The Importance of Early EM Observations of Neutron-Star Mergers and How to Get Them

> Iair ("ya-eer") Arcavi Tel Aviv University

Surveys of the Transient Sky are Flourishing

All-Sky Automated Search for Supernovae (ASAS-SN)

Catalina Sky Survey (CSS) Catalina Real-Time Transient Survey (CRTS)

Dark Energy Survey (DES)

Evryscope

Gaia

Zwicky Transient Facility (ZTF)

Kepler-2 (K2)

Kilodegree Extremely Little Telescopes (KELT)

La Silla Quest

Optical Gravitation Lensing Experiment (OGLE)

Panoramic Survey Telescope and Rapid Response System (Pan-STARRS)

SkyMapper Southern Sky Survey

(partial list, more being planned and built)

The Phase Space of Transients is Being Filled

Part I: Tidal Disruption Events

Important Scales

A Tidal Disruption Event (TDE) is Complicated

Motivation: Study SMBHs

TDEs can be used to study quiescent massive black holes (and the M-Sigma relation) beyond the nearby Universe and test GR

Not A New Idea, But Events Are Rare

Hills (1975) – A star could be disrupted by a massive BH.

Rees (1988), Phinney (1989), Evans & Kochanek (1989) – Half of the material is bound, half unbound, expect emission when the bound material falls back to the BH as $t^{-5/3}$.

From the accretion onto the SMBH, expect emission in **soft xrays and hard UV**.

Donley et al. (2002), Wang & Merritt (2004), Kesden (2012), Stone & Metzger (2014) – Rate is 10-4-10-5 events per galaxy per year.

Early Observations Were Archival, Sparse Data

ROSAT (X-Rays) – 5 archival candidates (Donley et al. 2002).

XMM-Newton (X-Rays) – 5 additional archival candidates (Esquej et al. 2007).

SDSS (optical) – 2 archival candidates (van Velzen et al 2011).

GALEX (UV) + CFHT (optical) – one candidate (~year cadence light curve; Gezari et al. 2006).

Two Major Discoveries in 2011 and 2012High Energy TDEsOptical-UV TDEs

Swift J1644

(Bloom et al. 2011, Burrows et al. 2011, Levan et al. 2011, Zauderer et al. 2011)

Gamma and X-rays, radio No optical

Non-thermal spectrum Plateau in X-ray light curve then ~t^{-5/3} decline

Additional events: Swift J2058 (Cenko+ 12), Swift J1112 (Brown+ 15) **PS1-10jh** (Gezari et al. 2012)

UV / Optical No X-rays

Hot blackbody (30,000K) Smooth rise and fall light curve ~t^{-5/3} decline

Additional events:

IA+ 14, Holoien+ 14, 16a,b, Wyrzykowski+ 16, Hung+ 17 Blagorodnova+ 17,19, ...

Why Two So Different Types of TDEs?

Bloom et al. (2011): Viewing angle effect

PS1-10jh: The First Optical + NUV TDE

- Coincident with the center of a non-starforming galaxy.
- Peak magnitude -20
- Constant blue colors
- Only broad He II in spectrum

Gezari et al. (2012)

PS1-10jh Does Not Look as Expected for a TDE

Expected

Center of galaxy $L \propto t^{-5/3}$ $T \sim 10^5 - 10^6 \,\mathrm{K}$ $R \sim R_T \sim 10^{13} \, \mathrm{cm}$ $E \sim 0.1 M_{\odot} c^2 \sim 10^{53} \, {\rm erg}$ Evolving Temperature Hydrogen from the star

Observed

Center of galaxy $L \propto t^{-5/3}$ $T = 3 \cdot 10^4 \, \mathrm{K}$

 $R \sim 10^{15} \,\mathrm{cm}$

 $E \sim 10^{51} \,\mathrm{erg}$

Constant Temperature

No hydrogen, only helium

Forming a Class, All in Galaxy Centers

A Set of Events Now, All in Galaxy Centers

1/3 of disrupted stars are helium stars? Not likely.

PS1-10jh Does Not Look as Expected for a TDE

Expected

Center of galaxy $L \propto t^{-5/3}$ $T \sim 10^5 - 10^6 \,\mathrm{K}$ $R \sim R_T \sim 10^{13} \, \mathrm{cm}$ $E \sim 0.1 M_{\odot} c^2 \sim 10^{53} \, {\rm erg}$ Evolving Temperature Hydrogen from the star

Observed

Center of galaxy $L \propto t^{-5/3}$ $T = 3 \cdot 10^4 \, \mathrm{K}$

 $R \sim 10^{15} \,\mathrm{cm}$

 $E \sim 10^{51} \,\mathrm{erg}$

Constant Temperature

No hydrogen, only helium

Are We Looking Through Reprocessing Material?

Guillochon et al. 2014

Are We Looking Through Reprocessing Material?

The presence of reprocessing material explains:

- 1. The low temperatures
- 2. The large radii
- 3. The lack of hydrogen in the spectra

Roth et al. 2016

Self Collision Shocks Important for Loosing Energy

₩D-BH encounter

masses (sol.) 0.2 (WD) & 1000 (BH) in. separation (in 1.E9 cm) 50 hydrodynamics SPH (4 030 000 particles) EOS, gravity Helmholtz, N nucl. burning red. QSE-network (Hix 98) simul, time 5.4 min color coded column density penet. factor 12

Rosswog et al. 2008

Video available at: http://compact-merger.astro.su.se/Movies/IMBH1000_WD02_4e6parts_P12_N.mov

coding, simulation, visualisation: S. Rosswog

Are We Seeing the Energy from Outer Shocks?

Self crossing shocks explain:

- 1. The low temperatures
- 2. The large radii
- 3. The mechanism by which the material circularizes in order to accrete to the black hole
- 4. The two different TDE types?

Dai et al. (2015): β effect

Piran et al. 2015

Two Models for the Emission of Optical TDEs

Expected

Center of galaxy $L \propto t^{-5/3}$ $T \sim 10^5 - 10^6 \,\mathrm{K}$ $R \sim R_T \sim 10^{13} \, \mathrm{cm}$ $E \sim 0.1 M_{\odot} c^2 \sim 10^{53} \,\mathrm{erg}$ Evolving Temperature H from the star

Observed

Center of galaxy $L \propto t^{-5/3}$ $T = 3 \cdot 10^4 \, \mathrm{K}$ $R \sim 10^{15} \, \mathrm{cm}$

 $E \sim 10^{51} \,\mathrm{erg}$

Constant Temperature

No H, only He

(**0**-0)

(para

Different Emission Mechanisms for TDEs

Adapted from Rees (1988) by C. Bonnerot

Unbound Material ISM interaction

Accretion

Reprocessed Accretion Outer Shocks

The Jerusalem Bagel Model: Elliptical Accretion

Motivation: Study SMBHs and Accretion Physics

TDEs can be used to study quiescent massive black holes (and the M-Sigma relation) beyond the nearby Universe and test GR

But first, we need to understand the events: what they look like and why, how are the TDE observables related to the black hole properties

Stream collisions due to GR precession

Stream collisions due to GR precession

BH Spin can push maximal mass up

Stream collisions due to GR precession

BH Spin can push maximal mass up

GR affects the TDE light curve

Stream collisions due to GR precession

BH Spin can push maximal mass up

GR affects the TDE light curve

GR Effects Play Crucial Role in Forming TDEs

Stream collisions due to GR precession

BH Spin can push maximal mass up

GR affects the TDE light curve

GR affects the TDE rate

Optical+UV TDEs Prefer Post-Starburst Galaxies

French, Arcavi & Zabludoff, 2016

Part I Summary

Last few years: A class of blue broad He-II "Optical-UV TDEs" with common (weird) host galaxy preference

Emission sources under debate, lots of room for a variety of transient phenomenon.

Now: Large diversity of optical events being revealed, opportunities to test several GR effects observationally

Part II: Extreme Supernovae

Luminous Rapidly Evolving Events

Drout et al. (2014)

Arcavi et al. (2016)

Luminous Rapidly Evolving Events

Rise Time ~> Mass Ejected in Explosion

Fast & Luminous Can't be Ni-Powered

 $t_{\rm peak}$

Adapted from Arcavi et al. (2016)

Fast & Luminous Can't be Ni-Powered

~M_{ej} $[M_{\odot} \kappa_{0.1}^{-1} v_9]$ (assuming a central power source and constant opacity) 0.01 0.07 28 0.8 -24 Dougie -23 PTF09cnd (SLSN-I SN2006gy (SLSN-II) -22 SN2007bi (SLSN-R) iPTF16asu SNLS04D4ec SNLS06D1hc SNLS05D2bk PTF10iam SN 2011kl SN 2018gep SN 2011fe (la) KSN 2015K SN 2002bj -18 **PS1** Fast-Evolvers SNe lb/c (gold sample) -17 -SN 2011dh (SN IIb) SN 2010X $M_{N_i} \approx 0.1$ -16 10 100 t_{rise} [Days]

 t_{peak}

Adapted from Arcavi et al. (2016)

Fast & Luminous are Heterogen

100

Jan 24

Jan 25

Vinko et al. (2015)

Holy (AT 2018)cow! Very Fast, Luminous, Blue

- Luminous, very rapid decline (~1-2 mags per week)
- Mostly featureless blue continuum, some broad features reported

Perley et al. 2019

Holy (AT 2018)cow! Very Fast, Luminous, Blue

- Luminous, very rapid decline (~1-2 mags per week)
- Mostly featureless blue continuum, some broad features reported

Luminous Rapidly Evolving Events

 $t_{\text{peak}} \approx \sqrt{\frac{\kappa M}{vc}}$

Part II Summary

Last few years: A class of rapidly rising luminous transients, which can not be powered by standard Ni decay.

Emission source still unclear, likely several classes of events.

High cadence surveys coupled to **rapid response followup facilities** could solve the mystery.

Fastest 'Bright' Transient: The GW170817 Kilonova

Arcavi et al. 2017

Part III: Neutron Star Mergers

Compilation from: Arcavi 2018 Data from: Andreoni et al. 2017, Arcavi et al. 2017, Cowperthwaite et al. 2017, Coulter et al. 2017, Diaz et al. 2017, Drout et al. 2017, Evans et al. 2017, Hu et al. 2017, Kasliwal et al. 2017, Lipunov et al. 2017, Pian et al. 2017, Pozanenko et al. 2017, Shapee et al. 2017, Smartt et al. 2017, Tanvir et al. 2017, Troja et al. 2017, Utsumi et al. 2017, Valenti et al. 2017.

Retrieved via: kilonovae.space

Polar Ejecta: Blue emission

Tidal Tails: Red emission Mass Ratio

Different ejecta components constrain different physics.

Disk Winds

Polar Ejecta = Constraint on the Viewing Angle

LIGO & Virgo Collaborations et al. 2017, Nature

Different Models for the Blue \rightarrow Red Emission

Multi-component radioactive decay Villar et al. 2017

Single-component radioactive decay

(time-varying opacity) Waxman et al. 2017

Boosted relativistic ejecta

(early blue-emission) Kasliwal et al. 2017, see also Nakar & Piran 2017, Gottlieb et al. 2017

Shock cooling

(early blue-emission) Piro & Kollmeier 2017

Would Have Solved With GW Localization 1h Earlier

Arcavi et al. 2017a, Nature

Would Have Solved With GW Localization 1h Earlier

UV - Optical Discovery Time Difference Was Critical

Predicted One-Hour Time Scale Blue Emission

Metzger et al. 2015

Need a Tool for Coordinating Global GW Followup

Need a Tool for Coordinating Global GW Followup

The "Treasure Map"

Voluntary reporting of observations planned and then update to executed

See where other people are searching and plan your observations accordingly

Reporting of candidates and classifications for community vetting with minimal overlaps

Constant updates on brightness and color helps inform additional followup

Allows real-time involvement of amateur observers, citizen scientists, theorists...

http://treasuremap.space

Profile

Logout

Treasure Map Home Alerts Query Pages - Submit Pages - Documentation

Gravitational Wave Ligo Alerts

S190425z

Gravitational Wave Localization and Pointings: S190425z

the true to the tr

Additional Information in GW Alerts Will Help

Could a localization improve after a preliminary alert or were detectors off?

Could the preliminary / initial mass uncertainty evolve to NS territory?

Is one of the components < 2 solar masses?

In addition to allowing for more rapid discovery, will allow for more efficient telescope use (current EM followup strategies not sustainable, will need to be more selective in the future)

Part III Summary

The source of the early blue emission of GW170817 remains unclear: Radioactive decay from low opacity ejecta, from boosted high velocity ejecta, shock cooling?

This is important: Various ejecta components potentially constrain NS EOS, nucleosynthesis, jet launching, cocoon forming, inclination angle (\rightarrow Hubble Constant).

Early data critical! Distinguishing between emission models requires optical-UV observations starting **few hour/s** after merger (10 hours is too late) with **sub-day** cadence.

Must coordinate to find events early! LVC can help with additional information in alerts.