Atomic opacities for kilonovae

Masaomi Tanaka (Tohoku University)

In collaboration with Daiji Kato (National Institute for Fusion Science), Gediminas Gaigalas (Vilnius University), Kyohei Kawaguchi (University of Tokyo)

Tanaka, Kato, Gaigalas, Kawaguchi 2019, arXiv:1906.08914

Atomic opacities for kilonovae

• Why atomic opacity?

• Systematic opacity calculations

Timescales in NS mergers

http://www.aei.mpg.de/comp-rel-astro

See Jennifer Barnes's talk

Mass ejection Dynamical ejecta, post-merger ejecta Mej, v, Ye, Xi **R-process nucleosynthesis and radioactive decays** β decay, α decay, and fission **Energy deposition ("thermalization")** γ -rays, electrons, α particles, fission fragments **Photon propagation** Atomic opacities (mainly bound-bound transitions)

Observations (light curves and spectra)

"Kilonova/Macronova"

Initial works: Li & Paczynski 98, Kulkarni 05, Metzger+10, Goriely+11, ... **High opacity**: Kasen+13, Barnes & Kasen 13, MT & Hotokezaka 13, ...

See lair Arcavi's talk

Temperature ~ 5000 K => Optical and infrared wavelengths

GW170817: optical/infrared light curves

16 -17 Infrared 17 -16 **Observed magnitude** Absolute magnitude 18 -15 19 -14 20 -13 **ptica** 21 -12 22 -11 5 10 15 0 Days after GW170817

Arcavi+17, Cowperthwaite+17, Diaz+17, Drout+17,Evans+17, Kasliwal+17,Pian+17, Smartt+17, Tanvir+17, Troja+17, Utsumi, MT+17, Valenti+17

Bound-bound opacity

MT, Kato, Gaigalas, Ryunkun, Radzuite et al. 2018, ApJ, 852, 109

Status of atomic calculations for kilonova No gold is observed?? Kasen+13: Sn II, Ce II-III, Nd I-IV, Os II open s shell => No gold in the model! Fontes+17: Ce I-IV, Nd I-IV, Sm I-IV, U I-IV 2 open p-shell Wollaeger+17: Se, Br, Zr, Pd, Te Н He MT+18: Se I-III, Ru I-III, Te I-III, Nd I-III, Er I-III₅ 3 4 6 8 9 10 Li Be Kasen+17: all lanthanides B F Ν ()Ne 16 13 15 12 18 11 14 17 **MT+19: all r-process elements** Na Mg D Ar open d-shell А 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 pea As Ni Zn Se Ga Ge Κ _a Fe (U \mathbf{O} 54 43 45 47 48 49 51 52 37 38 39 42 44 46 50 41 40 Rb Sr RU Rh Pd Ag 2nd peak le Mo In Sb Sn Nh 57~71 82 55 56 73 75 78 79 83 72 74 77 84 85 86 76 **3rd** peak Ba Re 17 Pt Au Bi Po At Rn ĊS la La-Lu () 89~103 87 88 105 106 118 104 108 09 115 116 HS Bh Rf Ra Ra h Mt F Sa Nh Ts AC-Lr DS Mc (n Og 63 68 69 6 64 66 H Ξ 89 95 94 96 97 98 100 103 91 93 99 90 9Z open f shell B

Atomic opacities for kilonovae

• Why atomic opacity?

• Systematic opacity calculations

Systematic calculations of atomic structure ~7 x 10⁵ levels in total Using HULLAC code (with parametric radial potential) (|, ||, ||, |V)

Bound-bound transition

See Jennifer Barnes's talk

Sobolev optical depth

f: oscillator strength

$$\tau_l = \frac{\pi e^2}{m_e c} fnt\lambda \propto gf \exp(-E/kT)$$

Systematic calculations of atomic structure ~7 x 10⁵ levels in total Using HULLAC code (with parametric radial potential) (I, II, III, IV)

Systematic calculations of opacities

~2 x 10⁹ transitions in total

$$\kappa_{Pl} = rac{\int_0^\infty \kappa_
u B_
u(T) d
u}{\int_0^\infty B_
u(T) d
u}$$

Results (1/2) Temperature dependence

$\rho = 10^{-13} \text{ g cm}^{-3}$

Is this behavior universal??

Opacities of lanthanides

First half

Opacity of element mixture

Strong temperature dependence at low T (caveats for "constant-opacity" approach)

Results (2/2) Opacity of blue kilonova

Higher than the commonly assumed value (~ 0.1 cm² g⁻¹)

Element dependence

$$\kappa_{Pl} = rac{\int_0^\infty \kappa_
u B_
u(T) d
u}{\int_0^\infty B_
u(T) d
u}$$

Application: GW170817

Confirm that general interpretations are OK (Red/blue components and their masses)

Application: variety of kilonova

See Francois Foucart's and Rodrigo Fernandez's talks

Kawaguchi, Shibata, Tanaka 2019, arXiv:1908.05815

Variety of kilonova

See Kyohei Kawaguchi's talk (next week)

2D radiative transfer simulations with multiple ejecta components

Kawaguchi, Shibata, Tanaka 2019, arXiv:1908.05815

Spectral features?

Atomic calculations are not accurate enough (by <30-50% in energy)

Tanaka+18, see also Kasen+13

Accurate transition data (VALD database)

Z > 31 (I and II)

Spectral calculations using accurate data

Tanaka & Hotokezaka 2013

Accurate transition data (VALD database)

Z > 31 (I and II)

	Astro data (Kurucz, VALD,)	Systematic calculations	Systematic calculations calibrated with experiments
Accuracy			
Completeness			

Accurate atomic calculations for element identification

Using ab-initio calculations (GRASP2K code)

10 % accuracy for energy levels

20 % accuracy for transition wavelengths

Gaigalas, Kato, Rynkun, Radziute, MT 2019, ApJS

Summary

- Systematic opacity calculations
 - All the elements from Z=30 to 92 (I, II, III, IV)
 - Energy level distribution is determined by complexity and spin-orbit interaction (+ e-e interaction)
 - Opacity trend with temperature depends strongly on temperature
 - Ready to calculate light curves with realistic models (Kawaguchi+)
- Room for improvement
 - Higher temperature (earlier phase) => highly ionized ions
 - Accuracy/completeness for spectral identification (IR in paticular)
 - Departure from LTE => Kenta Hotokezaka's talk

Tanaka, Kato, Gaigalas, Kawaguchi 2019, arXiv:1906.08914 Gaigalas, Kato, Rynkun, Radziute, Tanaka 2019, ApJS Kawaguchi, Shibata, Tanaka 2019, arXiv:1908.05815