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Abstract

* This work is based on the collaboration with
Dr. Koshiro Suzuki (Cannon Inc.).

 We have succeeded that the crifical
behavior in the vicinity of the jamming
transition can be described by a

microscopic theory based on the Liouville
equation.

 The reference is K. Suzuki and H. Hayakawa,
PRL in press (arXiv:1506. 02368).
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Introduction

« Granular materials behave as unusual solids and
liquids.
« Jamming is an athermal solid-liquid transitions.
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Characteristics of
granular materials

Most important characteristics is that each grain is
dissipaftive.

Thermal fluctuation does not affect any aspect of
grains’ motion.

As a result, there is no equilibrium state.

If we add an external force such as flow by gravity,
air flow and shear, the system can reach @
nonequilbrium steady state.

Thus, to study granular materials is to study non-
equilibrium statistical mechanics.



Jamming transition

« Above the crifical
density, the
granules has rigidity
and behaves as a
solid.

* This transition is
known as the
jamming fransition.
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Ditferences between jamming and

glass transitions

Although both describes
the freezing of moftion,
there are some
differences beTween TWO [M.P.Ciamarra, A.Coniglio, PRL103 (2009) 23570

Most important Ore=
differences is that the
jamming is the phase 2 0.5
fransition, but glass is nof.
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There is no plateau of
time correlation in the 10 ot 0 10°
jamming.
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Divergence of viscosity

Approach from below the jamming, the most
Important characteristics is the divergence of the
viscosity at the jamming.

n~ (py — @)™ with A ~ 2

Kawasaki et al estimated as 1.67 < 1 < 2.5.

This divergence with 1 = 2 is known even in colloid
systems (see e.g. Brady 1993).

However, some people indicated that A for
granular materials is larger than the estimated value.



Granular systems under a
plane shear

« Granular systems under uniform steady shear
(SLLOD dynamics and Lees-Edwards boundary
condifion)

volume V



Limitation of Kinetic Theory
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The agreement of the temperature is poor.

« SO we need to consfruct a new approach
for dense sheared granular flow.
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Equation of motion

 Newton's equation (equivalent to Liouville equation)

mi; = FCY + B (i=1,... | N),

. _ Ou(ry ;
F;E, h 85**- f’) = O(d — riy) f{d — i)y
¥,

flx) = kx (k> 0)

(vis) - L. = . :
@@ th gzj rij)- gzg = U vj‘



Liouville equation

 Liouville equation is equivalent fo Newton's
equation.
« An arbitrary observable A(T'(t)) satisfies
['(t) = {f-@:(ﬂ-p-f:(f)}i‘il
0 .
CAME) =T T AT() = iLAD()

 The distribution function safisfies

89(;;”5)_ ;; Tp(r,1)| = {r %ﬂ\( )] o(T, ¢)

A(T) = —% > O(d—ry) <0



Energy balance equation

« Hamilfonian
N p2
H(F) — > — Z U(Tij)
.7

m
=1

« Safisfies the energy balance equation

H = — YV 0oy — 2R
N

1 pY e vis
UMV(I‘) _ V Z [pﬁz 4 ,r;:/ (FZ( ) T Fz( )p:)]

2 ;V
1 . Vis 1 ! vis
R(I‘)_§Zri'ﬂ( )_ZZ gij°Fz'(j )
=1 1.9
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Perturbation of the
Liouville equation

Liouville equation contains 6N dimensional
distribution.

This cannot be exactly solved because it contains
too many degrees of freedom.

Unperturbed state: canonical distribution (no
dissipation)
o This corresponds to the degenerated unperturbed state.
o Zero-eigenmodes correspond to the density, momentum
and energy conservations.

Perturbation: inelasticity + shear => constant energy



Expansion parameters &
restitution constant

« Perturbation parameter

* Restitution constant

e = exp|—(le/m|
te = 7/\/26/m — ((/m)2 « durationtime

e~ V2(l —e)/r fore~ 1



Perturbative spectrum analysis
v, (T) / dt e **p(T, )

W (T) = pig(T) |W0%(T) + W (T)] + O(e)
2= 20 2D 0(e?), LY, =z, ¥,
Unperturbed canonical state
iLEV* (I pk (T) = 0
Zero-eigenmodes
?’E(eq)*(r)gb* (F) =0 (05 — 1; 35)

X

N N N
94(T) o {1; S S Yo H*(F)}
=1 1—1 1—1



Map onto the zero modes

 There are five zero modes in the base state.

01(I) =1,
N

1 p;-"z 3 .
o5 () = (Z : Q\T)

%NT* i=1 =

N

1

0o (T') = y

- We expand the zero eigenvector in terms of the

bases: .

IIJEID)*(F) — Z Caa’ Qo (T)

a’'=1



Eigenvalue

Lowest eigenvalues are easily obtained as

~(1)
2=,
1) _ _2 |-
2y = —§@ (a=2,3.4,5).
Where / Radial distribution function

In the hard-core limit, the relaxation fime is

. 1 2 17 -
Trel ~ — _:(1) — lgﬁ(ﬁ] ﬁ g—> \/EL;_,-‘E(T )

hard core limit




Contents

Introclucrion

Liouville equartion= Newron's equdfiorn

O
Figenvalue ecudrion for oerruroec| Liouville
ecluciflon
NESS in sheared granular systems and Kubo formula
Fvaluction of correlariions
Resulrs for viscosity andl granular ternoerciiure
Cornodrison witn sirnulcifion
Discussion

Conclusions



Steady distribution

pis’ (L) = exp [ /_ OOO dr Qeq(r(_T))] Peq(I'(—00))

0 9 -1
EXP [/ dr Qeq(r(—’}'))] ~ GTIGIQSS(F) 7-r*el — [ \?{%EW*E(T*)]

Qgs(T) = 385[ V(T )*Qﬁﬁéls)(F)]

1 _ 1
AR(T) = RW(T) +

. 2
A RO = EZ (o 7a) Od=r)

Thus, we obtain the effective Hamiltonian in NESS.



Average under NESS

« Average is calculated by

<"‘>SSE/dFﬂSS(F)‘”

o—Iss(T)
PSS(F) B fdre_fss(f‘)

[fss(r) = BssH(I') — TrelQSS(F)J

* fss Is determined by the energy balance equation.

( e Pss T (D) [1 +- ﬂelﬁss(I‘)T
pss(I') ~
\ Z J

. Z = de‘ e~ PssH () {1 Jr%relQSS(I‘)} 2



Shear stress
{(A(I‘))SS < (A(L)) oy + Fra (AT)Os5(D)) ]
(Vg = [ dT e M@

(0y(D)) s = —Fra ¥V (6150 (0)55)(T) )

* This corresponds to Kubo formula under the
exponential relaxation.

eq

(R(T))_ ~ (RVT)) —2Fufis (ROMARL(T))

eq eq



Contents

Introcluction

louville equdartion= Newion's ecucfion

I

Figenvalue equdfiion for perturoed Liouville
ecluclfion

NESS In snedrecl granular systerns anc Kuoo forrnulc
Evaluation of correlations

rResulrs for viscosity ancl granular ternoerciure
Cornoclrison witn sirnulcfion

Discussion

Conclusions



The evaluation of multi-
body correlations

« We have to evaluate 3-body and 4-body stafic
correlation functions.

« We adopt the Kirkwood approximation in which the
mult-body correlation can be represented by @
product of two-body correlations.



Radial distribution at
contact

« We use the empirical formula for the radial
distribution at contact

g(p) = Yes(er)lor —pa)/ (@ — ¢J)
Gos(p) = (1 —9/2)/(1 — ¢)°
wr < @ < g, where o — 0.49 and ;5 — 0.639
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Granular temperature and
shear stress

« From the energy balance and Kirkwood
approximation, we ob’roin[ . 3;.};2 15 ]

557 390 R

where S and R are given by

S =14 .%n gle) + Fn2g(0)? + Zn3g(p)
R=%yn*q(p) + Z5n 2g(p)?,

with %5 = —3/4, %, — /16 S = 2r/15,

A = —52/20, F = 37%/160
(o) = Biqrifa S 36 o, SV
Jm —_— - — .
A (D) 647372 | R1/2g(p)
)

—




Near the jamming point

« Near the jamming point, the radial distribution
function diverges linearly. Thus, we extract the most
divergent term:

332 Sy 97
Tig = oo —1"g(p) — 5240 “n*g(y),

- 97T2 Tk 1/2 43 2
(amy(I‘»SS ~ —%’YTSS n*g(p)

_ 27m5/? 32 n*7/2 e )5/2.

©10240v/35
« The power law dependences are

Tés ~ gle) ~ (p5 — )"

[ 7 = —(Guy)ss/V? < —(Gay)ss/(A/Tig)~ (g — _2]
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MD simulation

To verity the validity of our theoretical prediction,
we perform MD (or DEM) for frictionless grains.

Parameters; N=2000, € = 0.018375 (e = 0.96)
/.'>/>i< _ 10—3’ 10—4’ 10—5
Sllod + Lees-Edwards boundary condition



Viscosity
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Granular temperature &
relaxation time

« Agreement of granular temperature is relatively

POOr.
* The relaxation time is good.
1%, 102
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Discussion

Constitutive equation still obeys Bagnold’s scaling.

. .4 '7
For example, if we assume oy, ~|p — ¢;|, then g,,~y*/7,
which is close to the simulation value.

Based on the nonequilibrium steady distribution, we
may discuss above the jamming point (by using
replica)=> Now in progress.

The effects of rotation and tangential friction mainly

appear in the radial distribution at contact.=> Now Iin
progress

Our method is generic. Thus, we can apply it to many
ofther systems.



Discussion on MCT

We had used MCT to analyze dense granular flows,
and got reasonable results.

The disadvantages of MCT are, however,

o complicated which requires numerical treatment
of MCT equation,

o predicts two-step relaxation in density correlation,
which has never been observed in granular
system:s,

o nheeds the shiff of the density,

o and then, cannot use the divergence of the first
peak of the radial distribution function.

We conclude that MCT is not necessary for granular
flows.
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Achievement of MCT

 We obtain gualitatively nice results.

 However, the divergence of viscosity is unrelated to
the divergence of the first peak of radial distribution.
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* Temperature is multiplied by 0.6 for fitting.
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Summary

We have developed the theory of dense sheared
granular flow (frictionless grains).

We obtain the steady distribution, which can be
regarded as the effective Hamilitonian in the non-
equilibrium steady state.

Then, we can evaluate the viscosity and the
granular temperature analytically.

The result of the viscosity gives the quantitatively
precise result.

The granular temperature is not good.
See PRL in press (arXiv:1506.02368) for details.



