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NEUTRON STAR MERGERS

Credit: Carl Knox

Post-merger remnant scenarios and evolution



LONG-LIVED NEUTRON STARS

» How do you make a long-lived neutron star?

» Neutron star post-merger remnant born with mass less than the Myqy - will
produce an infinitely stable remnant (H).

» Post-merger remnant born with mass between 1 — 1.2M+,y will collapse into a

black hole at some time 7, (F).




LONG-LIVED NEUTRON STARS

A LONG-LIVED NEUTRON STAR IS BORN. ...

> It will emit
gravitational waves!

» Can we detect
them? How?

Credit: Paul Lasky



WORTH LOOKING?... NOT REALLY...

» Detecting gravitational
waves from a long-lived
post-merger remnant

» Constraining parameters
from the X-ray afterglow
leads to much more
sensitive search... but
still not really worth
looking.
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GAMMA-RAY BURST AFTERGLOWS

» Gamma-ray bursts often Jet-ISM Shock (Afterglow)
Radio (weeks-years)
have an extended x-ray, q P—

Radio {vears)

optical, radio emission

referred as an afterglow. GRB [
» Origin of the X-ray % g SRR N
afterglow is unclear 0] Merger Ejecta W
S/ Tiwdal Tail & Disk Wind { 2

» External shock from a
relativistic fireball.

» Long-lived neutron
star?

Schematic from Metzger and

?
» Both” Berger (2012)



HOW DO YOU COMPARE TWO MODELS?

» Models of both BV
\12

external shock and a W

long-lived neutron oy

stars have been fit to
X-ray afterglows.

» Bayesian Inference is a

great framework for
comparing two
models.

» To do this and so much
more.. check out Bilby! Ashton... Sarin... et al. (2019)



SHORT GAMMA-RAY BURST AFTERGLOWS
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SHORT GAMMA-RAY BURST AFTERGLOWS
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SHORT GAMMA-RAY BURST AFTERGLOWS

Long-lived neutron star

o GRB130603B GRB140903A
= 107!
20
>
Z 1073
z =
Z 1077
®)
i=
= 1077
]
10" 107 10* 10! 10° 10°
time since burst |s] time since burst |s]
14+n

t 1—n
L = A1t™ 4+ As <1+ —

T



SHORT GAMMA-RAY BURST AFTERGLOWS

Bayes Factor

GRB130603B ~ 30

GRB140903A ~ 1700

» GRB140903A: magnetar model is ~1700 times more likely
than the most likely fireball, assuming both hypotheses are
equally likely...




MODEL SELECTION

» The correct metric for model selection is the Odds.

» Prior odds describe our prior belief of the likelihood of
one hypothesis over another



PRIOR ODDS

» Along-lived neutron
star model requires
one to actually form. _

» Inform prior odds
with knowledge of
the local neutron star
mass distribution
(Kiziltan et al. 2013,
Lasky et al. 2014)
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» Model selection becomes dependent on the equation of state.

» GRB140903A favours the magnetar model for all possible
equation of states.



MODEL SELECTION

» Model selection is not conclusive without a known
equation of state.

» Magnetar model is preferred over the fireball model for
all equation of states for GRB140903A.

» For more details see Sarin et al. (2019)



AFTERGLOWS

o 120521A

» GRB130603B and
GRB140903A X-ray
observations require
systematic model

10 10

1

selection.

» A smaller subset of
GRBs have more
telltale observations.

Luminosity (1.0-10000.0 keV) (10% erg s)
10° 001 041

10+

0.01 0.1 1 10 100 1000 104
Restframe time since BAT trigger (s)

Rowlinson et al. (2013)



WHY DO THEY COLLAPSE?

OtN

» Initially supported
against collapse due to
rigid-body rotation.

» Spin-down and collapse.

%+ THESTAR
IS I}IlllAI'SINﬂ




COLLAPSE TIME

» The collapse time of a neutron star is strongly related to the
equation of state, the mass, spin-down mechanism, magnetic
field etc.
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EOS from Ravi & Lasky (2014).




INCONSISTENCIES

» The distribution seems

at odds with the 4
reliable measurements

0.04
|

0.03
|

» Two hypotheses

» Initial rapid spin-down
through the emission

0.01
|

of gravitational waves :
(GaO et al. 201 6) ®) [l o z .'..‘..TIO w 1 Uyl ...hw..l_.\
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» These stars are toor ()

actually quark stars Ravi and Lasky (2014)

(Ang Li et al. 2016)




INFERRING COLLAPSE TIME

» We measure the
collapse-time of 18
putative long-lived
neutron stars from the
X-ray afterglow of 72
short gamma-ray
bursts.
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POPULATION PROPERTIES

» Individual events are interesting...

» But exciting secrets are hidden in the population.




RESULTS
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RESULTS
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INJECTION STUDY

» These results are incredibly sensitive to the assumed neutron star mass
distribution.
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BNS MASS DISTRIBUTION

» Is the local binary neutron star mass distribution observed in radio a good
representation of merging binary neutron stars?

» Selection effects? Eccentricity/Mass

» Dynamical mergers?

1 double neutron star
1 other

10 12 14 16 18 20 22
neutron star mass, M M|



RESULTS

» Assume instead, the mass distribution of binary neutron
stars is a mixture model of neutron stars in binaries and
single neutron star.

» In our galaxy, this is well approximated as a double-peaked
Gaussian (Alsing et al. 2018).

p(M) =1 —=e)N (u1, 01) + eN (u2, 02)

= 1.32Mqo,01 = 0.11 Mg, o = 1.8M 5,09 = 0.21 M4



RESULTS
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» Measurement of Mgy depends on knowing €.
» We measure Moy = = .3J_r8:?gM® marginalised over all values of

€.



RESULTS - WORK IN PROGRESS

90% Prior

Posterior

—90.0 —175 —=15.0 —12.5 —10.0 —7.5

log afs ™
» This seems to suggest that quark stars are favoured over hadronic, and

possibly favours even more extreme equation of states..

» Currently investigating the cause, possible bias or systematics. We have
almost fixed it so stay tuned for this soon!



CONCLUSIONS

» Inferring the post-merger remnant of binary neutron stars is
incredibly informative for the nuclear equation of state.

» Gravitational-wave detection from long-lived remnant is
unlikely (see Sarin et al. 2018).

» X-ray afterglows of short gamma-ray bursts can be used to
indirectly infer the presence of a long-lived remnant (see Sarin

etal. 2019).

» Assuming the locally observed binary neutron star population
is good representation of binaries that merge, we measure

» | have Bilby stickers to give away.






