2\partial_{(\mu} V_{\nu)}^{T} + \hat{h}_{\mu\nu}$$

with

$$\partial^{\mu} A_{\mu}^{T} = \partial_{\mu} V_{\mu}^{T} = \partial^{\mu} \hat{h}_{\mu\nu} = \hat{h}_{\mu}^{\mu} = 0$$

- Before we insert a brane in the bulk, it is known that there are two non-trivial (propagating) fluctuations: $\hat{h}_{\mu\nu}$ and a scalar mode ζ .
- The physical bulk scalar can be identified with the gauge-invariant combination:

$$\zeta = \psi - \frac{A'}{\Phi'}\chi.$$

- In the presence of the brane there is also the embedding mode $X^A(\sigma^{\alpha})$ where $X^A=(r,x^{\mu})$ and σ^{α} are world-volume coordinates.
- We choose the gauge $\sigma^{\alpha} = x^{\mu} \delta^{\alpha}_{\mu}$, so the embedding is completely specified by the radial profile $r(x^{\mu})$.
- ullet We consider a small deviation from the equilibrium position r_0 :

$$r(x^{\mu}) = r_0 + \rho(x^{\mu})$$

• The brane scalar mode ρ represents brane bending.

Induced gravity

- We proceed to solve the fluctuation equations:
- The tensor mode satisfies the Laplacian equation in the bulk

$$\partial_r^2 \hat{h}_{\mu\nu} + 3(\partial_r A)\partial_r \hat{h}_{\mu\nu} + \partial^\rho \partial_\rho \hat{h}_{\mu\nu} = 0$$

ullet $\hat{h}_{\mu
u}$ is continuous and satisfies the jump condition

$$\left[\hat{h}'_{IR} - \hat{h}'_{UV}\right]_{r_0} = -U(\phi_0) \quad e^{-A_0} \quad \partial^{\mu}\partial_{\mu}\hat{h}(r_0),$$

• This is the same condition as in DGP in flat space

Dvali+Gabadadze+Porrati

The main difference is that now the bulk is curved.

The gravitational interaction on the brane

The field equations together with the matching conditions can be obtained by extremizing

$$S[h] = M^{3} \int d^{4}x dr \sqrt{-g} g^{ab} \partial_{a} \hat{h} \partial_{b} \hat{h} + M^{3} \int_{r=r_{0}} d^{4}x \sqrt{\gamma} \ U^{B}(\phi) \gamma^{\mu\nu} \partial_{\mu} \hat{h} \partial_{\nu} \hat{h},$$

where $g_{ab}=e^{A(r)}\eta_{ab}$ and $\gamma_{\mu\nu}=e^{A_0}$ $\eta_{\mu\nu}$ are the unperturbed bulk metric and induced metric on the brane, respectively.

We introduce brane-localized matter sources,

$$S_m = \int d^d x \sqrt{\gamma} \ \mathcal{L}_m(\gamma_{\mu\nu}, \psi_i)$$

where ψ_i denotes collectively the matter fields.

• The interaction of brane stress tensor $T_{\mu\nu}$ can be written in terms of the propagator G satisfying:

$$\left[\partial_r \left(e^{3A(r)}\partial_r\right) + \left[e^{3A(r)} + U_0 e^{2A_0} \delta(r - r_0)\right] \partial_\mu \partial^\mu\right] G(r, x; r', x') =$$

$$= \delta(r - r_0) \delta^{(4)}(x - x')$$

and is given by

$$S_{int} = -\frac{e^{4A_0}}{2M^3} \int d^4x d^4x' \ G(r_0, x; r_0, x') \left(T_{\mu\nu}(x) T^{\mu\nu}(x') - \frac{1}{3} T_{\mu}{}^{\mu}(x) T_{\nu}{}^{\nu}(x') \right)$$

- Notice that the combination above is appropriate for a massive graviton exchange.
- The metric on the brane is $\gamma_{\mu\nu} = e^{2A_0}\eta_{\mu\nu}$.
- The brane-to-brane propagator in momentum space $(G(r_0, x; r_0, x') \rightarrow G(p))$ is given by:

$$G(p, r_0) = -\frac{1}{M^3} \quad \frac{D(p, r_0)}{1 + [U_0 D(p, r_0)]p^2}$$

where D(p,r) solves the equation:

$$\left[e^{-3A(r)} \partial_r e^{3A(r)} \partial_r - p^2\right] D(p,r) = -\delta(r - r_0).$$

- This is roughly the DGP structure.
- When

$$U_0 D(p, r_0) \quad p^2 \gg 1 \quad , \quad G(p) \simeq - \quad \frac{1}{M^3 U_0} \quad \frac{1}{p^2}$$

the propagator is 4-dimensional

$$M_P^2 = U_0 M^3 \sim \Lambda^2$$

- The detailed behavior of the propagator is determined by the function D(p,r) evaluated at the position of the brane r_0 .
- It is determined by the Laplacian in the UV and IR part of the geometry, with continuity and unit jump at the brane.

Self-tuning 2.0,

The bulk propagator

ullet At large Euclidean p^2 , we can approximate the bulk equations as in flat space,

$$D(p,r_0)\simeq rac{1}{2p}, \qquad pr_0\gg 1$$

- At small momenta the bulk propagator has always an expansion in powers of p^2 and we can solve perturbatively in p^2 .
- \bullet If the geometry gives a gapped spectrum (confining holographic theory), the expansion is analytic in p^2
- If the bulk QFT is gapless, then after p^4 non-analyticities appear.
- We find that as $p \to 0$

$$D(p,r) = d_0 + d_2 p^2 + d_4 p^4 + \cdots$$

The coefficients d_i can be explicitly computed from the bulk unperturbed solution. For example

$$d_0 = e^{3A_0} \int_0^{r_0} dr' e^{-3A_{UV}(r')} > 0$$

The characteristic scales

- There are the following characteristic distance scales that play a role, besides r_0 .
- The transition scale r_t around which $D(r_0, p)$ changes from small to large momentum asymptotics:

- \bullet The transition scale r_t depends on r_0 and the bulk QFT dynamics.
- \bullet The *crossover scale*, or DGP scale, r_c :

$$r_c \equiv \frac{U_0}{2};$$

This scale determines the crossover between 5-dimensional and 4-dimensional behavior, and enters the 4D Planck scale and the graviton mass.

• The gap scale d_0

$$d_0 \equiv D(r_0, 0) = e^{3A_0} \int_0^{r_0} dr' e^{-3A_{UV}(r')},$$

which governs the propagator at the largest distances (in particular it sets the graviton mass as we will see).

- In generic cases, $d_0 \lesssim r_0$
- In confining bulk backgrounds we have instead

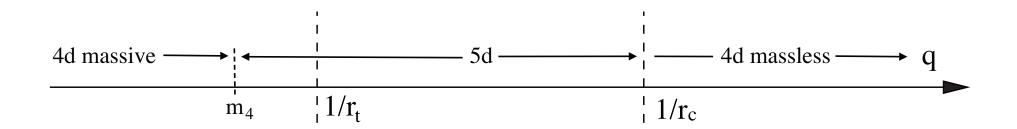
$$d_0 \simeq \frac{1}{6\Lambda_{QCD}^2 r_0}$$

ullet In the far IR, $\Lambda r_0\gg 1$ and d_0 can be made arbitrarily small.

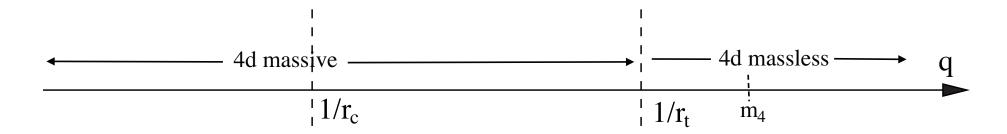
DGP and massive gravity

ullet When $r_t > r_c$ we have three regimes for the gravitational interaction on the brane:

$$\tilde{G}_{4}(p) \simeq \begin{cases} -\frac{1}{2M_{P}^{2}} & \frac{1}{p^{2}} & p \gg \frac{1}{r_{c}}, & M_{P}^{2} = r_{c}M^{3} \\ -\frac{1}{2M^{3}} & \frac{1}{p} & \frac{1}{r_{c}} \gg p \gg m_{0} \\ -\frac{1}{2M_{P}^{2}} & \frac{1}{p^{2} + m_{0}^{2}} & p \ll m_{0}, & m_{0}^{2} \equiv \frac{1}{2r_{c}d_{0}} \end{cases}$$



- Massive 4d gravity $(r_t < r_c)$
- ullet In this case, at all momenta above the transition scale, $p\gg 1/r_t>1/r_c$, we are in the 4-dimensional regime of the DGP-like propagator.



- ullet Below the transition, $p\ll 1/r_t$, we have again a massive-graviton propagator.
- The behavior is four-dimensional at all scales, and it interpolates between massless and massive four-dimensional gravity.

Kiritsis+Tetradis+Tomaras

More on scales

- Scales depend on the bulk dynamics=the nature of the RG flow.
- They depend on "SM" data (the brane potential and the cutoff scale Λ).
- They can depend on boundary conditions = the UV coupling constant of the bulk QFT.
- \bullet Φ_0 at the position of the brane is fixed by the Israel conditions and is independent of boundary conditions.
- The two important parameters for 4d gravity do not depend on b.c.

$$\frac{m_0}{M_P} \sim \left(\frac{M}{\Lambda}\right)^2 \frac{1}{N_3^2} \quad , \quad m_0 M_P = \left(\frac{M^3}{\bar{d}}\right)^{\frac{1}{2}}$$

• \bar{d} is the "rescaled" value of the bulk propagator at p=0 at the position of the brane (so that it is independent of boundary conditions). It depends only on the bulk action.

- \bullet The choice of a small ratio $\frac{m_0}{M_P}\sim 10^{-60}$ is (technically) natural from the QFT point of view.
- There is important numerology to be analyzed for typical classes of holographic theories.

Scalar Perturbations

- The next step is to study the scalar perturbations. They are of interest, as they might destroy the equivalence principle.
- The equations for the scalar perturbations can be derived and they are complicated.
- Unlike previous analysis of similar systems they cannot be factorized to a relatively simple system as the graviton.
- There are two scalar modes on the brane:
- In one gauge, the brane bedding mode can be "eliminated" but the scalar perturbation is discontinuous on the brane.
- In another gauge the perturbation is continuous but the brane bending mode is present.

The effective quadratic interactions for the scalar modes are of the form

$$S_4 = -\frac{\mathcal{N}}{2} \int d^4x \sqrt{\gamma} ((\partial \phi)^2 + m^2 \phi^2)$$

- We need both $\mathcal{N} > 0$ and $m^2 > 0$.
- In general the two scalar modes couple to two charges:
- (a) the "scalar charge" and
- (b) the trace of the brane stress tensor.
- The mode that couples to the scalar charge has a "heavy" mass of the order of the cutoff/Planck Scale.
- The mode that couples to the trace of the stress-tensor has a mass that is O(1) in cutoff units (like the graviton mass).

- All the stability conditions for the scalars depend on more details of the brane induced functions $W_B(\Phi)$, $U_B(\Phi)$, $Z_B(\Phi)$.
- They can be investigated further from the known parameter dependence of the vacuum energy in the SM.

Kounnas+Pavel+Zwirner, Dimopoulos+Giudince+Tetradis

- There is a vDVZ discontinuity that (as usual) cannot be cancelled at the linearized order if the theory is positive.
- It should be cancelled by the Vainshtein mechanism. To derive the relevant constraints on parameters, we must study the non-linear interactions of the scalar-graviton modes.

Self-tuning 2.0, Elias Kiritsis

Connecting the Hierarchy Problem

• We can include the Higgs scalar in the effective potential on the brane:

$$S_{Higgs} = M_p^2 \int d^d x \sqrt{-\gamma} \left[-X(\Phi) |\mathbf{H}|^2 - S(\Phi) |\mathbf{H}|^4 + T(\Phi) R |\mathbf{H}|^2 + \cdots \right]$$

We must also add the equations of motion for the Higgs:

$$(X(\Phi) + 2S(\Phi)|H|^2) H = 0$$

- We expect that the bulk scalar field Φ will start far from the equilibrium position Φ_0 and will roll towards it.
- If $X(\Phi) > 0$ far from equilibrium and $X(\Phi) < 0$ near equilibrium, then EW symmetry breaking will be correlated with the cosmological constant self-tuning mechanism.
- This contains the "radiative breaking" idea as a component.
- Whether it works depends on the structure of the function $X(\Phi)$ that can be computed from SM physics.

Self-tuning 2.0,

Introduction

- The cosmological constant problem is arguably the most important short-coming today of our understanding of the physical world.
- It signifies the violent clash between gravity and quantum field theory, (probably more so than the black hole information paradox problem).
- In four-dimensional Einstein gravity a non-zero vacuum energy entails irrevocably the acceleration of the univers:

$$G_{\mu\nu} = \frac{1}{2} \Lambda \ g_{\mu\nu}$$

• One can fine-tune the cosmological constant (this sometimes comes under the "anthropic" context).

Schellekens, Bousso+Polchinski

• It turns out that this is today compatible with cosmological data but soon it will be tested verified or excluded.

• The reason is that the cosmological constant is scale-dependent and changes with the energy scale.

reviews: Weinberg, Rubakov, Hebecker+Wetterich, Burgess

- For several decades efforts amounted to proving that, by symmetry, the cosmological constant should vanish.
- The advent of inflation made this approach less and less credible.
- The "detection" of the acceleration of the universe at the end of the 20th century has put an end in such approaches.

• Several other approaches have been tried over the years. Some still stand in principle:

- ♠ The Bousso-Polchinski anthropic "solution".
- "Sequestering mechanisms" for the vacuum energy.

Gabadadze+Yu, Kaloper+Padilla+Stafanyszyn+Zahariade

"Degravitation" ideas.

Arkani-Hamed+Dimopoulos+Dvali+Gabadadze, Dvali+Hofmann+Khoury

♠ "Brane-world" related ideas.

Rubakov+Shaposhnikov, Akama,.....

All must pass a very stringent "filter": Weinberg argument.

Self-tuning 2.0, Elias Kiritsis

The higher-dimensional arena

- It was argued by several authors that the existence of higher (than four) dimensions offers the possibility to alleviate the cosmological constant problem.
- The rough idea is that the SM-induced vacuum energy, instead of curving the 4-d world/brane, could be absorbed by bulk fields.
- For this idea to be effective, the mechanism must be quasi-generic: "any or most" cosmological constants must "relax", absorbed by the bulk dynamics.
- Any such mechanism must be intertwined tightly with cosmology as we have good reasons to believe that a large cosmological constant played an important role in the early universe, with observable consequences today.

Self-tuning 2.0, Elias Kiritsis

Brane worlds and early attempts

• String Theory D-branes offer a concrete, calculable realization of a brane universe.

Polchinski

• Branes in a cutoff-AdS₅ space were used to argue that this offers a context in which brane-world scales run exponentially fast, putting the hierarchy problem in a very advantageous framework.

Randall+Sundrum

• It is in this context that the first attempts of "self tuning" of the brane cosmological constant were made.

Arkani-Hamed+Dimopoulos+Kaloper+Sundrum, Kachru+Schulz+Silverstein,

- The models used a bulk scalar to "absorb" the brane cosmological constant and provide solutions with a flat brane metric despite the non-zero brane vacuum energy.
- The attempts failed as such solutions had invariantly a bad/naked bulk singularity that rendered models incomplete.

 More sophisticated setups were advanced and more general contexts have been explored but without success: the naked bulk singularity was always there.

Csaki+Erlich+Grojean+Hollowood,

 \bullet The Randall-Sundrum Z_2 orbifold boundary conditions were relaxed to consider even more general setups, but this did not improve the situation.

Padilla

• The RS setup and its siblings is related via holographic ideas to cutoff-CFTs and this provides independent intuition on the physics.

Maldacena, Witten, Hawking + Hertog + Reall, Arkani-Hamed + Porrati + Randall

- In view of our current understanding of holography, these failures were to be expected.
- Our goal: provide a 2.0 version of the self-tuning mechanism that is in line with the dictums of holography.

Self-tuning 2.0, Elias Kiritsis

Old Self-Tuning

• W_{UV} and W_{IR} are determined from the superpotential equation up to one integration constant, C_{UV}, C_{IR} .

• For a generic brane potential $W^B(\Phi)$, the two matching equations

$$W^{IR} - W^{UV} \Big|_{\Phi_0} = W^B(\Phi_0) \quad , \quad \frac{dW^{IR}}{d\Phi} - \frac{dW^{UV}}{d\Phi} \Big|_{\Phi_0} = \frac{dW^B}{d\phi}(\Phi_0)$$

will fix C^{UV} , C^{IR} for any generic value of Φ_0 .

- ullet The fixed value of C_{IR} typically leads to a bad IR singularity.
- Moreover Φ_0 is a modulus and generates a massless mode (the radion).

Self-tuning 2.0,

Self-Tuning 2.0

- The IR constant C^{IR} should be fixed by demanding that the IR singularity is absent.
- Typically there is only one such solution to the superpotential equation (or a discreet set).
- ullet According to holography rules, the solution W^{IR} should be fixed before we impose the matching conditions.
- \bullet Once W^{IR} is fixed by regularity, the Israel conditions will determine:
- \spadesuit The integration constant C^{UV} in the UV superpotential
- \spadesuit The brane position in field space, Φ_0 .
- This is a desirable outcome as there would be no massless radion mode.
- It can be checked that generically such an equilibrium position exists.

The bulk propagator

ullet At large Euclidean p^2 , we can approximate the bulk equations as in flat space,

$$\partial_r^2 \Psi^{(p)}(r) = p^2 \Psi^{(p)}(r)$$

except for small r, where the effective Schrödinger potential is $\sim 1/r^2$ and cannot be neglected.

ullet The solution satisfying appropriate boundary conditions (vanishing in the IR and for r o 0) and jump condition is

$$\Psi_{IR}^{(p)} = \frac{\sinh pr_0}{p} e^{-pr}, \quad \Psi_{UV}^{(p)} = \frac{e^{-pr_0}}{p} \sinh pr, \qquad p \equiv \sqrt{p^2}$$

 \bullet For large p, it is like in flat 5d space

$$D(p, r_0) = \frac{\sinh p r_0}{p} e^{-pr_0} \simeq \frac{1}{2p}, \qquad pr_0 \gg 1$$

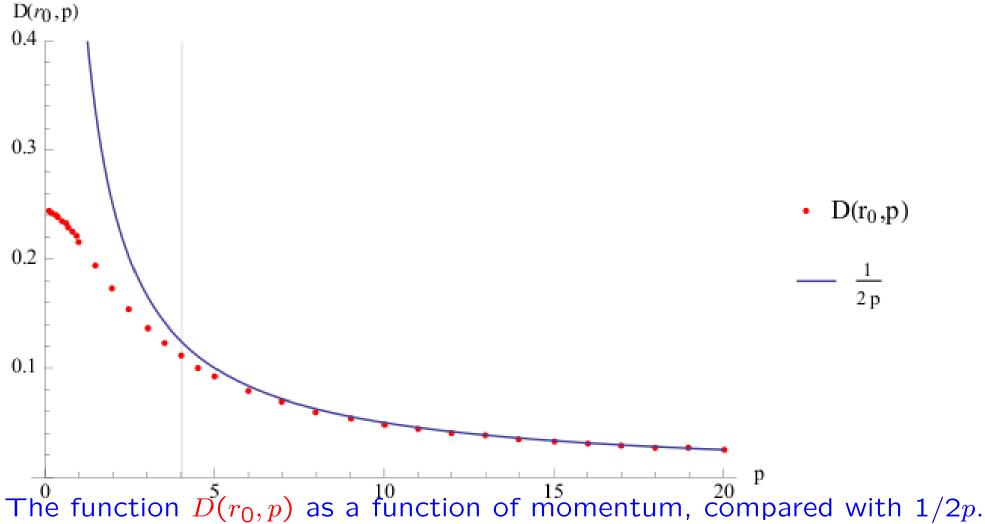
• At small momenta the bulk propagator has always an expansion in powers of p^2 and we can solve perturbatively in p^2 .

- ullet If the geometry is gapped, the expansion is analytic in p^2
- ullet If the geometry is gapless, then after some power of p non-analyticities appear.
- We find that as $p \to 0$

$$D(p,r) = d_0 + d_2 p^2 + d_4 p^4 + \cdots$$

The coefficients d_i can be explicitly computed from the bulk unperturbed solution. For example

$$d_0 = e^{3A_0} \int_0^{r_0} dr' e^{-3A_{UV}(r')}$$



The function $D(r_0,p)$ as a function of momentum, compared with 1/2p. The transition scale $1/r_t$ (solid line) is about 4 (in UV-AdS units)

Self-tuning 2.0,

Elias Kiritsis

Scalar Perturbations

The perturbations are

$$ds^2 = a^2(r) \left[(1+2\phi)dr^2 + 2A_\mu dx^\mu dr + (\eta_{\mu\nu} + h_{\mu\nu})dx^\mu dx^\nu \right], \quad \varphi = \bar{\varphi}(r) + \chi$$
 and the scalar ones are

$$\phi$$
, χ , $A_{\mu} = \partial_{\mu}B$, $h_{\mu\nu} = 2\psi\eta_{\mu\nu} + 2\partial_{\mu}\partial_{\nu}E$,

plus the brane-bending mode $\rho(x)$ defined as

$$r(x^{\mu}) = r_0 + \rho(x^{\mu})$$

• Unlike the tensor modes, these fields are not gauge-invariant. Under an infinitesimal diff transformation $(\delta r, \delta x^{\mu}) = (\xi^5, g^{\mu\nu}\partial_{\nu}\xi)$ they transform as

$$\delta\psi = -\frac{a'}{a}\xi^5 \quad , \quad \delta\phi = -(\xi^5)' - \frac{a'}{a}\xi^5 \quad , \quad \delta B = -\xi' - \xi^5$$
$$\delta E = -\xi \quad , \quad \delta\chi = -\bar{\varphi}'\xi^5 \quad , \quad \delta\rho = \xi^5(r_0, x).$$

• We partly fix the gauge by choosing B = 0.

- \bullet We are still free to do radial gauge-transformations and r-independent space-time diffeomorphisms and keep this gauge choice.
- The matching conditions become

$$\left[a^{2}(r_{0}+\rho)\left(2\psi\eta_{\mu\nu}+2\partial_{\mu}\partial_{\nu}E\right)\right]_{IR}^{UV}=0, \qquad \left[\bar{\varphi}(r_{0}+\rho)+\chi\right]_{UV}^{IR}=0$$
$$\left[\hat{\psi}\right]_{IR}^{UV}=0, \qquad \left[\hat{\chi}\right]_{IR}^{UV}=0, \qquad \left[E\right]_{UV}^{IR}=0$$

where we have defined the new bulk perturbations:

$$\widehat{\psi}(r,x) = \psi + A'(r)\rho(x), \quad \widehat{\chi}(r,x) = \chi + \overline{\varphi}'(r)\rho(x) \quad , \quad A' = a'/a$$

The gauge-invariant scalar perturbation has the same expression in terms of these new continues variables:

$$\zeta = \psi - \frac{A'}{\bar{\varphi}'}\chi = \hat{\psi} - \frac{A'}{\bar{\varphi}'}\hat{\chi}.$$

In general however $\zeta(r,x)$ is not continuous across the brane, since the background quantity $A'/\bar{\varphi}'$ jumps:

$$\left[\zeta\right]_{IR}^{UV} = \left[\frac{A'}{\bar{\varphi}'}\right]_{IR}^{UV} \hat{\chi}(r_0)$$

Notice that this equation is gauge-invariant since, under a gauge transformation:

$$\delta\widehat{\chi}(r,x) = -\overline{\varphi}'(r) \left[\xi^{5}(r,x) - \xi^{5}(r_{0},x) \right],$$

thus $\hat{\chi}(r_0)$ on the right hand side of equation (??) is invariant.

It is convenient to fix the remaining gauge freedom by imposing:

$$\chi(r,x)=0.$$

To do this, one needs different diffeomorphisms on the left and on the right of the brane, since $\bar{\varphi}'$ differs on both sides. The continuity for $\hat{\chi}$ then becomes the condition:

$$\rho_{UV}(x)\bar{\varphi}'_{UV}(r_0) = \rho_{IR}(x)\bar{\varphi}'_{IR}(r_0)$$

i.e. the brane profile looks different from the left and from the right. This is not a problem, since equation (??) tells us how to connect the two sides given the background scalar field profile.

In the $\chi = 0$ gauge we have:

$$\zeta = \psi = \hat{\psi} - A'\rho, \qquad \hat{\chi}(r_0) = \bar{\varphi}'(r_0)\rho.$$

This makes it simple to solve for ϕ using the bulk constraint equation (in particular, the $r\mu$ -component of the perturbed Einstein equation, for the details see the Appendix:

$$\phi = \frac{a}{a'}\psi' = \frac{a}{a'}\widehat{\psi}' + \left(\frac{a'}{a} - \frac{a''}{a}\right)\rho$$

where it is understood that this relation holds both on the UV and IR sides.

In the gauge $\chi=B=0$, the second matching conditions to linear order in perturbations, read

$$\left[(1-d)a'(r_0) \left(2\hat{\psi} \, \eta_{\mu\nu} + 2\partial_{\mu}\partial_{\nu}E \right) + \frac{1}{2}a(r_0)(\bar{\varphi}')^2 \rho \, \eta_{\mu\nu} + \right.$$

$$\left. (\partial_{\mu}\partial_{\nu} - \eta_{\mu\nu}\partial^{\sigma}\partial_{\sigma}) \left(E' - \rho \right) \right]_{UV}^{IR} = \frac{a^2(r_0)}{2} W_B(\Phi_0) \left(2\eta_{\mu\nu}\hat{\psi} + 2\partial_{\mu}\partial_{\nu}E \right)_{r_0} +$$

$$\left. \frac{a^2(r_0)}{2} \frac{dW_B}{d\varphi} \right|_{\Phi_0} \bar{\varphi}'(r_0)\rho - (d-2)U_B(\Phi_0) \left(\partial_{\mu}\partial_{\nu} - \eta_{\mu\nu}\partial^{\sigma}\partial_{\sigma} \right) \hat{\psi} ,$$

$$\left[\frac{\bar{\varphi}'}{a'}\hat{\psi}' + \left(\frac{(\bar{\varphi}')^2}{6a'} - \frac{\bar{\varphi}''}{a\bar{\varphi}'}\right)\bar{\varphi}'\rho\right]_{UV}^{IR} =$$

$$= -\frac{d^2W_B}{d\Phi^2}\Big|_{\Phi_0} \bar{\varphi}'\rho + \frac{Z_B(\Phi_0)}{a^2} \bar{\varphi}'\partial^{\sigma}\partial_{\sigma}\rho - \frac{2(d-1)}{a^2} \frac{dU_B}{d\Phi}\Big|_{\Phi_0} \partial^{\sigma}\partial_{\sigma}\hat{\psi}$$

Using the background matching conditions in conformal coordinates,

$$\frac{a'}{a^2} = -\frac{1}{2(d-1)}W, \qquad \bar{\varphi}' = a\frac{dW}{d\Phi},$$

one can see that the first two terms on each side cancel each other, and we are left with an equation that fixes the matching condition for E'(r,x):

$$\left[E'-\rho\right]_{UV}^{IR} = -2\frac{U_B(\Phi_0)}{a(r_0)}\widehat{\psi}(r_0).$$

$$\left[\hat{\psi}\right]_{UV}^{IR}=0$$
;
$$\left[\bar{\varphi}'\rho\right]_{UV}^{IR}=0$$
;

$$\left[\frac{\bar{\varphi}'a}{a'}\hat{\psi}'\right]_{UV}^{IR} = \left[\left(\frac{Z_B(\Phi_0)}{a}\partial^{\mu}\partial_{\mu} - \mathcal{M}_b^2\right)\bar{\varphi}'\rho - \frac{6}{a}\frac{dU_B}{d\Phi}(\Phi_0)\partial^{\mu}\partial_{\mu}\hat{\psi}\right]_{r_0}$$

where we have defined the brane mass:

$$\mathcal{M}_b^2 \equiv a(r_0) \frac{d^2 W_b}{d\Phi^2} \Big|_{\Phi_0} + \left[\left(\frac{(\bar{\varphi}')^2}{6} \frac{a}{a'} - \frac{\bar{\varphi}''}{\bar{\varphi}'} \right) \right]_{UV}^{IR}.$$

Using the background Einstein's equations this can also be written as:

$$\mathcal{M}_b^2 = \left[\frac{a'}{a} - \frac{a''}{a'}\right]_{UV}^{IR} + a\left(\frac{d^2W_B}{d\Phi^2} - \left[\frac{d^2W}{d\Phi^2}\right]_{UV}^{IR}\right),$$

We can eliminate E

$$\Box E' = -\frac{a}{a'} \left[\Box \psi + \frac{a}{a'} \left(2 \frac{a'^2}{a^2} - \frac{a''}{a} \right) \psi' \right].$$

Notice that the combination multiplying ψ' can be written as $(a/a')(\bar{\varphi}')^2/6$.

The bulk equation for ζ ($\equiv \psi$ in this gauge) on both sides of the brane is:

$$\psi'' + \left(3\frac{a'}{a} + 2\frac{z'}{z}\right)\psi' + \partial^{\mu}\partial_{\mu}\psi = 0,$$

where $z = \bar{\varphi}' a / a'$.

To summarize, we arrive at the following equations and matching conditions, either in terms of ψ :

$$\psi'' + \left(3\frac{a'}{a} + 2\frac{z'}{z}\right)\psi' + \partial^{\mu}\partial_{\mu}\psi = 0,$$

$$\left[\psi\right]_{UV}^{IR} = -\left[\frac{a'}{a\bar{\varphi}'}\right]_{UV}^{IR}\bar{\varphi}'\rho, \qquad \left[\bar{\varphi}'\rho\right]_{UV}^{IR} = 0;$$

$$\left[\frac{a^2}{a'^2}\frac{\bar{\varphi}'^2}{6}\psi'\right]_{UV}^{IR} = \left(\frac{2U_B(\Phi_0)}{a} - \left[\frac{a}{a'}\right]_{UV}^{IR}\right)\Box\left(\psi + \frac{a'}{a}\rho\right);$$

$$\left[\frac{a\bar{\varphi}'}{a'}\psi'\right]_{UV}^{IR} = -6\frac{dU_B}{d\Phi}(\Phi_0)\Box\left(\psi + \frac{a'}{a}\rho\right) + \left(\frac{Z_B(\Phi_0)}{a}\Box - \tilde{\mathcal{M}}_b^2\right)\bar{\varphi}'\rho;$$

$$\Box \equiv \partial^{\mu}\partial_{\mu}, \quad z \equiv \frac{a\bar{\varphi}'}{a'}, \quad \tilde{\mathcal{M}}_b^2 = a\left(\frac{d^2W_B}{d\Phi^2} - \left[\frac{d^2W}{d\Phi^2}\right]_{UV}^{IR}\right).$$

ullet in terms of $\widehat{\psi}$:

$$\begin{split} \hat{\psi}'' + \left(3\frac{a'}{a} + 2\frac{z'}{z}\right)\hat{\psi}' + \partial^{\mu}\partial_{\mu}\hat{\psi} &= \mathcal{S}, \\ \left[\hat{\psi}\right]_{UV}^{IR} &= 0, \qquad \left[\bar{\varphi}'\rho\right]_{UV}^{IR} &= 0; \\ \left[\frac{a^2}{a'^2}\frac{\bar{\varphi}'^2}{6}\hat{\psi}'\right]_{UV}^{IR} &= -\left[\frac{\bar{\varphi}'}{6}\left(\frac{a''a}{a'^2} - 1\right)\right]_{UV}^{IR}\bar{\varphi}'\rho + \left(\frac{2U_B(\Phi_0)}{a} - \left[\frac{a}{a'}\right]_{UV}^{IR}\right)\Box\hat{\psi}; \\ \left[\frac{a\bar{\varphi}'}{a'}\hat{\psi}'\right]_{UV}^{IR} &= -6\frac{dU_B}{d\Phi}(\Phi_0)\Box\hat{\psi} + \left(\frac{Z_B(\Phi_0)}{a}\Box - \mathcal{M}_b^2\right)\bar{\varphi}'\rho; \\ \Box &\equiv \partial^{\mu}\partial_{\mu}, \qquad z \equiv \frac{a\bar{\varphi}'}{a'}, \qquad \mathcal{M}_b^2 = \tilde{\mathcal{M}}_b^2 + \left[\frac{a'}{a} - \frac{a''}{a'}\right]_{UV}^{IR}, \\ \mathcal{S} \equiv A'''\rho + 3(A' + 2z'/z)A''\rho + A'\Box\rho. \end{split}$$

remarks:

- In both formulations there are 6 parameters in the system: 4 in the bulk (2 integration constants in the UV, 2 in the IR) and 2 brane parameters (ρ on each side). From these 6 we can subtract one: a rescaling of the solution, which is not a true parameter since the system is homogeneous in (ρ, ψ) . There is a total of 4 matching conditions, plus 2 normalizability conditions if the IR is confining, or only one if it is not. Thus, in the confining case, we should find a quantization condition for the mass spectrum, whereas in the non-confining case the spectrum is continuous and the solution unique given the energy. The goal will be to show that such solutions exist only for positive values of m^2 , defined as the eigenvalue of \square . To see this, one must go to the Schrodinger formulation.
- Notice that something interesting happens when the *second* derivative of the brane potential matches the discontinuity in the second derivative of the bulk superpotential: in that case the brane mass term for ρ vanishes. For a generic brane potential of course this is not the case, but it happens for example in fine-tuned models when the brane position is not fixed by the zeroth-order matching conditions, for example when the brane potential is chosen to be equal to the bulk superpotential, and a Z_2 symmetry is imposed. This is the generalization of the RS fine-tuning in the presence of a bulk scalar. The fact that the mass term vanishes in this case must be related to the presence of zero-modes (whether they are normalizable or not is a different story).

To put the matching conditions in a more useful form, it is convenient to eliminate $\rho_{L,R}$ altogether :

$$\left[\frac{a'}{a}\rho\right] = -[\psi], \qquad [\bar{\varphi}'\rho] = 0$$

These can be solved to express the continuous quantities $\hat{\psi}(0)$ and $\bar{\varphi}'\rho$ in terms of $\psi_{L,R}$ only:

$$\widehat{\psi}(0) = \frac{[z\,\psi]}{[z]}, \qquad \overline{\varphi}'\rho = -\frac{[\psi]}{[1/z]}, \qquad z = \frac{a\overline{\varphi}'}{a'}$$

Using these results, we obtain a relation between the left and right functions and their derivatives:

$$[z\psi'] = -6\frac{dU_B}{d\Phi} \Box \frac{[z\,\psi]}{[z]} - \frac{1}{a} \left(Z_B \Box - a^2 \tilde{M}^2 \right) \frac{[\psi]}{[z^{-1}]}$$

$$[z^2\psi'] = 6 \left(2\frac{U_B}{a} - \left[\frac{a}{a'} \right] \right) \Box \frac{[z\,\psi]}{[z]}$$

Since the left hand side is in general non-degenerate, these equations can be solved to give ψ_L' and ψ_R' as linear combinations of ψ_L and ψ_R ,

$$\begin{pmatrix} \psi_L'(0) \\ \psi_R'(0) \end{pmatrix} = \Gamma \begin{pmatrix} \psi_L(0) \\ \psi_R(0) \end{pmatrix}$$

with a suitable matrix Γ .

The conditions that the scalars are not ghosts are

$$\tau_0 \equiv 6 \frac{W_B}{W_{UV} W_{IR}} \Big|_{\Phi_0} - U_B(\Phi_0) > 0 \quad , \quad Z_0 \tau_0 > 6 \left(\frac{dU_B}{d\Phi}\right)^2 \Big|_{\Phi_0} \tag{1}$$

Asking also for no tachyons we obtain

$$\left. \frac{d^2 W_B}{d\Phi^2} \right|_{\Phi_0} - \left[\frac{d^2 W}{d\Phi^2} \right]_{UV}^{IR} > 0$$

Self-tuning 2.0, Elias Kiritsis

A simple numerical example

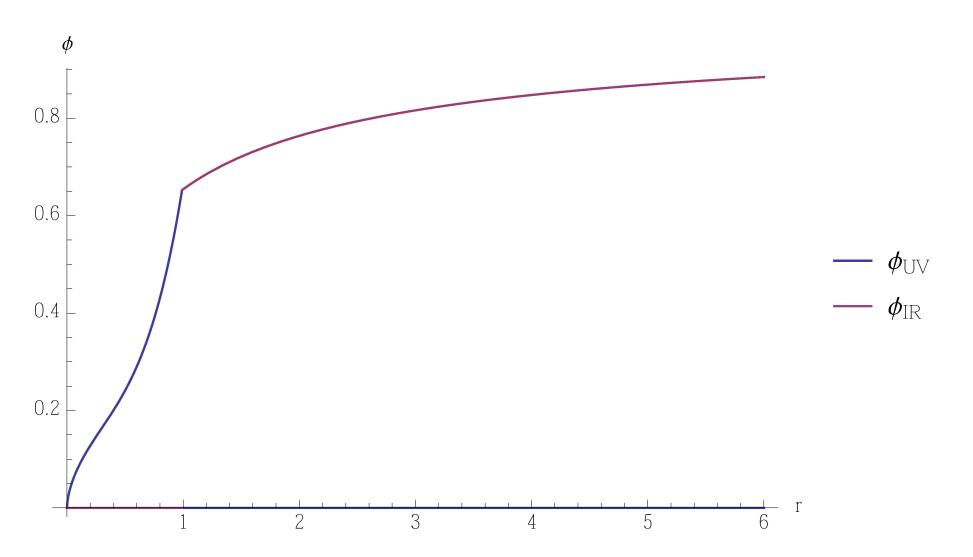
$$V(\phi) = -12 + \frac{1}{2} \left(\phi^2 - 1\right)^2 - \frac{1}{2},$$

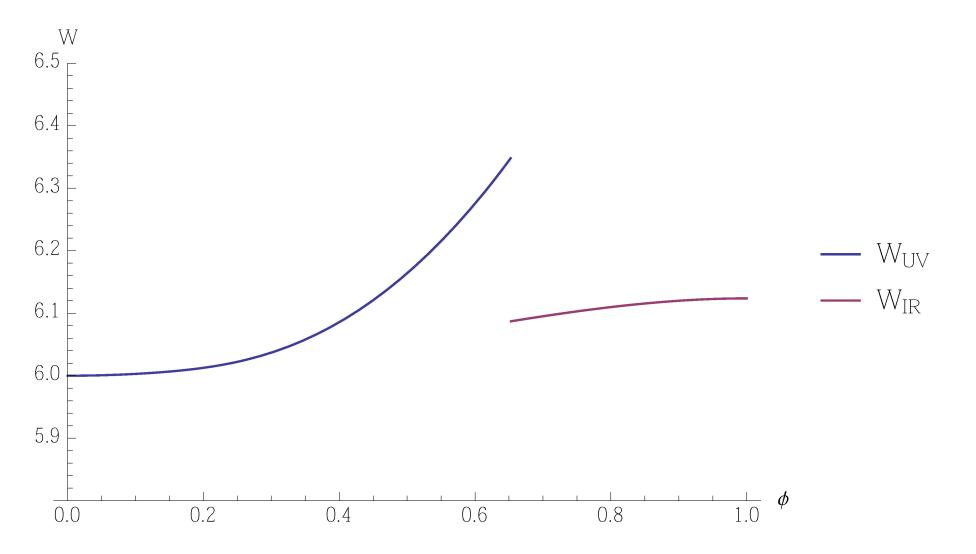
• The flow is from $\phi = 0$ (UV Fixed point) to $\phi = 1$ (IR fixed point).

$$W_b(\phi) = \omega \exp[\gamma \phi].$$

$$\omega = -0.01, \ \gamma = 5 \qquad \Rightarrow \qquad \phi_0 = 0.65.$$

• This gives, in conformal coordinates, $r_0 = 0.99$.





Self-tuning 2.0, Elias Kiritsis

RG

• $W(\phi)$ is the non-derivative part of the Schwinger source functional of the dual QFT =on-shell bulk action.

de Boer+Verlinde²

$$S_{on-shell} = \int d^d x \sqrt{\gamma} \ W(\phi) + \cdots \Big|_{u \to u_{UV}}$$

The renormalized action is given by

$$S_{renorm} = \int d^d x \sqrt{\gamma} \left(W(\phi) - W_{ct}(\phi) \right) + \cdots \Big|_{u \to u_{UV}} =$$

$$= constant \int d^{d}x \ e^{dA(u_{0}) - \frac{1}{2(d-1)} \int_{\phi_{U}V}^{\phi_{0}} d\tilde{\phi}_{W}^{W'}} + \cdots$$

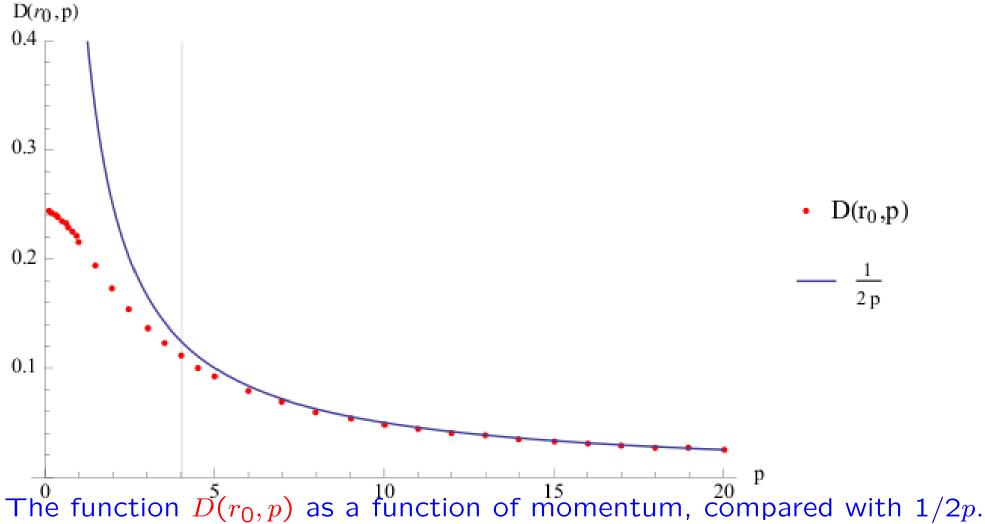
- The statement that $\frac{dS_{renorm}}{du_0}=0$ is equivalent to the RG invariance of the renormalized Schwinger functional.
- It is also equivalent to the RG equation for ϕ .

We can show that

$$T_{\mu}{}^{\mu} = \beta(\phi) \langle O \rangle$$

• The Legendre transform of S_{renorm} is the (quantum) effective potential for the vev of the QFT operator O.

Self-tuning 2.0, Elias Kiritsis



The function $D(r_0,p)$ as a function of momentum, compared with 1/2p. The transition scale $1/r_t$ (solid line) is about 4 (in UV-AdS units)

Self-tuning 2.0,

Elias Kiritsis

Detour: The local RG

• The holographic RG can be generalized straightforwardly to the local RG

$$\dot{\phi} = W' - f' R + \frac{1}{2} \left(\frac{W}{W'} f' \right)' (\partial \phi)^2 + \left(\frac{W}{W'} f' \right) \Box \phi + \cdots$$

$$\dot{\gamma}_{\mu\nu} = -\frac{W}{d-1}\gamma_{\mu\nu} - \frac{1}{d-1}\left(f R + \frac{W}{2W'}f'(\partial\phi)^2\right)\gamma_{\mu\nu} +$$

$$+2f R_{\mu\nu} + \left(\frac{W}{W'}f' - 2f''\right)\partial_{\mu}\phi\partial_{\nu}\phi - 2f'\nabla_{\mu}\nabla_{\nu}\phi + \cdots$$

Kiritsis+Li+Nitti

• $f(\phi)$, $W(\phi)$ are solutions of

$$-\frac{d}{4(d-1)}W^2 + \frac{1}{2}W'^2 = V \quad , \quad W' f' - \frac{d-2}{2(d-1)}W f = 1$$

• Like in 2d σ -models we may use it to define "geometric" RG flows.

Self-tuning 2.0,

Detailed plan of the presentation

- Title page 0 minutes
- Bibliography 1 minutes
- Emerged Holographic gravity and the SM 4 minutes
- The strategy 6 minutes
- 1rts order equations and RG Flows 10 minutes
- Adding the SM Brane 13 minutes
- Recap 14 minutes
- Conclusions and Outlook 15 minutes

- Linear Perturbations around a flat brane 19 minutes
- Induced Gravity 21 minutes
- The gravitational interaction on the brane 26 minutes
- The bulk propagator 28 minutes
- The characteristic scales 32 minutes
- DGP and massive gravity 35 minutes
- More on scales 38 minutes
- Scalar Perturbations 42 minutes
- Connecting the Hierarchy Problem 44 minutes
- Old Self-Tuning 46 minutes
- Self-Tuning 2.0 48 minutes
- Scalar Perturbations 50 minutes
- Detour: the local RG group 53 minutes

Self-tuning 2.0,