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Introduction
The Neutron Star structure is defined by:
e TOV (General Relativity) + EoS (Nuclear Physics)

e EoS of nuclear matter still unknown for n > ng.;

e Big uncertainty on the NS structure

e Non-linear map between EoS and mass-radius (mass-A):

e Standard NS structure problem
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Motivation

Constraining nuclear matter parameters from astrophysical observations
e Parametrize the EOS as a Taylor expansion around n4¢
e Using supervised machine learning to learn the non-linear maps

e Impact/dependence of the nuclear matter parameters on A and R

Supervised Learning was already explored in the inverse stellar problem in
[Yuki Fujimoto, et. al., PRD 98, 023019 (2018))]

e Used DNN to learn the non-linear map between mass-radius and EoS

e EOoS inference from a set of mass-radius observational data



Generating EoS: parametrization

e Homogeneous nuclear matter in S-equilibrium: Taylor expansion (up
to third order) around = = (n — ngat)/(3nsat)
E(nn, np) = esat(n) + esym(”)52

where the isoscalar/isovector parts

1 1
esat(x) = Esat + §K5at$2 + ngath

1 1
esym(n) = Esym + Lsymx + éKsymx2 + ngyng

where n = n,, + n,, is the baryonic density and 6 = (n,, — n,)/n is the
asymmetry.

e Taylor expansions near the saturation density but parameterizations at
supra-saturation densities.

e [N.B. Zhang, et. al., The Astrophysical Journal 859, 90 (2018)]
e [Margueron, J.,et. al., PRC, 97, 025806 (2017)]



Generating EoS: physical constraints

e The EoS parameter space is 7-dimensional

EoS; = (Esat, Ksat, Qsats Esym, Lsym, Ksym: Qsym )i ~ N (11, X)
e No a priori correlation between the empirical parameter (X diagonal)
e The correlations arise from the following constraints (filters):

e Positive P(n) and £(n) gradients (thermodynamic stability)

The speed of sound < ¢ (causality)

Supports 1.97M,

Predicts 70 < Ay 4p, < 580

Positive symmetry energy esym

e We used the SLy4 EoS (n < mgq) for the crust



Generating EoS: sample space
e We have fixed F,,;; = —15.8 MeV

e Sampling from a 6-dimensional EOS parameter space
EoS; = (Ksat7 Qsats Esym» Lsyma Ksyma stm)i ~ N(H’v 2)

e Mean values p; and variances o;;

i M]3 [MeV]

Kat 230 20
Qsat 300 400
Esym 32 2

Lsym 60.3 15
Keym  -100 100
Qsym 0 400

e From the 8 x 107 samped EoS, only 13038 EoS have passed all
filters.



Diagrams
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Supervised Machine Learning

e Our goal is to learn the following non-linear maps

AMi (Ksat7 Qsah Esynu Lsymv Ksyma stm)

RMi (Ksata Qsata Esymu Lsyrm Ksyma stm)

e One can then analyze the exact effect of each EoS parameter on A
and R

e Two supervised machine learning methods

e Deep Neural Networks (DNN)
e Supportive Vector Machines Regresion (SVM-R)



Deep Neural Networks

e Hierarchical layers of neurons that perform a complex non-linear
transformation of the inputs

A
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[Figure from Pankaj Mehta, et. al., Physics Reports 810 (2019) 1-124]
e Training a DNN consists in finding the optimal weights and biases by
minimizing a loss function, e.g.,

Lw,b) = - S (w,b) — y)* - (MSE)

1



Supportive Vector Machines Regression

e Fits a hyper-tube of radius € that encloses as many data points as
possible with a minimal number of violations.
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[Figure from Shi, et. al., Flood Prediction Using Support Vector Machines (SVM)]



Learning procedure

e Data set: 13038 EoS
e Split the data set into training (80%) and test (20%) sets

e b5-fold validation
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Best DNN and SVM-R models: performance

e Evaluation of RMSE = /% 3;(§; — v:)? on test set (2608 EoS)

RMSE
DNN SVM-R

Avomg 16.646  23.547
At1.am, 1.932 2.236
Ao 0.227  0.556
Riom, [km]  0.007  0.012
Riam, [km]  0.006  0.010
Riom,, [km] 0.007  0.019




Results: SVMR and DNN comparison

e Dependence of Ay 4n, on (Qsym, Qsat)

SVMR DNN
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e DNN predicts almost a linear correlation A1 4nr., ~ aQsym + bQsat

e There is a region where Ay 45, is insensitive to Qgy,, for SVMR



Results: SVMR and DNN comparison

e Diference in prediction: SVMR(A1.4a7,) - DNN(A1421,)
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e The discrepancy is of AAj4p7, <9



Results: dependence
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e The dependence changes with increasing M

e Rionm, and Ry4p, are quite insensitive to Qsym and Quat

of R(stma Qsat) on M
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Results: dependence of A(Qsym, @sat) on M
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e The dependence of A with increasing M is similar to Rjs
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Results: effect of { Ly, Ksat} on Rian, and Ay,
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® Lgym shows almost no effect Aj4a, .

e These same happens with Ry 4, for Ly, > 40.



Conclusions

e The supervised ML methods are able to accurately learn the non-linear
maps between the EoS empirical parameters and both R and A.

e They allow to study the exact dependence of each empirical
parameter on astrophysical observables.

e These non-linear maps allow to constraining nuclear matter properties
from astrophysical quantities.

e NS observations are presently the only way of accessing the cold high
density QCD phase diagram
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