Distribution of primordial black holes and small-scale constraints

Jinn-Ouk Gong

KASI, Daejeon 34055, Korea

YKIS2018a Symposium General Relativity – The Next Generation –

Yukawa Institute for Theoretical Physics, Kyoto, Japan 21st February, 2018

5900

Based on JG and N. Kitajima, to appear soon

21cm signals from PBHs

Outline

2 Distribution of primordial black holes

nar

Introduction	Distribution of primordial black holes	21cm signals from PBHs	Conclusions
0000	0000	00000	0

3 21cm signals from PBHs

Distribution of primordial black holes and small-scale constraints

Э

 Introduction
 Distribution of primordial black holes

 •000
 0000

21cm signals from PBHs 00000 Conclusions O

What are primordial black holes (PBHs)?

BH formed in the early universe (Zel'dovich and Novikov 1967; Hawking 1971; Carr 1975...)

- A horizon-sized region with $\delta \gtrsim \delta_{ ext{threshold}}$
- Vast mass range: $m_{\rm Pl} \lesssim M_{\rm PBH} \lesssim 10^5 M_{\odot}$ or even larger
- Inflation, peculiar non-thermal histories, phase transitions...
- Pressureless matter component

Number of PBHs follows Poisson distribution:

$$\mathbb{P}(N_{\text{PBH}}) = \frac{\lambda^{N_{\text{PBH}}} e^{-\lambda}}{N_{\text{PBH}}!} \quad \text{with} \quad \lambda = \langle N_{\text{PBH}} \rangle = \left\langle \delta N_{\text{PBH}}^2 \right\rangle$$

Formation of a PBH is a rare, discrete event

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

 Introduction
 Distribution of primordial black holes
 21 cm signals from PBHs

 ○●○○
 ○○○○○
 ○○○○○

What is the contribution of PBHs to structure formation?

PBHs add scale-inv isocurvature perturbation: $P_{\text{PBH}}(k) = 1/n_{\text{PBH}}$

(Afshordi, McDonald and Spergel 2003; Kashlinsky 2016)

CIB, Ly- α forest, 21cm line...

 Introduction
 Distribution of primordial black holes
 21cm signals from PBHs

 0000
 0000
 00000

Long-lived PBHs are also responsible for LIGO events?

Long-lived PBHs (with $M_{\rm PBH} \gtrsim 10^{15} {\rm g} \sim 10^{-18} M_{\odot}$) can survive today

LIGO events may mean PBHs with merging rate 9 - 240 Gpc^{-3} yr⁻¹

(Bird et al. 2016; Clesse and García-Bellido 2016; Sasaki et al. 2016...)

Where are PBHs from?

Is PBH formation a random event, independent from each other?

- From e.g. the collapse of cosmic string loops, yes
- From inflationary fluctuations, doubtful
- Statistical nature of pert seeding PBHs matters

If PBHs are from primordial perturbation with spectrum of the form

 $P_{\delta}(k) \sim k^{n_s-1}$

what is the PBH distribution and observational consequences?

イロト イポト イヨト イヨト 一日

Introduction	Distribution of primordial black holes	21cm signals from PBHs	Conclusions
0000	0000	00000	0

4 Conclusions

Distribution of primordial black holes and small-scale constraints

21cm signals from PBHs

How to find PBHs

5990

イロト イロト イヨト イヨト

21cm signals from PBHs

How to find PBHs

 λ_1

Distribution of primordial black holes and small-scale constraints

3 Jinn-Ouk Gong

5990

21cm signals from PBHs

How to find PBHs

5990

21cm signals from PBHs

How to find PBHs

5990

Distribution of primordial black holes

21cm signals from PBHs 00000 Conclusions O

How to find PBHs

Accumulating peaks of longer wavelength modes onto shorter ones

(c.f. using curvature perturbation criteria for PBH formation needs caution, Young, Byrnes and Sasaki 2014)

nar

21cm signals from PBHs

How to find PBHs

$$N_{\rm PBH} = N_{\delta_1 > \delta_{*1}} \times N_{\delta_2 > \delta_{*2}} \times \cdots \times N_{\delta_n > \delta_{*n}}$$

Product of random vars: Log-normal distribution

5900

イロト イロト イヨト イヨト

21cm signals from PBHs

Dependence on n_s

5990

Introduction	Distribution of primordial black holes
0000	0000

21cm signals from PBHs

Dependence on n_s

Until L_* there is nothing,

5990

イロト イロト イヨト イヨ

Introduction	Distribution of primordial black holes
0000	0000

21cm signals from PBHs 00000 Conclusions O

Dependence on n_s

Until L_{*} there is nothing, only after then PBHs appear randomly

Poisson distribution

Distribution of primordial black holes

21cm signals from PBHs 00000 Conclusions O

Distribution of PBHs

Distribution of primordial black holes and small-scale constraints

Jinn-Ouk Gong

Distribution of primordial black holes

21cm signals from PBHs 00000 Conclusions O

Spectral index and PBH distribution

Simple scaling relation between var and mean

$$\operatorname{Var}[N_{\text{PBH}}] \propto \begin{cases} \operatorname{Exp}[N_{\text{PBH}}]^{3/2} & \text{for log-normal dist} \\ \operatorname{Exp}[N_{\text{PBH}}] & \text{for Poisson dist} \end{cases}$$

Distribution of primordial black holes and small-scale constraints

Introduction	Distribution of primordial black holes	21cm signals from PBHs	Conclusions
0000	0000	00000	0

4 Conclusions

Distribution of primordial black holes and small-scale constraints

Distribution of primordial black holes

21cm signals from PBHs •0000 Conclusions O

Matter power spectrum

For $k > k_{eq}$, PBHs contribute to additional isocurvature pert:

Small-scale power is enhanced, leading to larger number of haloes

< ロ > < 同 > < 回 > < 回 > < 回 > <

Distribution of primordial black holes

21cm signals from PBHs

Hydrogen 21cm line

Hydrogen 1*s* ground state splitting due to the spin interaction (hyperfine structure)

Spin-parallel (higher energy) \rightarrow spin-antiparallel (lower energy)

イロト イポト イヨト イヨト

Distribution of primordial black holes

21cm signals from PBHs

Conclusions O

Mapping matter using 21cm signals

Hydrogen is most abundant element, so using 21cm signals we can map the distribution of matter (IGM) not optically visible

21cm signals from PBHs

Conclusions O

Differential brightness temperature from haloes

Haloes with masses $\leq 10^4 M_{\odot} - 10^8 M_{\odot}$ are filled with neutral hydrogen atoms and can be a detectable source of 21cm signals

Differential "brightness" temperature $\delta T_b \propto T_S - T_{CMB}$

• • • • • • • • • • • •

Improved forecast constraint on the PBH fraction

21cm constraint can cover ML window $(10^{-6}M_{\odot} \lesssim M_{\rm PBH} \lesssim 100M_{\odot})$

< < >> < <</>

Introduction	Distribution of primordial black holes	21cm signals from PBHs	Conclusions
0000	0000	00000	0

Distribution of primordial black holes and small-scale constraints

Distribution of primordial black holes

21cm signals from PBHs

Conclusions

- PBHs may hide around, still surviving today
- PBH formation can be well approximated as
 - Poisson dist as a totally random event
 - Log-normal dist from mild primordial spectrum
- Enhanced 21cm signals from haloes sourced by PBHs
 - Sensitive even if PBHs occupy sub-percent fraction of DM
 - $10^{-6} M_{\odot} \lesssim M_{\rm PBH} \lesssim 100 M_{\odot}$ can be strongly constrained

< ロ > < 同 > < 回 > < 回 > < 回 > <