First binary BH coalescences

Kohei Inayoshi

Kavli Institute for Astronomy and Astrophysics, Peking University (KIAA/PKU)

YKIS 2019

GW from colliding black holes

GW events from merging BBHs

Compact binary mergers (O1/O2)

LIGO/Virgo collaboration (arXiv:1811.12907)

	Event	$m_1/{ m M}_{\odot}$	m_2/M_\odot	${\cal M}/{ m M}_{\odot}$	$\chi_{ m eff}$	$M_{\rm f}/{ m M}_{\odot}$	$d_L/{\rm Mpc}$	Z.
BH-BH	GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$-0.01^{+0.12}_{-0.13}$	$63.1^{+3.3}_{-3.0}$	430^{+150}_{-170}	$0.09^{+0.03}_{-0.03}$
BH-BH	GW151012	$23.3^{+14.0}_{-5.5}$	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.1}$	$0.04^{+0.28}_{-0.19}$	$35.7^{+9.9}_{-3.8}$	1060^{+540}_{-480}	$0.21^{+0.09}_{-0.09}$
BH-BH	GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18\substack{+0.20 \\ -0.12}$	$20.5^{+6.4}_{-1.5}$	440^{+180}_{-190}	$0.09^{+0.04}_{-0.04}$
BH-BH	GW170104	$31.0^{+7.2}_{-5.6}$	$20.1^{+4.9}_{-4.5}$	$21.5^{+2.1}_{-1.7}$	$-0.04^{+0.17}_{-0.20}$	$49.1_{-3.9}^{+5.2}$	960_{-410}^{+430}	$0.19^{+0.07}_{-0.08}$
BH-BH	GW170608	$10.9^{+5.3}_{-1.7}$	$7.6^{+1.3}_{-2.1}$	$7.9^{+0.2}_{-0.2}$	$0.03^{+0.19}_{-0.07}$	$17.8^{+3.2}_{-0.7}$	320^{+120}_{-110}	$0.07^{+0.02}_{-0.02}$
BH-BH	GW170729	$50.6^{+16.6}_{-10.2}$	$34.3^{+9.1}_{-10.1}$	$35.7^{+6.5}_{-4.7}$	$0.36^{+0.21}_{-0.25}$	$80.3^{+14.6}_{-10.2}$	2750^{+1350}_{-1320}	$0.48^{+0.19}_{-0.20}$
BH-BH	GW170809	$35.2^{+8.3}_{-6.0}$	$23.8^{+5.2}_{-5.1}$	$25.0^{+2.1}_{-1.6}$	$0.07^{+0.16}_{-0.16}$	$56.4^{+5.2}_{-3.7}$	990^{+320}_{-380}	$0.20^{+0.05}_{-0.07}$
BH-BH	GW170814	$30.7^{+5.7}_{-3.0}$	$25.3\substack{+2.9\\-4.1}$	$24.2^{+1.4}_{-1.1}$	$0.07^{+0.12}_{-0.11}$	$53.4_{-2.4}^{+3.2}$	580^{+160}_{-210}	$0.12^{+0.03}_{-0.04}$
NS-NS	GW170817	$1.46^{+0.12}_{-0.10}$	$1.27\substack{+0.09 \\ -0.09}$	$1.186^{+0.001}_{-0.001}$	$0.00\substack{+0.02\\-0.01}$	≤ 2.8	40^{+10}_{-10}	$0.01^{+0.00}_{-0.00}$
BH-BH	GW170818	$35.5^{+7.5}_{-4.7}$	$26.8^{+4.3}_{-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09^{+0.18}_{-0.21}$		oro c	latactions
BH-BH	GW170823	$39.6^{+10.0}_{-6.6}$	$29.4_{-7.1}^{+6.3}$	$29.3^{+4.2}_{-3.2}$	$0.08\substack{+0.20 \\ -0.22}$	· · · ·		
	HLV (O3): 22 more BH-BH c Venumadhav's							
• heavy binary BHs: $19 \lesssim M_{\rm tot}/M_\odot \lesssim 85$								

- no significant spin alignment (positive for two BBHs)
- merger rate: $R = 52.9^{+55.6}_{-27.0} \text{ Gpc}^{-3} \text{ yr}^{-1}$ @ local universe

Formation channels

isolated field massive binaries

(e.g., Dominik+ 2013; Belczynski+ 2016; Kinugawa+ 2014, 2016; Inayoshi+ 2017; Mapelli+ 2017)

- binary formation in low-metallicity gas
- interaction btw two **PopII** stars ($Z < 0.1 Z_{sun}$)
- aligned spin is expected ($\chi_{\rm eff}\gtrsim 0$)
- dynamical formation in dense clusters

(e.g., Portegies Zwart 2000, O'Leary, Meiron & Kocsis 2009, Rodriguez+ 2016, Antonini+ 2016)

- mass segregation, 3-body interaction
- eccentric binaries (Kozai-Lidov)
- uniform $\chi_{\rm eff}$ -distribution is expected

Rodriguez's & Samsing's talk

PopII-BBH formation (~0.1Z_{sun})

The origin of stellar-mass BBHs ~ First massive stars ~

Kinugawa, Inayoshi & Hotokezaka et al. (2014) MNRAS 442, 2963

Inayoshi, Hirai, Kinugawa & Hotokezaka (2017) MNRAS 468, 5020

low metallicity \approx high redshift

Formation of SMBHs at high-z

Formation of First Stars

Collapse of metal-free, warm gas clouds (Z~0):

 $M_{gas} \sim 10^{3} M_{sun}$ \implies $M_{*} \sim 100 M_{sun}$

PopIII stellar IMF

PopIII IMF : top-heavy (~100M_{sun})

PopIII binary formation

Turk et al. (2009); Stacy et al. (2013,2016), Susa et al. (2013), Hosokawa et al. (2016)

- Binary formation due to disk fragmentation
- high binary fraction (f_{bin}~60% @MW)

Pop II vs. Pop III

Binary evolution

Binary structure evolution

MESA : stellar structure evolution code (Paxton et al. 2011)

binary interaction

single stellar evolution

PopIII-BBH formation (Z=0)

Termination of stable MT

- 1. mass loss by MT
- 2. the mass ratio of He core to the total mass increases
- 3. reach the critical ratio

 $q_{He} \sim 0.6$

Termination of stable MT

- 1. mass loss by MT
- 2. the mass ratio of He core to the total mass increases
- 3. reach the critical ratio

q_{He} ~ 0.6

Typical mass of BHs in PopIII binaries ~ 30Msun

Mergers of PopIII BBHs

Typical mass of merging Pop BBHs ~ 30+30M_{sun} (high-mass end depends on CE model...)

PopIII BBH merging rate

2. Stochastic GW background from high-z & massive BBHs

Inayoshi, Kashiyama, Visbal & Haiman (2016) MNRAS 461, 2722

First binary BH mergers

Relation between GWB & CMB

PopIII BBH merging rate

Gravitational wave backgrounds

• GWB energy density (Phinney 2001)

$$\rho_{c}c^{2}\Omega_{gw}(f) = \int_{z_{\min}}^{\infty} \frac{R_{BBH}}{1+z} \frac{dt}{dz} \left(f_{r} \frac{dE_{gw}}{df_{r}} \right) \Big|_{f_{r}=f(1+z)} dz$$

merging rate
GW spectrum from each BBH
$$dE_{gw} = (\pi G)^{2/3} M_{shim}^{5/3} \left(f_{r}^{-1/3} \mathscr{F}_{PN} - f_{r} < f_{1}, f_{r} < f_{r} < f_{r} < f_{r} < f_{r} < f_{r}$$

$$\frac{\mathrm{d}E_{\mathrm{gw}}}{\mathrm{d}f_r} = \frac{(\pi G)^{2/3} M_{\mathrm{chirp}}^{3/3}}{3} \begin{cases} \omega_{\mathrm{m}} f_r^{2/3} \mathscr{G}_{\mathrm{PN}} & f_1 \leq f_r < f_2, \\ \frac{\omega_{\mathrm{r}} \sigma^4 f_r^2}{[\sigma^2 + 4(f_r - f_2)^2]^2} & f_2 \leq f_r < f_3, \end{cases}$$

if GW emission due to inspiral phases dominates,

$$\Omega_{
m gw}(f) \propto f^{2/3}$$
 power-law index ~2/3

Pop-III GW background

Smoking-gun signature for high-z & heavy BBH population

Summary

- Star formation in low-metallicity environments is required to form massive BBHs
- Pop III stars (Z~0) are expected to be born as massive stars with ~10-100M_{sun} in a binary
- Pop III binaries could result in BBHs with 30+30 M_{sun}
 via stable mass transfer (w/o uncertain CE process)
- GWB produced from high-z & massive BBH population could be distinguishable from other sources

KIAA / PKU

KIAA / PKU

The Kavli Institute for Astronomy and Astrophysics at Peking University 北京大学科维理天文与天体物理研究所

• KIAA fellowships (all fields)

https://jobregister.aas.org/ad/de436c12

- BHOLE postdoc researchers
 - (SMBH, galaxies and coevolution, high-z)

https://jobregister.aas.org/ad/930735dc

PKING postdoc researchers

- (Gravitational Astrophysics, Interstellar Medium, Sky-Survey Science) https://jobregister.aas.org/ad/0bb38802
- Kavli Astrophysics Postdoctoral Fellowship (KIAA-IMPU)

https://jobregister.aas.org/ad/3cbd55c3

Thank you !!