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The Gaussian Unitary Ensemble 1

@ Gaussian Unitary Ensemble (GUE) of random matrices

o Consider N x N hermitian matrices H with
(a) random independent entries,
(b) distribution invariant under unitary transformations

= Probability density:

1 2
conste 2N Tr(H7)

@ Largest eigenvalue: A\pax, v >~ 2N for large NV
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The GUE Tracy-Widom distribution F, 2

@ Distribution of the largest eigenvalue: Fy Tracy, Widom ’94
AN ~ 2N + 6ENYE N = 0o
where & has the (GUE) Tracy-Widom distribution F5.
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Probability densities of the GUE Tracy-Widom and the normal distribution
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GUE correlation functions 3

@ Let A =(A1,...,\n) be the N eigenvalues of a GUE random
matrix. The eigenvalues probability density p()\) is given by:

N
p(N)d\ = const A(N)? H e M2V gy,
i=1

where A()\) := det()\g_l)lgiijN is the Vandermonde
determinant.

@ The n-point correlation function p("’)()\l, .o Ay) is the
probability density of observing an eigenvalue at each of the
A,y Ane

@ For GUE, the correlation functions are determinantal, i.e., it
exists a correlation kernel K : R?2 — R such that

p(n)()\l, . ;)\n) = det(K()\,;, Aj))lgi,jgn-




Biorthogonal ensembles 4

@ The GUE eigenvalues measure is a special case of a measure
of the form

N
const det(®;(A;))1<ij<n det(Ws(Aj)1<ijen [ ] ()
i=1

called biorthogonal ensemble.

@ The correlation functions of biorthogonal ensembles are
determinantal. Borodin ’98

o If the families {®;,1 <i < N} and {¥;,1 <j < N} are
chosen such that [ du(A)®;(A\)¥;()\) = 6; j, then the kernel is
given by

N
K(z,y) =Y Up(a)Pk(y)
k=1

@ For GUE, the W;'s and ®;'s are given in terms of Hermite
polynomials
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Largest eigenvalue of GUE 5

@ Using the explicit determinantal structure of the n-point
correlations functions one obtains

P(ANmax < @) = P(ﬂfil{)\i < a})

e (_1)n 00 0o
= Z T / d."L‘l e / dCEn det(K(iL‘i, xj))lgi,jgn
n=0 ’ a a

= det(]l — K)LZ((a,oo))'

o Edge scaling: AN max = 2N + &N/3,
A change of variable and asymptotic analysis gives a formula
for P Tracy, Widom ’94

Fy(s) = ]\}gnoo P(ANmax < 2N + SNI/S) = det(1 — KQ)LQ((SVOO))

with the Airy kernel

Ky(z,y) = /000 dAAi(z + M) Ai(y + ).




The longest increasing subsequence (LIS)

@ Consider a permutation o € Sy

(1 2 3 - N

“\o1 o2 03 -+ on
and denote by /(o) the longest increasing subsequence in
O':(O'l,...,O'N).

e Example: {g(0) = 3 for

(123456
7 \6 24315

@ Graphical representation: k — oy,
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Tracy-Widom distribution in LIS 7

@ Under uniform measure on Sy Baik, Deift, Johansson ’99
lim P({y < 2V N + sNY6) = Fy(s).
N—00
@ For the proof one first studies a Poissonized version (a sort of
“grand-canonical version” of the problem):

N is replaced by a random variable: N ~ Poisson(t?).
w
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@ Let L; be the longest increasing subsequence in this setting,
one first show

lim P(Ly < 2t + st'/?) = Fy(s).
t—00
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Line ensemble for LIS 8

Why do the longest increasing subsequence shows the same
fluctuation law as the largest eigenvalue of GUE matrices?
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Line ensemble for LIS 8
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Line ensemble for LIS 8
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Line ensemble for LIS 8
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Line ensemble for LIS 8
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Line ensemble for LIS 8
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Line ensemble for LIS 8

1 L

X=—t x=0 x=t

Black dots at positions named (X1, X5, X3, X4, ...);
X1>Xo> ...
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Line ensemble for LIS 9

@ For the Poissonized problem, the set of lines has the
distribution as non-intersecting one-sided random walks
starting and ending from fixed positions 0, —1,—2,. ...

@ For M non-intersecting lines, by the Karlin-Mc Gregor
formula, the probability of seeing a configuration of black
point (X1, Xs,...,Xa) at x = 0 is given by

const [det(pt(—i,Xj)lgiJgMP

where py(x,y) = e Y% /(y — x)!
= The black dots have determinantal correlations.
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Line ensemble for LIS

@ The biorthogonal ensemble has a kernel which, after M — oo
limit, becomes

K(ac, y) - Z J€+m(2t)J€+y(2t)
£>0

with J the Bessel functions.
@ Convergence to the Airy kernel K5: under edge scaling

x=2t+ &3, y=2t+ '3,

one has
tl/?’K(x,y) — Ks(&,¢) ast — o0

and
lim P(X; <26+ st'/3) = Fy(s).
—00
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The polynuclear growth (PNG) model

@ The polynuclear growth (PNG) model

@ Height configurations: height function z — h(z,t) € Z,
z,t € R.

@ Dynamics, deterministic part: islands spread with unit speed,
merges when touching

e Dynamics, stochastic part: nucleations (a spike of height 1)
are added with intensity 2.

e PNG droplet: Nucleations restricted to the region |z| < t.

hz,t)
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The polynuclear growth (PNG) model

@ PNG droplet: point-to-point problem

(t/V2.1/V2)

The lines are the space-time trajectories of the boundaries of
the spreading islands
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The polynuclear growth (PNG) model

@ Flat PNG: line-to-point problem

(t/VZ.H/VD)

(t/V2.~t/v2)

The lines are the space-time trajectories of the boundaries of
the spreading islands
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The Airys process

@ For the PNG droplet, the line ensembles approach one can
study also the top layer of the PNG multilayer.

12/3

Fhft %JJLH fﬁli =

L

JJM ’IH\\\
/ L7 \
_ s

@ The process of the fluctuations of the top layer is governed for

large times by the Airy, process, As Prihofer, Spohn ’02
_ h(ut?3t) — 2t + w3
A t1/3 = Az (w)

in the sense of finite-dimensional distributions.
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Tracy-Widom distribution in TASEP

@ TASEP: Totally Asymmetric Simple Exclusion Process

e Configurations: Particles are on Z and at most one particle for
each site

@ Dynamics: particles jumps to their right with rate 1 if the site
is empty

rate | rate 1
TN TN
o @ —
o We use particle labels: z,,(t) > x,41(¢) Ly
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Tracy-Widom distribution in TASEP

Angle 45
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Nb Particles 1200

Particles Radius 1

Jump Rate 1 1.0

Jump Rate 2,... setto 1

Speed =61
o 50 Ao

Setthe parameters M
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Tracy-Widom distribution in TASEP

@ Step initial condition: at time 0 particles occupy Z_

@ For step IC, a multilayer approach gives Johansson’03
lim P(zya(t) > —s(t/2)%) = Fy(s)
t—o0

and joint distribution are governed by the Airys process (this
time one has Laguerre orthogonal polynomials).
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Interlacing particle system: a different approach

@ An extension of TASEP dynamics on interlaced particles
{.I'Z, 1<k<n< N}: Borodin, Ferrari ’08

o Particles tries to jump to their right with rate 1
@ Particles with smaller upper index have higher priority, so they
block or push higher particles to satisfy interlacing *




Interlacing particle system: packed IC

@ For packed initial conditions

BT WET ST .
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the particle system at any time £ > 0 has determinantal
correlations!
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Interlacing particle system: RMT-type projection

@ The projection to the set

{xl y L2 7"'71'%}

is still a Markov process (discrete analogue of the Dyson’s
Brownian Motion of random matrices)

@ The measure on
{2 2N}
is a biorthogonal ensemble, similar to the GUE eigenvalues
distributions (it arises under diffusion scalings)
@ The kernel given in terms of Charlier orthogonal polynomials
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Interlacing particle system: TASEP projection

@ The projection to the set

{x%,x%,...,x{v}

is TASEP.

@ In particular, the point :U{V is common in both projections and
when N,t — oo has Fj fluctuations.
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Beyond F5

@ The interlacing structure was first obtained by  sasamoto ’05:
starting from a formula by schiitz 97 he extended the picture
by adding “summation variables” (the =} for k > 2)

@ Algebraically one can think of the extended picture to have
“determinantal correlations” although the measure is not
anymore necessarily positive, i.e., it is not always a probability
measure.

@ Only the projection to {x%,x%, . ,x]lv} is ensured, a priori, to
be a probability measure.
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Beyond F5

@ The interlacing approach allowed to study the “flat” initial
condition, where for TASEP particles starts from 27Z.

@ The result is that the discovery of the Airy; process, the
analogue of the Airyy process for flat interfaces in KPZ
growth models.

Sasamoto’05, Borodin, Ferrari, Prdhofer, Sasamoto ’06-’08

@ A new determinantal formula for F} is obtained

Sasamoto’05, Ferrari, Spohn’05
F1(28) = det(Il — Kl)L2((s,oo))

where K1(z,y) = Ai(x 4+ y).
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Beyond F5: interlacings vs. line ensembles

@ The approach with interlacing particles can be used to obtain
the flat PNG height fluctuations / line-to-point problem in the
Poisson point picture Borodin, Ferrari, Sasamoto ’07

@ It allows to study also transition processes from flat to curved
interface Borodin, Ferrari, Sasamoto ’08

@ Results in a Fredholm determinant formula for the joint
distributions of height fluctuations.

VS.
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Beyond F5: interlacings vs. line ensembles

@ The approach with interlacing particles can be used to obtain
the flat PNG height fluctuations / line-to-point problem in the
Poisson point picture Borodin, Ferrari, Sasamoto ’07

@ It allows to study also transition processes from flat to curved
interface Borodin, Ferrari, Sasamoto ’08

@ Results in a Fredholm determinant formula for the joint
distributions of height fluctuations.

VS.

@ The multilayer version of the flat PNG leads to a Pfaffian
correlation functions at a single position only Ferrari’04

@ lts scaling limit for ¢ — oo leads to the analogue of F5 for
symmetric matrices, namely the GOE Tracy-Widom
distribution, Fj.

= Recovers Fredholm Pfaffian formula for F} by Tracy, widom ’96
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