

Matter effects on gravitational waves from binary inspirals

Tanja Hinderer

DeltaITP / GRAPPA University of Amsterdam

Outline of this talk

- Gravitational waves (GWs) now available for probing fundamental physics in unexplored regimes
- Interpretation of signals from binaries relies on theoretical models
- Dominant GW signatures of matter during an inspiral
 - Relatively clean regime
 - Small effects but cumulative
 - characteristic parameters
- Application to neutron stars

Outlook

Neutron stars (NSs)

- densest stable material objects known in the universe
- I939: theoretical description [Oppenheimer & Volkoff]
- thousands observed to date

What is the nature of matter in such extreme conditions?

Conjectured NS structure

neutron rich ions,

outer core uniform liquid

deep core

[iron ~ 10 g/cm^3]

~10⁶ g/cm³ inverse β -decay

~10¹¹ g/cm³ neutron drip

~10¹⁵ g/cm³

~2-10x nuclear density exotic states of matter? deconfined quarks? signatures of BSM physics?

neutron wavefunctions overlap substantially - quark substructure expected to become important

- many theoretical difficulties
- far extrapolations from known physics

Key application: probing neutron star matter with GWs

Credit: F. Linde

GW signals from binary systems

Interpretation of signals / measuring source physics requires accurate theoretical models (templates)

What changes for non-black hole objects (comparable masses)?

Matter effects on GWs

+ tidal excitation of oscillation modes

What specifically influences the GWs?

Interaction-zone dynamics

Straightforward extension to higher multipoles

[Steinhoff, TH+ 2017; Pani, Vines, Landry, Poisson, Racine, +]

Body zone: example sources of multipole moments

Computation of tidal deformability (neutron stars)

consider linear, static perturbations to equilibrium (TOV)

 $\delta g_{tt} \sim H(r) Y_{20}(\theta, \phi) e^{i0t}$

Linearized Einstein Eqs. + stress-energy conservation:

Interior : numerical integration

• Exterior : perturbed Schwarzschild with asymptotics:

practical computations: Need to solve this ODE, evaluate at the surface, substitute into

 $\delta g_{\mu
u}$, $\delta T^{\mu
u}$

8

$$\frac{(1+g_{tt})}{2} = -\frac{\mathsf{M}}{r} + \frac{3\lambda \mathcal{E} Y_{20}(\theta,\phi)}{2r^3} + \dots + \frac{1}{2}\mathcal{E} r^2 Y_{20}(\theta,\phi) + \dots$$

• Matching interior & exterior solutions: explicit algebraic expression $\lambda(H, dH/dr)_{r=R}$

Properties of NS matter reflected in observables

Properties of NS matter reflected in observables

Estimating the influence on GWs

• Energy goes into deforming the NS

$$E \sim E_{
m orbit} + rac{1}{4} {\cal Q} ~ {\cal E}$$

moving multipoles contribute to gravitational radiation

$$\dot{E}_{\mathrm{GW}} \sim \left[rac{d^3}{dt^3} \left(Q_{\mathrm{orbit}} + \mathcal{Q}
ight)
ight]^2$$

 $M = m_{\rm NS} + m_2$

• approx. GW phase:
$$\frac{d\phi_{\rm GW}}{dt} = 2\Omega$$
, $\frac{d\Omega}{dt} = \frac{\dot{E}_{\rm GW}}{dE/d\Omega}$ $\Delta \phi_{\rm GW}^{\rm tidal} \sim \lambda \frac{(M\Omega)^{10/3}}{M^5}$

for two NSs: most sensitive to:

$$\sum_{m_2,\lambda_2} \tilde{\Lambda} = \frac{13}{16 M^5} \left[\left(1 + 12 \frac{m_2}{m_1} \right) \lambda_1 + \left(1 + 12 \frac{m_1}{m_2} \right) \lambda_2 \right]$$

[Flanagan & TH, 2008, Vines+ 2011]

Example nonspinning inspirals starting from 30 Hz

Dashed lines: IkHz

More realistic description of tidal response during inspiral

• Q is actually due to NS's quadrupolar (ℓ =2) oscillation modes

• Tidal couplings dominated (by ~order of magnitude) by fundamental f-mode (n=0)

[Kokkotas, Schaefer, Lai, Shibata]

- *f*-mode frequency: $\omega_f \sim \sqrt{m/R^3}$ (equation of state dependent)
- tidal forcing frequency: $~~\sim 2\Omega \sim 2\sqrt{M/r^3}$
- adiabatic limit $2\Omega \ll \omega_f$: equilibrium solutions $Q_m = -\lambda \mathcal{E}_m e^{-im\phi}$

TH +(2016), Steinhoff, TH+ (2016), Schmidt, TH (2019), Newtonian case: Lai, Kokkotas & Schaefer, Shibata, ... 17

More realistic description of tidal response during an inspiral

- For many EoSs: approximately universal relations between ω and λ [Leung & Lim]
- Enhancement of tidal effects also seen in ellipsoidal models and [Ferrari, Gualtieri, Maselli, + in tidal models calibrated to numerical relativity simulations [Dietrich+ Kawaguchi+]
- Effects included in EOB [TH+, Steinhoff, TH +]
- Efficient frequency-domain phase model also available

[Schmidt, TH]

Performance of analytical models compared to NR

One example [Foucart+2019] representative of similar comparisons performed by other groups

"merger": peak in GW amplitude \Leftrightarrow roughly: coalescence of NSs' high-density core parts

Note: robustness of state-of-the-art NR results among different codes has not been systematically quantified

Comparisons to a different code

Body zone: example sources of multipole moments

[Poisson, Laraakers, 1999, ...]

Properties of NS matter reflected in observables

[Poisson 1997, Larakkers+1997, Mora, Berti, Will 2006, Arun+2017...]

Rotational quadrupole effect on GWs

• GW signature from post-Newtonian theory:

• also included in EOB and Phenom models

$$\Delta \phi^{{\rm spin-Q}} \sim \kappa \; \chi^2 \; (M\Omega)^{4/3}$$

[see Marsat and Arun+ 2017 for recent results and compilation of higher-order terms]

• Quasi-universal relations between κ and λ for many EoSs for NSs

[Yagi & Yunes]

Quasi-Universal or EoS-insensitive relations

Now found for many other quantities

[Yagi & Yunes 2013]

Accumulation of information about source properties

Numerical estimate of phase difference to BH-BH signal

1.4+1.4Msun, identical NSs, DD2 EoS ($\Lambda \sim 700, \kappa \sim 7$)

[depends on parameters and starting frequency]

GWI70817: NS binary inspiral measured in GWs

GWI708I7: estimate of the size of systematic uncertainties

90% confidence intervals with a variety of currently available models in LAL

LVC 1805.11579 (appendix)

$$\tilde{\Lambda} = \frac{15}{16 M^5} \left[\left(1 + 12 \frac{m_2}{m_1} \right) \lambda_1 + \left(1 + 12 \frac{m_1}{m_2} \right) \lambda_2 \right]$$

+ detector calibration uncertainty not considered here

Effect of NS spin in late inspiral

Comparison to simulations by F. Foucart: mass ratio q=1 NS-BH with NS spin -0.2

- expect effective shift of f-mode resonance, not yet included in models [ongoing work]

[Steinhoff, TH+]

Examples of other finite size effects during the inspiral

• Tidal excitation of other modes

- GW spectroscopy during inspiral
- Need quasi-normal-mode frequencies + tidal excitation factors [Chakrabaty+]
- Spin-tidal interactions
 - shifts of mode resonances
 - new couplings
- Gravitomagnetic tidal interactions
- Late inspiral
- Tidal disruption in NS-BH (Alessandra's talk tomorrow)

Planned detector developments

More accurate measurements of loud signals, Greater number & diversity of events

Visible volume of the universe (for binary neutron stars)

Outlook

Much recent progress in modeling matter effects, application to GW170817

• GW detectors will improve in sensitivity over the next years, ~ 2030+: new detectors

- Higher accuracy measurements of loud sources
- populations, greater diversity of events

• Expect a wealth of new insights but requires advances in modeling

- increasingly accurate NR simulations with robust error budget estimates
- More realistic physics, improve accuracy, complete waveforms
- detailed calculations of effects not discernible from NR

[more about this in Alessandra's talk tomorrow morning]