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Motivation & goals

Active dumbbell system

Reason for working with this model

Main properties of the model - phase diagram
Translational and rotational collective motion

Dynamics of tracers in complex environments revisited.

Effective temperatures out of equilibrium



Active dumbbell

Diatomic molecule - toy model for bacteria

DNA
Cytoplasm

- Escherichia colf
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The E-Coli Bacterium

2001 HowStuffwo

Escherichia coli - Pictures borrowed from internet.



Bacteria colony

Active matter

Rabani, Ariel and Be’er 13





Active dumbbells

Diatomic molecule

EF@Ft

act ac

Two spherical atoms with diameter o4 and mass 1M

Massless spring modelled by a finite extensible non-linear elastic force bet-
kr

1 r2/ré
(WCA) to avoid colloidal overlapping.

ween the atoms F'.e =

with an additional repulsive contribution

Polar active force along the main molecular axis F'..; = Fl n.
Purely repulsive interaction between colloids in different molecules.
Langevin modelling of the interaction with the embedding fluid:

isotropic viscous forces, —7v;, and independent noises, 7);, on the beads.

Directional motion (active) and effective torque (noise)



Active dumbbells

Control parameters

Number of dumbbells /N and box volume S in two dimensions:

cing fract 5 7Tc7(21 N
acking fraction —
P g 2G
Energy scales:
Active force work F..i0g 2F .04
Péclet number | Pe =
thermal energy kI’ kpT
Active force Fltoq/7 maqFact
_ 5 Reynolds number |Re = ————
viscous force yo 3 /mq 47

We keep the parameters in the harmonic (fene) and Lennard-Jones (repulsive)

potential fixed. Stiff molecule limit: vibrations frozen.

We study the ¢, F,.; and k1" dependencies. Pe € |0, 40], Re < 102



Active dumbbells

Phase segregation

Fixed packing fraction ¢ and fixed activity F..., vary kg'l’

kT = 0.003 kT = 0.001

Mixed Large density fluctuations Segregation
2F t0d
Pe = — " increases —
kg1

Gonnella, Lamura & Suma 13



Active dumbbells

Phase diagram : from the distribution of local dumbbell density
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Mechanism for aggregation: note the head-tail alignment in the cluster.



Active dumbbells

Phase diagram
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Focus on the dynamics in the homogeneous phase ; vary ¢ and Pe.



Single molecule limit

Active force switched-on, F.; # 0

ballistic — diffusive — ballistic — diffusive

The dynamics is accelerated by ..+ and a new ballistic regime in the centre-

of-mass translational motion appears at t* = 16t,/ Pe?

Ballistic to diffusive crossover of the cm motion at |, = ~vo3/(2ksT)
Note thatt, — oo atkgl — O.

The diffusion constant is Dy = kpgT/(27) (1 + Pe?)
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Single molecule limit

Active force switched on, .. #* 0

The dynamics is accelerated by ..+ and a new ballistic regime in the centre-

of-mass translational motion appears at t* = 16t, / Pe?

Ballistic to diffusive crossover of the cm motion at |, = ~vo3/(2ksT)

Note thatt, — oo at kgl — O.

The rotational motion is not affected by the longitudinal active force.
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Finite density system

Centre-of-mass mean-square displacement
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Finite density system

Angular mean-square displacement

(AG%) = ([6(F + to) — 6(t0)])

Pe=2 ] [ Pe=40

Pe and ¢ effect



Diffusion constants
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Translational diffusion
diminishes at
increasing density

at all Pe

increases at
increasing Pe

at fixed ¢

Proposals for ¢, Pe dependence

Similar to what observed for
e.g., Janus particles in HoO9

Zheng et al13



Diffusion constants
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Fluctuations

o,P(AX)

Translational motion in the active-force driven regimes

p(Ale) — p(ajcm(t + tO) - Icm(tO))
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Non-Gaussian at high Pe



Fluctuations

o, P(AX)

Translational motion in the active-force driven regimes

p(Ale) — p(ajcm(t + tO) - Icm(tO))
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Fluctuations

o,P(AX)

Translational motion in the active-force driven regimes

p(Ale) — p(ajcm(t + tO) - Icm(tO))

o, P(AX)

Pe = 40
O, = {A:z;2>1/2

Non-Gaussian & exponentail tails in |l




Fluctuations

Translational motion in super-cooled liquids and granular matter

G(r) = N71S20 (0(r — |75t + to) — 7i(to)]))

I | I
b) Lennard-Jones -

van Hove correlation function

delay-time shorter than the

8 structural relaxation time ¢ < t,,
o = (Ar2)1/2
Exponential tails

Chaudhuri, Berthier & Kob 07




Fluctuations

TP (06)

Rotational motion in the active-force driven regimes

p(A0) = p(B(t + to) — 0(t0))
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Fluctuations

TP (06)

Rotational motion in the active-force driven regimes

p(A0) = p(B(t + to) — 0(t0))

TP(L6)
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Pe = 40
Op = <A€2>1/2

Exponential tails for o > 0.7



Active dumbbells

Phase diagram
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cfr. Berthier 13 ; Berthier & Levis 14-15 for a different model system
& Suma et al. work in progress



Active dumbbells

Diatomic molecule

EF@Ft

act ac

Two spherical atoms with diameter o4 and mass 1M

Massless spring modelled by a finite extensible non-linear elastic force bet-
kr

1 r2/ré
(WCA) to avoid colloidal overlapping.

ween the atoms F'.e =

with an additional repulsive contribution

Polar active force along the main molecular axis F'..; = Fl n.
Purely repulsive interaction between colloids in different molecules.
Langevin modelling of the interaction with the embedding fluid:

isotropic viscous forces, —7v;, and independent noises, 7);, on the beads.

Directional motion (active) and effective torque (noise)



Passive tracers

Spherical particles

Spherical particle with diameter o, and mass 17+,

Very low tracer density ¢, << ¢

tr  __

No polar active force F'; ., =

Purely repulsive interaction between colloids in different molecules & tracers.
Langevin modelling of the interaction with the embedding fluid:
tr

viscous forces, —7,V/, , and independent noises, ng, on the tracers.

We will distinguish thermal ;. # 0 from athermal ~;, = 0 tracers



Active dumbbells

Spherical tracers to probe the dynamics of the “active bath"

Gonnella, Laghezza, Lamura, Mossa, Suma & LFC




Passive tracer motion

Thermal vs. athermal
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Study of the dependence on M., ¢, and other parameters

Suma, Gonnella & LFC in preparation



Diffusivity enhancement

Active density dependence of the tracer’s diffusion constant
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Is this captured by this model (with no hydrodynamics) for some parame-

ters ?



Motivation & goals

Active dumbbell system

Model with persistent activity & segregation
Translational and rotational collective motion in the homogeneous phase

Four dynamic regimes even at finite ¢

D /(kpT)’s in last diffusive regime depend on Pe, ¢

Complex (though simpler than in just passive colloids, cfr. Tokuyama &
Oppenheim 94) dependence of translational diffusion constant on ¢
Enhanced rotational diffusion constant for increasing ¢ < 0.5

More complex than Pe” corrections at finite ¢

Effective temperatures out of equilibrium.
w/ Gonnella, Laghezza, Lamura, Mossa & Suma via FDT
In progress : potential and kinetic tracers coupled to the active dumbbells,

always in homogenous phase



(non persistent) Active polymers

Tracer’s velocities & effective temperature

Spherical particles with mass 11, that interact with the active matter.
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Work in progress

Passive Leannard-Jones system
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The kinetic energy of a tracer particle (the thermometer) as a function of

. 1 1
its mass (7p o< /1) sy (V2) = skpTeg.
J-L Barrat & Berthier 00

Same measurement in active dumbbell sample to compare with measu-

rements of /.4 from FDT.



