Yukawa International Seminar 2019 Black Holes and Neutron Stars with Gravitational Waves October 7 - October 11 2019,

Yukawa Institute for Theoretical Physics, Kyoto University

black hole archaeology with gravitational waves

Raffaella Schneider

Sapienza Università di Roma

http://www.roma1.infn.it/amaldicenter/home.html

Monica Colpi (Milano Bicocca University)

Francesco Conte (Heidelberg University)

Luca Graziani (ARC, Sapienza University)

Marco Limongi (INAF/OAR)

Stefania Marassi (Sapienza University)

Michela Mapelli (Padova University)

Kazuyuki Omukai (Tohoku University)

Mario Spera (Northwestern University)

Rosa Valiante (INAF/OAR)

Marta Volonteri (IAP, Paris)

and many others...

astrophysical implications of known black hole masses

GW events Abbott et al. 2019 $\begin{array}{c} 100\\ 80 \end{array}$ $m_{CO}\,(M_{\odot})$ Ŧ GW170817 10817005125017017081708170815017091701707911 CW CW CW CW CW CW CW CW CW CW

outline

- how do massive black holes form?
- when and where do they form?
- can we explore cosmic dawn with GWs?

astrophysical implications of known black hole masses

Given our current understanding of massive stellar evolution:

- ✓ At solar metallicity it is hard to form black holes with masses > 30 M_{sun}
- ✓ Black holes with masses > 50 M_{sun} can form at very low Z (≤ $10^{-2} Z_{sun}$)
- ✓ Non rotating very metal poor stars can form \approx 80 M_{sun} black holes

the formation environment of field black hole binaries

Schneider et al. 2001; Regimbau 2011; Marassi et al. 2011; Dominik et al. 2013; Dvorkin et al. 2016

binary population synthesis to generate synthetic BH binaries with different initial Z + metallicity-corrected cosmic star formation rate density evolution

bimodal formation rate of GW150914-like systems

Belczynski et al. (2016)

observed galaxy scaling relations

stars with Z < 1 Z_{sun} form in low-mass galaxies at z < 1 at low rates or in galaxies with a broader range of stellar masses and SFRs at higher-z

stars with Z < 0.1 Z_{sun} form in low-mass, low SF galaxies at all redshifts

In low star forming regions there is a low probability to form massive stars

$$\Phi(m) = \frac{dN}{dm} \propto m^{\alpha - 1} \exp\left(-\frac{m_{ch}}{m}\right) \qquad m_{ch} = 20 M_{sun} \alpha = 1.35 m_{*} = [10 - 300] M_{sun}$$

Valiante+2016; de Bennassuti+2016

→ Large number of massive binary stars are required to extract potential heavy black hole binary systems

the road ahead: from cosmic averages to individual formation sites

- make tailored predictions for specific classes of GW sources
- use GW observations to improve stellar and galaxy evolution models

Lamberts et al. (2016); O'Shaughnessy et al. (2016); Ebert et al. (2017); RS et al. (2017); Chakrabarti et al. 2017; Mapelli et al. (2017, 2018); Marassi et al. (2019); Artale et al. (2019); Toffano et al. (2019); Belczynski et al. (2019); Chruślińska & Nelemans 2019

the formation and coalescence sites of the first GW events

RS, Graziani, Marassi, Spera, Mapelli, Alparone, de Bennassuti 2017

the formation sites of the first GW events

GW150914-like systems form at 2.36 \leq z_f \leq 4.15 in low-metallicity dwarfs with 7 10⁵ M_{sun} < M_{*} < 5 10⁶ M_{sun}

90% of GW151226-like systems form at $z_f < 2$ in galaxies with $M_* > 10^8 M_{sun}$

70% of GW151012-like systems have $z_f > 2$, 50% have $z_f > 4$, and 6% have $z_f > 6$ 70% of GW151012-like systems form in galaxies with $M_* > 10^8 M_{sun}$

the formation sites of GW150914 are not resolved in large (100 h⁻¹ cMpc)³ cosmological simulations (Illustris, Eagle)

RS, Graziani, Marassi, Spera, Mapelli, Alparone, de Bennassuti 2017

the coalescence sites of the first GW events

evolution of dwarf galaxies hosting GW150914-like events

- MW: GW150914-like events in the most-massive MW-like progenitor galaxy
- F: GW150914-like events in dwarf satellites of the MW
- E: GW150914-like events in isolated dwarf galaxies

 $2.36 \le z_f \le 4.15$ $0.06 \le z_m \le 0.12$

evolution of dwarf galaxies hosting GW150914-like events

observed analogues of (E and F) GW150914 hosts in DGS and ALLSMOG surveys

-	(gID) Obs.	$z_c \rightarrow z_s; z_{obs}$	Z [12+log(O/H)]	$\log(M_{\star})$ [M _{\odot}]	$\log({ m SFR})~[{ m M}_{\odot}/{ m yr}]$	
-	(F1) UGC4483 ^b	$0.095 \rightarrow 0.0$; 0.0005	$\textbf{7.53} \rightarrow \textbf{7.68}; 7.46 \pm 0.02 \ ^{\rm d}$	$6.86 \rightarrow 6.87; 6.89 \pm 0.22$	(-)→(-); -2.21±0.18	
	(E1) PGC1446233 a	0.072 \rightarrow 0.02 ; 0.023	$7.48 \rightarrow 8.39; 8.38 \ ^{\mathrm{c}}$	$\textbf{9.15} \rightarrow \textbf{9.19}; 9.11 \pm 0.09$	$-0.98 \rightarrow -1.05; -0.94 \pm 0.28$	
Cio	cone et al. (2017).	^b Rémy-Ruyer et al. (2015)	(2015). ^c Calibration from Marino et al. (2013). ^d Rémy-Ruyer et al. (2013).			

UGC 4483 $\leftarrow \rightarrow$ F system

Lelli et al. 2013

a

Cicone et al. 2017

MW: GW150914-like events in the most-massive MW-like progenitor galaxy

F: GW150914-like events in dwarf satellites of the MW

E: GW150914-like events in isolated dwarf galaxies

Marassi, Graziani, Ginolfi, RS, Mapelli, Spera, Alparone 2019

fossils of the pre-reionization epoch

Graziani et al. in prep

Event	$\rm m_1/M_{\odot}$	$\rm m_2/M_{\odot}$	${\cal M}/{\rm M}_{\odot}$	$\rm M_f/M_{\odot}$	$d_{\rm L}/{\rm Mpc}$	Z
GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$63.1^{+3.3}_{-3.0}$	430^{+150}_{-170}	$0.09\substack{+0.03 \\ -0.03}$
GW170729	$50.6^{+16.6}_{-10.2}$	$34.3^{+9.1}_{-10.1}$	$35.7^{+6.5}_{-4.7}$	$80.3^{+14.6}_{-10.2}$	2750^{+1350}_{-1320}	$0.48\substack{+0.19 \\ -0.20}$
GW170818	$35.5_{-4.7}^{+7.5}$	$26.8^{+4.3}_{-5.2}$	$26.7^{+2.1}_{-1.7}$	$59.8^{+4.8}_{-3.8}$	1020^{+430}_{-360}	$0.20\substack{+0.07 \\ -0.07}$
GW170823	$39.6^{+10.0}_{-6.6}$	$29.4_{-7.1}^{+6.3}$	$29.3^{+4.2}_{-3.2}$	$65.6^{+9.4}_{-6.6}$	1850^{+840}_{-840}	$0.34\substack{+0.13 \\ -0.14}$

Summary (I)

- models suggest that the maximum BH mass formed from single stellar evolution can be as large as 80 Msun if the star has [Fe/H] = -3 and it is not rotating
- the heavy black hole binaries observed in O1 and O2 require low metallicity in their formation environment
- low metallicity star forming regions are preferentially hosted in dwarf-like galaxies at high-z → low star formation rates → low statistics of the most massive stellar binaries
- the heaviest BHBH in O1 and O2 could have formed prior to cosmic reionization (peak formation at 6 < z < 8)

these heavy BH-BH are fossils of stellar populations that can not be detected by current and future telescopes

the most distant supermassive BHs

~ 340 quasars at z>5.5

~ 190 at z > 6.0 41(+6) at z > 6.5

5(+1) at z > 7.0

the first super-massive black holes

models of SMBH growth require massive seeds (> $10^3 - 10^5 M_{sun}$) and/or episodes of super-Eddington accretion

seed black holes

their nature is set by the environmental conditions

 H_2 photo-dissociation from UV photons in the Lyman-Werner band: (11.2 – 13.6) eV

 $J_{21} = J_{LW} / 10^{-21} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ Hz}^{-1} \text{ sr}^{-1}$

see also Omukai 2001; Oh & Haiman 2002; Bromm & Loeb 2003; Omukai+2008; Agarwal +2012; Latif+2014; Sugimura+2014, 2015; Agarwal +2015; Latif & Volonteri 2015; ; Regan & Haehnelt 2009; Hosokawa+2012; Latif+2013,2014, 2016; Prieto+2013; Regan+2014; Inayoshi+2014;Choi +2015; Becerra +2015, 2018

seed black holes

their nature is set by the environmental conditions

metal line cooling and dust cooling lead to fragmentation

seed black holes

their nature is set by the environmental conditions

metal line cooling and dust cooling lead to fragmentation

the formation of the first SMBHs: planting and growing seeds in a highly biased region

Haiman & Loeb 2001, Volonteri et al. 2003, Wyithe & Loeb 2003, Haiman 2004, Menci et al. 2004, 2008, Shapiro 2005, Yoo & Miralda-Escude' 2004, Bromley et al. 2004, Volonteri & Rees 2005, Li et al. 2007, Pelupessy et al. 2007, Sijacki et al. 2009, Tanaka & Haiman 2009, Lamastra et al. 2010, Valiante et al. 2011, Petri et al. 2012; Valiante et al. 2015; 2016, 2017, 2018; Pezzulli et al. 2016, 2017; Sassano et al. 2019

a census of BH seeds progenitors

data-constrained models (GQd): >10⁹ M_{sun} BH @ z = 6 in 10¹³ M_{sun} DM halos

Sassano et al. 2019

- inhomogeneous metal enrichment
- inhomogeneous Lyman Werner radiation

-
$$Z_{cr} = 10^{-4} Z_{sun}$$
, $D_{cr} = 4.4 \ 10^{-9}$, $J_{21,cr} = 1000$

growing the first SMBHs

data-constrained models (GQd): >10⁹ M_{sun} BH @ z = 6 in 10¹³ M_{sun} DM halos

1010 **J**_{21cr} = 1000 $Z_{cr} = 10^{-4} Z_{sun}$ Total $J_{21cr} = 300$ $Z_{cr} = 10^{-4} Z_{sun}$ Stetion dominated 10⁹ M_{BH} Light 109 M_{ligh}, Accretion dominated Heavy 108 Intermediate 108 Heavy seeds 107 Light seeds dominated 107 dominated $M_{BH}~(M_{\odot})$ **Heavy seeds** 10⁶ M_{BH}/M_© 106 dominated 105 105 Light seeds dominated ~ 104 104 intermediate mass 10³ seeds 10^{3} 10² 10² 7.5 10.0 12.5 15.0 17.5 20.0 22.5 15 20 10 redshift redshift Sassano et al. 2019 Valiante et al. 2016

evolution of the total nuclear BH mass averaged over 10 simulations

emission of gravitational waves during galaxy mergers

Haiman & Loeb 2001, Volonteri et al. 2003, Wyithe & Loeb 2003, Haiman 2004, Menci et al. 2004, 2008, Shapiro 2005, Yoo & Miralda-Escude' 2004, Bromley et al. 2004, Volonteri & Rees 2005, Li et al. 2007, Pelupessy et al. 2007, Sijacki et al. 2009, Tanaka & Haiman 2009, Lamastra et al. 2010, Valiante et al. 2011, Petri et al. 2012; Valiante et al. 2015; 2016, 2017, 2018; Pezzulli et al. 2016, 2017; Sassano et al. 2019

cosmological binary black hole mergers

data-constrained models (GQd): >10⁹ M_{sun} BH @ z=2 or 6 in 10¹³ M_{sun} DM halos

the black holes are assumed to merge with the hosts galaxies

cosmological binary black hole mergers

data-constrained models (GQd): >10⁹ M_{sun} BH @ z=2 or 6 in 10¹³ M_{sun} DM halos

the black holes are assumed to merge with the hosts galaxies

Valiante, Margiagli et al. 2019

the EM emission from a growing heavy seed

JWST and Athena (and Lynx) will be able to detect the earliest accreting (massive) black holes out to z=13 (17)

Valiante, RS et al. 2018; Valiante, Margiagli et al. 2019

the EM emission from a growing light seed

accreting light seeds with masses 100 Msun, 1000 Msun will not be detectable with EM facilities 3G GW detectors will be the only way to detect them!

Summary (II)

- BH seeds progenitors of the first SMBHs can form in a variety of flavours: light (100 M_{sun}), intermediate-mass (1000 M_{sun}) and heavy (10⁴ 10⁵ M_{sun}) depending on environmental conditions
- JWST/Athena (LynX) will be able to detect active heavy seeds out to z = 13 (17) but will not detect active light seeds
- failed or growing BH seeds paired in halo mergers will be detectable by 3rd generation GW telescopes out to z = 20!

3G GW detectors will be able to probe the earliest phases of BH formation at cosmic dawn