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The microstructure of black holes

â A central question in black hole physics is what are the
microstates that account for entropy of the black hole.

â With AdS/CFT, it became clear that we are counting are states of
the dual CFT.

â BUT what are the microstates in the geometric regime?
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AdS/CFT and Fuzzballs

The AdS/CFT argument [KS, Taylor (2007)]:
For every state of the CFT, there should exist a regular
Asymptotically AdS solution that captures the vevs of gauge
invariant operator in that state.
Consider now one of the supersymmetric states that accounts for
the entropy of, say, the Strominger-Vafa black hole. Associated
with this state there must exist an Asymptotically AdS solution.
Since this is a pure state the corresponding geometry must by
horizon-free. Solutions with horizons have entropy and thus
cannot be associated with pure states; horizons are associated
with thermal states.
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AdS/CFT and Fuzzballs

Thus there should exist exp(S) regular horizon-free solutions,
one for each state counted to account for the black hole entropy.
This is precisely the fuzzball proposal.
This argument however does not imply that the solutions would
be well-described by supergravity. Most of the states will be
associated with stringy solutions.

â How many solutions do we expect within SUGRA?
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Holographic anatomy

â In previous works, one typically started from a supergravity
solution and extracted the holographic data (sources and/or vevs)

â One may then use this data to check whether educated guesses
for the dual state are consistent with the holographic data.

â This was applied successfully in a number of non-trivial examples
(Coulomb branch solution [KS, Taylor (2006)], LLM solutions [KS,
Taylor (2007)], fuzzball solutions [Kanitscheider, KS, Taylor (2007)].
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Holographic reconstruction

â In this talk, we will go back to basics and ask the converse:

Given a state can we explicitly work out the bulk solution?
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QFT

â To define a theory we typically give the Lagrangian.
â Depending on context we may be interested in:
à vacuum correlators

〈0|O1(x1) · · ·O(xn)|0〉

à correlators in a non-trivial states,

〈α|O1(x1) · · ·O(xn)|α〉

For example, |α〉 may be a state that spontaneously breaks some
of the symmetries, a thermal state, a non-equilibrium state, etc.

â The correlators may be time-ordered, Wightman functions,
advanced, retarded ...

Kostas Skenderis A holographic construction of CFT excited states



Generalities
Euclidean signature

Lorentzian signature
Holographic construction of excited CFT states

Fuzzballs
Conclusions

QFT

â Given a theory, a state and a set of operators there is a unique
answer for their correlators.

â Any dual formulation should have the same properties.
â How does it work in holography?
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Holography

â Within the gravity approximation:
â The dual QFT is represented by:

An (asymptotically) AdS solution of (d+ 1)-dimensional gravity
coupled to matter.

â Operators are dual to bulk fields and the state is encoded in
subleading terms in bulk solutions.
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Euclidean vs Lorentzian signature

â If we are interested in time-independent states (vacuum state,
thermal state) we may Wick rotate to Euclidean signature.

â In Lorenzian signature there are different types of correlators
(time-ordered, Wightman, retarded, etc.).

â In Euclidean QFT there is a unique type of correlators.
â So to simplify matters let’s initially focus on Euclidean signature.
â We will return to full fledged Lorentzian discussion afterwards.
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Bulk scalar field

â Bulk scalar fields Φ of mass m2 = ∆(∆− d) are dual to operators
O∆ of dimension ∆.

à The solution of the bulk field equation has an asymptotic
expansion of the form [de Haro, Solodukhin, KS (2000)]:

Φ(x, r) = rd−∆φ(0) + · · ·+ log r2ψ(2∆−d) + r∆φ(2∆−d) + · · ·

â φ(0) is the source for the dual operator and all blue terms are
locally determined by it.

â φ(2∆−d) is related with the expectation value of O,

〈O∆〉 ∼ φ(2∆−d)
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QFT vs gravity

â We argued earlier that the Lagrangian and the state uniquely
specify the correlators.

â The counterpart of this statement on the gravity side is that
(φ(0), φ(2∆−d)) uniquely specify a bulk solution.

â One way to see this is to use a radial Hamiltonian formalism,
where the radial direction plays the role of time.

â The renormalised radial canonical momentum is

π∆ = 〈O∆〉 ∼ φ(2∆−d)

â By a standard Hamiltonian argument, specifying the conjugate
pair (φ(0), π∆) uniquely picks a solution. [Papadimitriou, KS (2004)]
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Holographic reconstruction I

Given QFT data (φ(0), 〈O∆〉) there is a unique solution
Φ(x, r) of the bulk field equations.
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QFT vs gravity

â In QFT the vacuum structure is a dynamical question: in general,
one cannot tune the value of 〈O∆〉.

â The counterpart of this statement in gravity is that regularity in
the interior selects 〈O∆〉.

â A generic pair (φ(0), π∆) leads to a singular solution.
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New issues

â On the gravity side:
â In Lorentzian signature the bulk equations of motion do not have a

unique solution given boundary conditions. One needs in addition
initial conditions.

â There are non-trivial normalisable modes that vanish at the
boundary.

â On the QFT side:
â Given a Lagrangian and operators there is more than one type of

correlator one may wish to compute.
â One may wish to compute time-ordered, anti-time ordered,

Wightman products, etc. on non-trivial states.
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QFT

On the QFT side one can summarise the new data needed by

â providing a contour in the complex time plane
â specifying where operators are inserted in this contour.
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Examples

t

ïT

T
C1

a b c

C0

C3 C2

a Vacuum-to-vacuum contour: computes correlators 〈0|T (· · · )|0〉
b In-in contour: computes correlators 〈α| · · · |α〉
c Thermal contour: computes thermal correlators
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Examples

â Wightman in-in 2-point function, 〈0|O(x)O(y)|0〉

0

t
t1

t2

â Thermal Wightman 2-point function.

0

t

t2

t1
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Real-time gauge/gravity duality [van Rees, KS (2008)]

The holographic prescription is to use "piece-wise" holography:
Real segments are associated with Lorentzian solutions,
Imaginary segments are associated with Euclidean solutions,
Solutions are matched at the corners.
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Examples

a

b

c E LL

E EL L

ELE
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Comments

â In the extended space-time associated to a given contour,
boundary conditions and regularity in the interior uniquely fix the
bulk solution.

â The ’Euclidean caps’ can also be thought of as Hartle-Hawking
wave functions.
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Holographic reconstruction II: Lorentzian case

Given QFT data (φ(0), 〈O∆〉) and a contour in the complex
time plane there is a unique solution Φ(x, r) of the bulk field
equations.
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Excited states

â Excited states are obtained by acting with operators on the CFT
vacuum,

|∆〉 = O∆|0〉
â Using the in-in formalism one may compute correlation functions

in this state:

τ0

τ3

t1

t2
T

×|a|

×|b|

â This means that we are considering the path integral

Z[φ(0)] =

∫
[Dϕ] exp

(
−i
∫
C

dtdd−1x
√−g(0)

(
LQFT + φ(0)O∆

))
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1-point functions

â In preparation for the holographic discussion let us discuss the
1-point function,

〈O∆(x)〉 =

∫
[Dϕ]O∆(x) exp

(
−i
∫
C

dtdd−1x
√−g(0)

(
LQFT + φ(0)O∆

))
â To leading order in the sources,

〈O∆(x)〉 = 〈0|O∆(x)O∆(0)|0〉φ−(0) + φ+
(0)〈0|O

†
∆(∞)O∆(x)|0〉

= 〈0|O∆(x)|∆〉φ−(0) + φ+
(0)〈∆|O∆(x)|0〉

The 2-point functions here are Wightman functions, not
time-ordered.
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Remarks

â Setting φ+
(0) = 0, φ−(0) = 1 and taking x→∞ computes the norm

of the state.
â The orthogonality of the 2-point functions implies that

〈O∆i
(x)〉 = 0, ∆i 6= ∆

to linear order in sources.
â However, to higher order in the sources,

〈O∆i(x)〉 6= 0, ∆i 6= ∆
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Holographic construction

â In holography each gauge invariant operator O∆i
is mapped to a

corresponding bulk field Φi.

â If we are interested in the holographic construction of the CFT
state |∆〉 to leading order in the sources, it suffices to consider
only the corresponding field Φ to linear order.

â To higher order one needs to consider other bulk fields as well.
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Holographic construction

The time contour and the corresponding bulk space-time are:

τ0

τ3

t1

t2
T

×|a|

×|b|

τ3

t2 L

t1 L

T

2T

τ0

E

E

|b|×

|a|×
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Procedure

â We need to find regular solutions of the (linear) bulk equations
with the prescribed boundary conditions in each part of the
extended spacetime.

â Impose the matching conditions.
â I will present the results for a scalar field in AdS3 in global

coordinates.
â We have also carried the same computation in Poincaré

coordinates.

Kostas Skenderis A holographic construction of CFT excited states



Generalities
Euclidean signature

Lorentzian signature
Holographic construction of excited CFT states

Fuzzballs
Conclusions

Obtaining the solution: Euclidean solutions

â In the past cap we consider a solution with a delta function
source:

Φ−E = rd−∆φ−(0)(τ0, φ) + . . . , φ−(0)(τ0, φ) = δ(τ0 − a)δ(φ)

â This leads to

Φ−E(τ0, r, φ) =

∞∑
n=0

∑
k∈Z

(
i

4π2

[
θ(−τ0 − |a|)φ−(0)(ω

−
nk, k)e−ω

−
nkτ0+ikφ+

+θ(τ0 + |a|)φ−(0)(ω
+
nk, k)e−ω

+
nkτ0+ikφ

]
+ d−nke−ω

−
nkτ0+ikφ

)
g(ωnk, |k|, r)

where g(ωnk, |k|, r) ∼ r∆ as r → 0 and ω±nk are the frequencies of
the normalizable modes.

â There is a similar expression at the future EAdS cap.
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Lorentzian solution I

â The Lorentzian solution in the first Lorentzian part is a sum of
normalisable modes

Φ1
L(t1, r, φ) =

∑
n,k

(anke
−iω+

nkt1+ikφ + a†nke
iω+

nkt1−ikφ)ig(ωnk, |k|, r).

â There is a similar expression for the second Lorenzian part.

Kostas Skenderis A holographic construction of CFT excited states



Generalities
Euclidean signature

Lorentzian signature
Holographic construction of excited CFT states

Fuzzballs
Conclusions

Matching conditions

â The matching conditions are continuity of fields and momenta
along the contour:

Φ−E
∣∣
τ0=0

= Φ1
L

∣∣
t1=0

, ∂τ0Φ−E
∣∣
τ0=0

= −i∂t1Φ1
L

∣∣
t1=0

Φ1
L

∣∣
t1=T

= Φ2
L

∣∣
t2=T

, ∂t1Φ1
L

∣∣
t1=T

= −∂t2Φ2
L

∣∣
t2=T

Φ2
L

∣∣
t2=2T

= Φ+
E

∣∣
τ3=0

, ∂t2Φ2
L

∣∣
t2=2T

= −i∂τ3Φ+
E

∣∣
τ3=0

.

â The matching conditions fix all constants in terms of the sources.
In particular, they imply

ank ∼ φ−(0)(ω
+
nk, k), a†nk ∼ φ+

(0)(ω
−
nk, k)
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The solution across the matching surface

|a|
−|a|τ0

0

Past Euclidean

t1

T

Lorentzian

t2

2T

Lorentzian

τ3

Future Euclidean

Amplitude of a single mode as a function of (Euclidean and then
Lorentzian) time for fixed r, φ.
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Holographic 1-point function

â The 1-point function is extracted from the asymptotic,

Φ(x, r) = · · ·+ r∆φ(2∆−d) + · · · , 〈O∆〉 ∼ φ(2∆−d)

â In our case the solution is normalizable, so

〈O∆〉 = lim
r→0

r−∆Φ1
L(r, t, φ)

∼ lim
r→0

∑
n,k

(
φ−(0)(ω

+
nk, k)e−iω

+
nkt+ikφ + φ+

(0)(ω
−
nk, k)eiω

+
nkt−ikφ

)
ig(ωnk, |k|, r)

â The limit and the sums can be evaluated exactly [van Rees, KS
(2008)] leading to

〈O∆(x)〉 = 〈0|O∆(x)O∆(0)|0〉φ−(0) + φ+
(0)〈0|O

†
∆(∞)O∆(x)|0〉

in exact agreement with our earlier QFT computation!
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Summary

Bulk excitations (normalizable modes) are dual to excited
CFT states.
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The ‘extrapolation dictionary’

â An a priori different dictionary was suggested in the early days of
AdS/CFT [Banks, Douglas, Horowitz, Martinec (1998)].

â Boundary correlation functions can be obtained as a limit of bulk
correlation functions:

〈O∆(x1) · · ·O∆(xn)〉QFT = lim
r→0

r−n∆〈Φ(x1, r) · · ·Φ(xn, r)〉Bulk

â This prescription is equivalent to the standard one for scalars in a
fixed background [Harlow, Stanford (2011)]. It also agrees with the
real-time prescription for non-equilibrium scalar 2-point functions
[Keranen, Kleinert (2014)].
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Bulk reconstruction

â The extrapolate dictionary suggests the following map between
boundary and bulk operators:

Φ(x, r) =

∫
ddx′K(x′|r, x)O∆(x′)

K is called the smearing function.
â Bulk correlation functions are then related to boundary

correlation functions by

〈Φ(x1, r1) · · ·Φ(xn, rn)〉Bulk =∫
ddx′1...d

dx′nK(x′1|r1, x1) . . .K(x′n|rn, xn)〈O∆(x′1) · · ·O∆(x′n)〉QFT

[Banks, Douglas, Horowitz, Martinec (1998)], ... [Hamilton, Kabat, Lifschytz,
Lowe (2006)] ...

Kostas Skenderis A holographic construction of CFT excited states



Generalities
Euclidean signature

Lorentzian signature
Holographic construction of excited CFT states

Fuzzballs
Conclusions

Smearing function

â In our discussion we reconstructed the bulk solution from
〈O∆(x′)〉

â One can also follow similar steps to those in [Hamilton, Kabat,
Lifschytz, Lowe (2006)] to show that

ΦL(x, r) =

∫
ddx′K(x′|r, x)〈O∆(x′)〉

In our derivation the smearing function is automatically
convergent due to iε’s that originate from the Euclidean caps. (In
Hamilton et al these insertions were added by hand.)
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Remarks

â In our derivation the relation was between classical fields in the
bulk and expectation values of boundary operators in a specific
state.

â This appears different than a map between bulk and boundary
operators.

â If we consider a quantized bulk field

Φ̂L(t1, r, φ) =
∑
n,k

(ânke
−iω+

nkt1+ikφ + â†nke
iω+

nkt1−ikφ)ig(ωnk, |k|, r)

where now ank, a
†
nk are creation and annihilation operators, then

our results would imply that φ±(0) are quantum operators.

â However, from the QFT perspective φ±(0) are classical sources
that couple to quantum operators.
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Beyond linear fields

This boundary-to-bulk map cannot hold in this form in complete
generality.

â If the QFT contains operators with dimensions, O∆1 , O∆2 , O∆3 ,
with ∆3 = ∆1 + ∆2. Then [KS, Taylor (2006)],

〈O∆3〉 = π∆3 + c12π∆1π∆2

where c12 is a constant. This suggests

Φ3(x, r) =

∫
ddx′K(x′|r, x)〈O∆3

(x′)〉+
∫
ddx′K1(x′|r, x)〈O∆1

(x′)〉〈O∆2
(x′)〉

â Locality also suggest non-linear terms should be added to the
map [Kabat, Lifschytz, Lowe (2011)] ...[Kabat, Lifschytz (2015)].
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How many fuzzballs do we expect within SUGRA?

We argued earlier that regular supergravity solutions are
uniquely specified by the 1-point functions of the dual operators,

〈α|Oi|α〉

Within supergravity we only have access to fields dual to chiral
primary operators.
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D1-D5 system

Ramond ground states are given by

|α〉 = ORα |O〉

where ORα is a 1/4 BPS operator obtained from chiral primary by
spectra flow.
Therefore, our earlier analysis shows that there is a linearized
solution for every such state.
Barring linearization instability, there should exist a regular
supergravity solution for every such state.

à All of the entropy of D1-D5 system may be accounted for within
supergravity.
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D1-D5-P system

In this case we need to add left moving excitations

|α〉 = Oα|O〉

The operator Oα breaks another 1/2 of SUSY relative to R
ground states.
Our earlier analysis shows now that there is no a linearized
solution for any such state.
Since CFT 2-point functions are diagonal and here we would need the
2-point function of a 1/4 BPS and 1/8 BPS operator.
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D1-D5-P system

At next order we would need the 3-point function of a R ground
state operator with two 1/8 BPS operators to be non-zero.
For this to be case the OPE of two Oα operators to contain a R
ground state.

à These operators should be in correspondence with R ground
states.

à This suggests that the number of supergravity fuzzball solutions
for the D1-D5-P system has the same growth as the 2 charge
solutions.
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Conclusions

â I discussed how QFT data reconstruct classical fields in the bulk,
both in Euclidean and Lorentzian signature.

â The map works in full generality.
â I explicitly worked out the dual of the CFT excited state at the

linearized level.
â It is straightforward (but tedious) to work out the dual at the

non-linear order. The dual solution would involve many bulk
fields.

â I discuss implications for the fuzzball program.
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