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The microstructure of black holes

> A central question in black hole physics is what are the
microstates that account for entropy of the black hole.

> With AdS/CFT, it became clear that we are counting are states of
the dual CFT.

> BUT what are the microstates in the geometric regime?
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AdS/CFT and Fuzzballs

The AdS/CFT argument [KS, Taylor (2007)]:

m For every state of the CFT, there should exist a regular
Asymptotically AdS solution that captures the vevs of gauge
invariant operator in that state.

m Consider now one of the supersymmetric states that accounts for
the entropy of, say, the Strominger-Vafa black hole. Associated
with this state there must exist an Asymptotically AdS solution.

m Since this is a pure state the corresponding geometry must by
horizon-free. Solutions with horizons have entropy and thus
cannot be associated with pure states; horizons are associated
with thermal states.
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AdS/CFT and Fuzzballs

m Thus there should exist exp(S) regular horizon-free solutions,
one for each state counted to account for the black hole entropy.
This is precisely the fuzzball proposal.

m This argument however does not imply that the solutions would
be well-described by supergravity. Most of the states will be
associated with stringy solutions.

> How many solutions do we expect within SUGRA?
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Holographic anatomy

> |n previous works, one typically started from a supergravity
solution and extracted the holographic data (sources and/or vevs)

> One may then use this data to check whether educated guesses
for the dual state are consistent with the holographic data.

> This was applied successfully in a number of non-trivial examples
(Coulomb branch solution [KS, Taylor (2006)], LLM solutions [KS,
Taylor (2007)], fuzzball solutions [Kanitscheider, KS, Taylor (2007)].
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Holographic reconstruction

> In this talk, we will go back to basics and ask the converse:

Given a state can we explicitly work out the bulk solution?
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Generalities

2

To define a theory we typically give the Lagrangian.
Depending on context we may be interested in:
vacuum correlators

(0[O1(z1) -+ - O(2x)[0)
correlators in a non-trivial states,
(@|O1(1) - - - O(zn)|a)

For example, |a)) may be a state that spontaneously breaks some
of the symmetries, a thermal state, a non-equilibrium state, etc.

The correlators may be time-ordered, Wightman functions,
advanced, retarded ...
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Generalities

> Given a theory, a state and a set of operators there is a unique
answer for their correlators.

> Any dual formulation should have the same properties.
> How does it work in holography?
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Generalities

Holography

> Within the gravity approximation:

> The dual QFT is represented by:
An (asymptotically) AdS solution of (d + 1)-dimensional gravity
coupled to matter.

> Operators are dual to bulk fields and the state is encoded in
subleading terms in bulk solutions.
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Generalities

Euclidean vs Lorentzian signature

> If we are interested in time-independent states (vacuum state,
thermal state) we may Wick rotate to Euclidean signature.

> In Lorenzian signature there are different types of correlators
(time-ordered, Wightman, retarded, etc.).

> In Euclidean QFT there is a unique type of correlators.
> So to simplify matters let’s initially focus on Euclidean signature.
> We will return to full fledged Lorentzian discussion afterwards.
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Euclidean signature
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Euclidean signature

Bulk scalar field

> Bulk scalar fields ® of mass m? = A(A — d) are dual to operators
Ox of dimension A.

= The solution of the bulk field equation has an asymptotic
expansion of the form [de Haro, Solodukhin, KS (2000)]:

O(x,r) = Td_A¢(0) +---+log T2¢(2A—d) + TA(/)(zA—d) + -

> ¢(0) is the source for the dual operator and all blue terms are
locally determined by it.

> ¢2a—q) is related with the expectation value of O,

(Oa) ~ d2a—a)
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Euclidean signature

QFT vs gravity

> We argued earlier that the Lagrangian and the state uniquely
specify the correlators.

> The counterpart of this statement on the gravity side is that
(¢(0), 2a—ay) uniquely specify a bulk solution.

> One way to see this is to use a radial Hamiltonian formalism,
where the radial direction plays the role of time.

> The renormalised radial canonical momentum is
A = (Oa) ~ d2a—a)

> By a standard Hamiltonian argument, specifying the conjugate
pair (¢, Ta) uniquely picks a solution. [Papadimitriou, KS (2004)]
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Euclidean signature

Holographic reconstruction |

Given QFT data (¢, (Oa)) there is a unique solution
®(z,r) of the bulk field equations.

Kostas Skenderis A holographic construction of CFT excited states



Euclidean signature

QFT vs gravity

> In QFT the vacuum structure is a dynamical question: in general,
one cannot tune the value of (Oa).

> The counterpart of this statement in gravity is that regularity in
the interior selects (Ox).

> A generic pair (¢(0), 7a) leads to a singular solution.
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Lorentzian signature
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Lorentzian signature

New issues

> On the gravity side:
> |n Lorentzian signature the bulk equations of motion do not have a
unique solution given boundary conditions. One needs in addition
initial conditions.
> There are non-trivial normalisable modes that vanish at the
boundary.

> On the QFT side:

> Given a Lagrangian and operators there is more than one type of
correlator one may wish to compute.

> One may wish to compute time-ordered, anti-time ordered,
Wightman products, etc. on non-trivial states.
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Lorentzian signature

On the QFT side one can summarise the new data needed by

> providing a contour in the complex time plane
> specifying where operators are inserted in this contour.
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Lorentzian signature

Examples
Co Cl
4t> T — O —
-T - (L
C3 C2
a b ¢

a Vacuum-to-vacuum contour: computes correlators (0|T°(- - - )|0)
b In-in contour: computes correlators {(af - - - |)
¢ Thermal contour: computes thermal correlators
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Lorentzian signature

Examples

> Wightman in-in 2-point function, (0|O(x)O(y)|0)

t
tl =

t2

> Thermal Wightman 2-point function.
Lt

- tl

t2
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Lorentzian signature

Real-time gauge/gravity duality

The holographic prescription is to use "piece-wise" holography:
m Real segments are associated with Lorentzian solutions,
m Imaginary segments are associated with Euclidean solutions,
m Solutions are matched at the corners.
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Lorentzian signature

Examples
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Lorentzian signature

Comments

> |n the extended space-time associated to a given contour,
boundary conditions and regularity in the interior uniquely fix the
bulk solution.

> The ’Euclidean caps’ can also be thought of as Hartle-Hawking
wave functions.
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Lorentzian signature

Holographic reconstruction Il: Lorentzian case

Given QFT data (¢(), (Oa)) and a contour in the complex

time plane there is a unique solution ®(x, r) of the bulk field
equations.
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Holographic construction of excited CFT states
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Holographic construction of excited CFT states

Excited states

> Excited states are obtained by acting with operators on the CFT

vacuum,
|A) = 040)
> Using the in-in formalism one may compute correlation functions
in this state:
TOL
|al I
— ]T
el "
3|

> This means that we are considering the path integral

Z[b)) = /[Dw] exp <—Z/ dtd* 'z /=g0) (Lorr + ¢(o)0A))
C
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Holographic construction of excited CFT states

1-point functions

> |n preparation for the holographic discussion let us discuss the
1-point function,

<()_\ (1)> = /['D(p]()A(:,I‘) exp (—i/(‘dtdd_lxw/—g(o) (ACQFT + ¢(0)0A)>
> To leading order in the sources,

(Oalr)) = (0]0A(2)0a(0)|0)dy) + 65 (0[OK (00) O ()]0)
= (0[Oa(z |A>¢(0)+¢(0)<A|OA r)10)

The 2-point functions here are Wightman functions, not
time-ordered.
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Holographic construction of excited CFT states

Remarks

> Setting quo) =0,¢p =1 and taking z — oo computes the norm
of the state.
> The orthogonality of the 2-point functions implies that

(Oa,(z)) =0,  A;#A

to linear order in sources.
> However, to higher order in the sources,

<0Ai (T)> 7é Oa Ai 7é A
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Holographic construction of excited CFT states

Holographic construction

> In holography each gauge invariant operator O, is mapped to a
corresponding bulk field ®,.

> If we are interested in the holographic construction of the CFT
state |A) to leading order in the sources, it suffices to consider
only the corresponding field ® to linear order.

> To higher order one needs to consider other bulk fields as well.
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Holographic construction of excited CFT states

Holographic construction

The time contour and the corresponding bulk space-time are:

Tol tzI L

= T T
Tsl o t1I L
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Holographic construction of excited CFT states

Procedure

> We need to find regular solutions of the (linear) bulk equations
with the prescribed boundary conditions in each part of the
extended spacetime.

> Impose the matching conditions.

> | will present the results for a scalar field in Ad.S; in global
coordinates.

> We have also carried the same computation in Poincaré
coordinates.
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Holographic construction of excited CFT states

Obtaining the solution: Euclidean solutions

> |n the past cap we consider a solution with a delta function
source:

5= (10,0) + s (10, 0) = (70 — a)é(9)

> This leads to

oo

Oy (10,7, 0) = Z Z (4;2 [9(—7-0 — |a|)¢(—0) (W k)e—w;kro-;-ikqs_i_

n=0k€EZ

+ i - W )
H0(70 -+ )b (i R 7T 4 d e T T ) g )

where g(wu, k|,7) ~ 7* as r — 0 and w, are the frequencies of
the normalizable modes.

> There is a similar expression at the future EAdS cap.

Kostas Skenderis A holographic construction of CFT excited states



Holographic construction of excited CFT states

Lorentzian solution |

> The Lorentzian solution in the first Lorentzian part is a sum of
normalisable modes

—iwt ; it —i .
DL (1,7, 8) = 3 (anpe™ @i HES | gl it =Yg k] p).
n,k

> There is a similar expression for the second Lorenzian part.
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Holographic construction of excited CFT states

Matching conditions

> The matching conditions are continuity of fields and momenta
along the contour:

Py T0=0 (I)lL|t1:0’ 3TO(I)J_E|TO:0 - *iath)ﬂtl:o
(I)Htl:T = (I)2L|t2:T’ 6th>1L|t1:T = _6t2¢’%|t2:T
q)%‘tz:QT = (I)E’rgzo’ 8752(1)%’152:2T = _Z-87'3CI)E|7-3:0'

> The matching conditions fix all constants in terms of the sources.
In particular, they imply

Upk ~ qS(i())(w:;k., k)a aj-lk ~ O(+0) (W;ka k)
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Holographic construction of excited CFT states

The solution across the matching surface

Past Euclidean Lorentzian Lorentzian Future Euclidean

AN
VIV

Amplitude of a single mode as a function of (Euclidean and then
Lorentzian) time for fixed r. ¢.
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Holographic construction of excited CFT states

Holographic 1-point function

> The 1-point function is extracted from the asymptotic,
O(z,r) =+ 1% A+ (Oa) ~ da—a)
> In our case the solution is normalizable, so

(Oa) = lim 7= 2@} (.1, ¢)

. —iwl t+ik + - t—ike \ ;
Nll_r,% p (925(0( Wy R)e ™ T ¢+¢(0)(wnk7k)e i ¢) ig(wnk, [k],7)

> The limit and the sums can be evaluated exactly [van Rees, KS
(2008)] leading to

(Oa()) = (0l0a(2)04(0)]0)é(5) + ¢y (00X (20)Oa()]0)

in exact agreement with our earlier QFT computation!
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Holographic construction of excited CFT states

Summary

Bulk excitations (normalizable modes) are dual to excited
CFT states.
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Holographic construction of excited CFT states

The ‘extrapolation dictionary’

> An a priori different dictionary was suggested in the early days of
AdS/CFT [Banks, Douglas, Horowitz, Martinec (1998)].

> Boundary correlation functions can be obtained as a limit of bulk
correlation functions:

(Oa@1) - Oalwn))grr = lim 1" (w1,7) - (2, 7)) Butk
> This prescription is equivalent to the standard one for scalars in a
fixed background [Harlow, Stanford (2011)]. It also agrees with the

real-time prescription for non-equilibrium scalar 2-point functions
[Keranen, Kleinert (2014)].
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Holographic construction of excited CFT states

Bulk reconstruction

> The extrapolate dictionary suggests the following map between
boundary and bulk operators:

d(z,r) = /ddm’K(x’|r,x)OA(x’)

K is called the smearing function.

> Bulk correlation functions are then related to boundary
correlation functions by

<(I)($17 Tl) o q)(-rnvrn»Bulk: =

/ddw/l...ddx/nK(:c'ﬂrl, z1) ... K (2 |rn, ©,)(Oa(2)) - Oa(2),))orr

[Banks, Douglas, Horowitz, Martinec (1998)], ... [Hamilton, Kabat, Lifschytz,
Lowe (2006)] ...
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Holographic construction of excited CFT states

Smearing function

> |n our discussion we reconstructed the bulk solution from
(Oa(z"))

> One can also follow similar steps to those in [Hamilton, Kabat,
Lifschytz, Lowe (2006)] to show that

O (x,r) = /dda:/K(m’\r,xKOA(z/))

In our derivation the smearing function is automatically
convergent due to i¢’s that originate from the Euclidean caps. (In
Hamilton et al these insertions were added by hand.)
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Holographic construction of excited CFT states

Remarks

> |n our derivation the relation was between classical fields in the
bulk and expectation values of boundary operators in a specific
state.

> This appears different than a map between bulk and boundary
operators.

> If we consider a quantized bulk field

Bt ) = 3 (e 0O a1 )0 k] )
n,k

where now a,,;, !, are creation and annihilation operators, then
our results would imply that <,z‘><i0) are quantum operators.

> However, from the QFT perspective qﬁ(io) are classical sources
that couple to quantum operators.

Kostas Skenderis A holographic construction of CFT excited states



Holographic construction of excited CFT states

Beyond linear fields

This boundary-to-bulk map cannot hold in this form in complete
generality.

> |If the QFT contains operators with dimensions, Oa,, Oa,,Oa,,
with As = A, + A,. Then [KS, Taylor (2006)],

<OA3> =TAg T C12TA; TTA,

where ¢y, is a constant. This suggests
By(e,r) = / @12 K (2 |r, ) {O g () + / a2’ K, (2|, 2) (O, (') {Ona ()

> Locality also suggest non-linear terms should be added to the
map [Kabat, Lifschytz, Lowe (2011)] ...[Kabat, Lifschytz (2015)].
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Fuzzballs
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Fuzzballs

How many fuzzballs do we expect within SUGRA?

m We argued earlier that regular supergravity solutions are
uniquely specified by the 1-point functions of the dual operators,

(@]Osfe)

m Within supergravity we only have access to fields dual to chiral
primary operators.
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Fuzzballs

D1-D5 system

m Ramond ground states are given by
) = OF10)
where O% is a 1/4 BPS operator obtained from chiral primary by

spectra flow.

m Therefore, our earlier analysis shows that there is a linearized
solution for every such state.

m Barring linearization instability, there should exist a regular
supergravity solution for every such state.

w All of the entropy of D1-D5 system may be accounted for within
supergravity.
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Fuzzballs

D1-D5-P system

m In this case we need to add left moving excitations
) = 0a[0)
The operator O, breaks another 1/2 of SUSY relative to R

ground states.

m Our earlier analysis shows now that there is no a linearized
solution for any such state.

Since CFT 2-point functions are diagonal and here we would need the
2-point function of a 1/4 BPS and 1/8 BPS operator.
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Fuzzballs

D1-D5-P system

m At next order we would need the 3-point function of a R ground
state operator with two 1/8 BPS operators to be non-zero.

m For this to be case the OPE of two O, operators to contain a R
ground state.

w These operators should be in correspondence with R ground
states.

w This suggests that the number of supergravity fuzzball solutions
for the D1-D5-P system has the same growth as the 2 charge
solutions.
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Conclusions
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Conclusions

Conclusions

> | discussed how QFT data reconstruct classical fields in the bulk,
both in Euclidean and Lorentzian signature.

> The map works in full generality.

> | explicitly worked out the dual of the CFT excited state at the
linearized level.

> |t is straightforward (but tedious) to work out the dual at the
non-linear order. The dual solution would involve many bulk
fields.

> | discuss implications for the fuzzball program.
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