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0. Physical ageing : a reminder

known & practically used since prehistoric times (metals, glasses)

systematically studied in physics since the 1970s STRUIK *78
discovery : ageing effects reproducible &

occur in widely different systems
(structural glasses, spin glasses, polymers, simple magnets, ...)

Three defining properties of ageing :
@ slow relaxation (non-exponential !)
@ no time-translation-invariance (TTI)
© dynamical scaling without fine-tuning of parameters

Cooperative phenomenon, far from equilibrium




Two-time observables for simple magnets
time-dependent magnetisation = order-parameter = ¢(t, r)

two-time correlator  C(t,s) := (¢(t,r)d(s,r)) — ((t,r)) (¢(s,r))

d <¢(t7 r)> Y
Sh(s,r) = <¢(t7 r)é(s, r)>

two-time response  R(t,s) :=

h=0
t : observation time, s : waiting time

a) system at equilibrium : fluctuation-dissipation theorem Kupo
10C(t—5)

T Os ’
b) far from equilibrium : C and R independent!

R(t—s)= T : temperature

The fluctuation—dissipation ratio (FDR) CUGLIANDOLO, KURCHAN, PARISI "94
TR(t,s)
X(t,s) = ———"—
(t;5) dC(t,s)/0s

measures the distance with respect to equilibrium : | Xoq = X(t —s)=1



For quenchesto T < T, : —> system never reaches equilibrium

Scaling regime : ‘ t,S > Tmicro and t — s > Tmicm‘

t

- e (l)  wo-n()

asymptotics : | fc(y) ~ y /7 fr(y) ~ yR/Z [ for y > 1

Ac @ autocorrelation exponent, Ar : autoresponse exponent,
z : dynamical exponent, a, b : ageing exponents

Constat : exponents & scaling functions are universal,
i.e. independent of ‘fine details’

may use simplified theoretical models to find their values




Dynamical scaling in the ageing 3D lIsing model, T < T,
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no time-translation invariance dynamical scaling

C(t,s) : autocorrelation function, quenched to T < T,
scaling regime : t,s > Tiicro and t — s >> Ticro
data collapse evidence for dynamical scale-invariance s & Prenmie 10



Interface growth

deposition (evaporation) of particles on a substrate
— height profile h(t,r) slope profile u(t,r) = Vh(t,r)

h

p = deposition prob.
1 — p = evap. prob.

Questions :
* average properties of profiles & their fluctuations?
* what about their relaxational properties?
* are these also examples of physical ageing ?
does dynamical scaling exist



1. Magnets and growing interfaces : analogies

Common properties of critical and ageing phenomena :

* collective behaviour,
very large number of interacting degrees of freedom

* algebraic large-distance and/or large-time behaviour

* described in terms of universal critical exponents

* very few relevant scaling operators

* justifies use of extremely simplified mathematical models
with a remarkably rich and complex behaviour

* yet of experimental significance



Magnets

thermodynamic equilibrium state growth continues forever
order parameter ¢(t,r) height profile h(t,r)
phase transition, at critical temperature T,  same generic behaviour throughout
variance : roughness : ,

2 23 2 _ T 2/
(((t. 1) = ((2)))?) ~ £720/(2) w(t)? = ((h(t,r) = h(t))") ~ t*
relaxation, after quenchto 7 < T, relaxation, from initial substrate :
autocorrelator autocorrelator C(t,s) =

C(t,s) = (ot r)o(sr)). ((h(t,r) = h(t)) (h(s.¥) = h(s)))

ageing scaling behaviour :

when t,s — oo, and y := t/s > 1 fixed, expect
C(t,s) = s Pfc(t/s) and fc(y) e yAclz

b, B, v and dynamical exponent z : universal & related to stationary state
autocorrelation exponent A\¢ : universal & independent of stationary exponents



Magnets

exponent value b:{ gﬁ/w s exponent value b = —24
models :
(a) gaussian field (a) Edwards-Wilkinson (Ew) :
Hlp] = —%fd" (Vo) Oth=vV2h+n

(b) Ising model

H[g] = —3 [dr [(V§)* +7¢° + §¢*]
suchthat =0+ T =T,

dynamical Langevin equation (Ising) : (b) (KPz) :
o0 = -p™M Oeh = v+ B(VH 4
= DV%p+ 1o+ g+
n(t,r) is the usual white noise, (n(t,r)n(t’,r')) =2T(t — t')d(r — ')
phase transition exactly solved d = 2 growth exactly solved d =1
relaxation exactly solved d =1 CALABRESE & LE DOUSSAL '11

ONSAGER ’44, GLAUBER 63, ... SASAMOTO & SPOHN '10



Question : obtain qualitative understanding by approximate treatment

of the non-linearity ?

BERLIN & KacC 52
LEwis & WANNIER 52

Ising model : yes, certainly ! ‘:> spherical model! ‘

(a) for a lattice model : replace Ising spins 0; = +1 — S; € R,
with (mean) spherical constraint 3_; (5?) = N/
(b) for continuum field : replace ¢3 — ¢(¢?) and spherical

constraint [ dr (¢?) ~ 1.

Interest : analytically solvable for any d and in more general contexts
than Ising model, all exponents ... known exactly, non-trivial for
2 < d < 4. Very useful to illustrate general principles in a specific
setting. New universality class, distinct from the Ising model

STANLEY 68

(O(N) model with N — o0).

Question : | can one find a similar procedure, based on the KPZ equation ?
Are there new universality class(es) for interface growth ?

Behaviour different from the rather trivial Ew-equation ?



2. Interface growth & KPZ class

deposition (evaporation) of particles on a substrate — height profile h(t,r)
generic situation : RSOS (restricted solid-on-solid) model  kn & Kosrsnuirz 89

h

here p = 0.98
t f — —t—t— f -
some universality classes :
(a) KPZ 8th = VVQh + % (Vh)2 + Ui IKARDAR, PARISI, ZHANG 86
(b) EW 5th = VV2h + n EDWARDS, WILKINSON 82

7) is a gaussian white noise with (n(t,r)n(t’,r")) =2vTo(t — t')d(r — v')

D p = deposition prob.
T I=p 1 — p = evap. prob.



Family-Viscek scaling on a spatial lattice of extent L9 : h(t) =L~ > hi(t)

FamiLy & VISCEK 85

Ld

1 — W2 o _ L2 iftl=z>1

w?(t; L) = 7d > <(hj(f) — h(t)) > = L2F (tL77) ~ { 26 if 17 < 1
j=1

[ : growth exponent (> 0), « : roughness exponent,

two-time correlator : fimit L — oo

C(t.sir) = ((h(t,r) = (h(t))) (h(s,O)—<E(S)>)>=5_bFC(t r )

s’ sl/z

with ageing exponent : | b = —20 KALLABIS & KRUG 96

expect for y = t/s > 1: Fc(y,0) ~ y~*</Z autocorrelation exponent

rigorous bound : ‘ AC Z (d + Zb)/2 ‘ YEUNG, RAO, DESAI 96 ; MH & DURANG 15




1D relaxation dynamics, starting from an initially flat interface
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slow dynamics
observe all 3 properties of ageing : { no TTI
dynamical scaling

confirm simple ageing for the 1D KPZ universality class
confirm expected exponents b = —2/3, A\¢/z =2/3 pars pro toto

KavLrabis & KruG 96 ; KRECH 97 ; BUSTINGORRY et al. 07-10; CHOU & PLEIMLING 10 ;
D’AqQuiLa & TAUBER 11/12; Mu, NoH, PLEIMLING 12 ...



3. Interface growth & Arcetri models : heuristics

KPZ — intermediate model — EW
preferentially exactly solvable, and this in d > 1 dimensions

BERLIN & Kac 52
LEwis & WANNIER 52

inspiration : mean spherical model of a ferromagnet

Ising spins o; = +1 obey >, a,-z =N = # sites
spherical spins S; € R spherical constraint <Z, 5,2> =N
hamiltonian H = —J 37 ) SiSi — A3, s? Lagrange multiplier A

exponents non-mean-field for 2 < d <4 and T, > 0 for d > 2

kinetics from Langevin equation 0 = —D‘Wg—y +3(t)p+n

time-dependent Lagrange multiplier 3(t) fixed from spherical constraint
all equilibrium and ageing exponents exactly known, for T < T and T = T,

RoncaA 78, CONIGLIO & ZANNETTI 89, CUGLIANDOLO, KURCHAN, PARIsI 94, GODRECHE & Luck ’00,
CORBERI, LIPPIELLO, FUsCO, GONNELLA & ZANNETTI 02-14 ...



consider RSOS-adsorption process :
rigorous : continuum limit giVGS KPZ BERTINI & GIACOMIN 97

O
A NAA

++ -+ + - -+ -+ -
use not the heights h,(t) € N on a discrete lattice,
but rather the slopes u,(t) = % (hnq1(t) — hp—1(t)) = +1 RSOS

let u,(t) € R, & impose a spherical constraint | >°, (un(t)?) = N

7 consequences of the ‘hardening’ of a soft Ew-interface by a ‘spherical
constraint’ on the u, 7



KPZ equation for height h(t,r) : Och=v0?h+ & (0,h)* + 1
Burger's equation for slope u(t, r) = 0,h(t,r) :
Ot = vO%u + pud,u + 0pn

model Al: | Oru=vd?u+3(t)u+ o, fdr(v?) ~1
g(t) ~ <<a,u>> ~ curvature

model All . Oiu = vd2u + 3(t)0,u+ 0,m, fdr (u?) ~ 1
5(8) ~ (i) ~ stope

model Alll: dth=vd2h+3(t)dh+n,  [dr ((8,h)%) ~ 1
5(1.‘) ~ <<8rh>> ~ slope

interface rough or smooth
long-time properties and ageing behaviour
does dynamical scaling resp. simple ageing always hold



4. First Arcetri model A/ : simple ageing
slope u(t,x) = Oxh(t, x) obeys Burgers' equation,
replace its non-linearity by a mean spherical condition —

Detn(t) = v (umsa(t) + tn1(£) — 20n(8)) + 5(£)un(t)
2 Omsa () — a1 (1))

2
Z <Un(t)2> = N
n
Extension to d > 1 dimensions : 3(t) Lagrange multiplier
define gradient fields u,(t,r) :== V,h(t,r), a=1,....d:

Orus(t,r) = vV, Veus(t,r) +3(t)ua(t,r) + Van(t,r)

d
S ua(tr)?) = dn?

r a=1

~

interface height : | U,(t,q) = isinq, h(t,q) ;@ # 0 in Fourier space




exact solution : (@)= 39 (1 — cosqa). a#0

e = g0, [ /dm a8 s

in terms of the auxiliary function g(t) = exp (—2 deTj(T)),
which satisfies Volterra equation

e_4t/1(4t)
4t

d—1

t
g(t) = F(t) + 27/ dr g(r)f(t—7) , F(t):=d (e ¥ Io(4t))
Jo
* for d =1, identical to ‘spherical spin glass’, with
hamiltonian H = —3 > JiSiSj i Jij random matrix, its eigenvalues
distributed according to Wigner's semi-circle law CUGLIANDOLO & DEAN 95
* also related to distribution of first gap of random matrices perser & Scnens 15/16

a further auxiliary function : F(t) := []9_; € 2/, (2t) i : modified Besse function
for initially uncorrelated heights and initially flat interface



height autocorrelator :

C(t7s)=<h(t,r)h(s,r)>c=7"((:)? +\/g fodTg 7)Fo(t +s —27)
interface width : w?(t) = C(t,t) = 2230 4 21 [Rd7 g(7)Fo(2t — 27)

slope autocorrelator :
A(ts) = Sy {ua(t, ua(s. ) = 2D o [Pdr IECL£((t +5)/2 1)

V&(t)g(s) g(t)g(s)
height response : R(t,s;r) = é<h((st ;> =0(t—s) ggig Fe(t—s)
slope autoresponse : (1.5, 0) = (t — s) y = fF((t—15)/2)

* correspondence of 1D A/ model with
spherical spin glass : ‘spins S; <> slopes up,

spin glass autocorrelator | Csa(t,s) = + Z, 1 (Si(t)Si(s)) = A(t, s)

spin glass response | Rsg(t,s) = Zf\il 6§f§3>

o= 2Q(t,s)

* kinetics of heights h,(t) in model A/ driven by phase-ordering of the
spherical spin glass = 3D kinetic spherical model




phase transition : long-range correlated surface growth for T < T,

1 [ 2
= 2/ dt et ()lo(£)?7 Y ; Te(1) =2, Te(2) = Wz
o _

Some results : ‘always simple ageing‘ upper critical dimension d* = 2
1. T=T.,d<2:
rough interface, width w(t) = t(?-9/* — g =229 5 0
agemgexponentsa:b—f 1, )\R—)\C——— 1z =2

exponents z, 3, a, b same as EW, but exponent \c = \r different

2.T=T, d>2:
smooth interface, width W(t) =cste. = =0
agemgexponentsa:b— S—1L Ar=Ac=d;z=2

same asymptotic exponents as EwW, but scaling functions are distinct

3.T<Te:
rough interface, width w?(t) = (1 — T/T.)t = 3 1

df. —
Tiz=2

N

ageing exponents a = g -1, b=—-1, Ag=Ac=



[llustration : Shape of the height fluctuation-dissipation ratio, T=T.
aC(t,s)\ * t
(t:5) o) (*5e) = x(2)
t/s—o0 - d/(d+2) ; 0<d<2
K= { d/4 ;2<d
_\ == d=2.0_
L L d= 15[

s H

distinct from Xgw oo = 1/2 for all d >0 green line : Xgw for d = 4



= although for d > 2 the non-equilibrium exponent A\¢c = Ag = d is the
same for the Arcetri and EW models, the scaling functions are different

in simple magnets : | X, is an universal constant

X (WM Xy, (3}

20

d=3.5

====d=30
— d=25

d=2.0

GODRECHE & Luck 00

use universal value of X, as
diagnostic tool,

(provided that a = b,

valid in the Arcetri model at T = T¢)

N.B. : for d <2, the slope FDR XU/ = d/(d +2) = XSV, 5 g

same as X, in the spherical ferromagnet in d + 2 dimensions



Relationship with the critical diffusive bosonic pair-contact process (BPCPD)
HOWARD & TAUBER 97 ; HOUCHMANDZADEH 02 ; PAESSENS & ScHUTZ 04 ; BAUMANN, MH, PLEIMLING, RICHERT 05
* each site of a hypercubic lattice is occupied by n; € Ny particles
* single particles hop to a nearest-neighbour site with diffusion rate D
* on-site reactions, with rates [[2A — (2 + k)A|=I2A — (2 — k)A] = &
k is either 1 or 2
* control parameter o := k?p/D
— |for d > 2, particles cluster on a few sites only, if a > a¢ ‘

BHPR 05

Figure : 2D section of BPCPD in d = 3; height of columns ~ particle number BAUMANN 07

— fluctuations grow with t when o > a¢ & are bounded for a < a¢
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bosonic creation operator af(t,r), commutator [a(t,r), a' (¢, )] = 5(r — ¥
—> average particle number is constant!

n(t,r) = (a'(t,r)a(t,r)) = (a(t,r)) = po = cste.

at a = ac, caracterised by changes in the variance.

Ct,s) = <aT(t, r)a(s, r)> — 2 2 (n(t,1)n(s, r)) — PR = s~Pfc(t/s)
R(t,s) = W » = s'7?fz(t/s)
) J:

obey simple ageing for a < a. Precisely at the clustering transition
a = ac, for 2 < d < 4, the scaling functions are identical :

BPOPD : b+1=a=d/2—1  Awetri: b=a=d/2—1

frpern(y) = (y—1)972 = )

d d d 2
fc BpCP = ) %R S+l ) =
cerern(y) (y+1) 2 1(2’2'2+ 'l—i—y) )

N.B. : for d > 4, Arcetri # BPCPD # EW, although all exponents, up to b, agree.



Summary of results in the A/ model :
Captures at least some qualitative properites of growing interfaces.

* phenomenology of relaxation analogous to domain growth in simple
magnets | —> dynamical scaling form of simple ageing
* existence of a critical point T.(d) > 0 for all d >0 as a magnet
*at T = T, rough interface for d < 2, smooth interface for d > 2;
upper critical dimension d* = 2
*at T = T, d < 2, the stationary exponents (3, z) are those of EW,
but the non-stationary ageing exponents are different
explicit example for expectation from field-theory renormalisation
group in domain growth of independent exponents Ac g
different from Ew and KPz classes, where A\c = d for all d <2  Krecu o7
*at T = T, d > 2, distinct from Ew, although all exponents agree
* for d = 1, equivalent to p = 2 spherical spin glass
*at T = T, and 2 < d < 4, same ageing behaviour as at the multicritical
point of the bosonic pair-contact process with diffusion (BPCPD)
* distinct universality class for T < T,



5. Second Arcetri model A/l : several length scales
d =1 only; work in progress
Oru = v02u + 3(t)0,u + 0, fdr (u?) ~ 1
requirement : stationary solution should remain roughly flat
but find vu” + 30" =0 = u = u'® + uWe=G/Y)"  exponential growth ?
N.B. : equation of motion couples even and odd contributions to slope profile
decompose | u(t,r) = a(t,r)+ b(t,r)

with a(t,r) = a(t,—r) even and b(t,r) = —b(t,—r) odd

gives va” +3b' =0, vb” + 33’ = 0 = exponential growth as r — foo ?



‘ u(t,r) =a(t,r) + b(t,r) ‘ with a even and b odd

construct pair of equations of motion, with an important modification

Ora(t, r) vd?a(t,r) + 3(t)0,b(t, )+8rn (t,r)
Oib(t,r) = vd?b(t,r) —3(t)dsa(t,r) — dmT(t,r)

(D (alt,r) +b(t,1))*) = N

r

with symmetrised noise n%(t, r) =  (n(t, r) £ n(t, —r))

‘These are the defining equations of the model A/l‘

2 111

gives va +3b, =0, l/b”—ja — 0 =— 123" = _3231' 2 = _32b/

= ‘ profiles remain bounded as r — 400 !

analogous procedure for third Arcetri model Alll



initial condition :
interface flat on average, initial slopes uncorrelated,
spherical constraint respected

work out spherical constraint : let Z(t) := foth;,(T)

21/ dk cosh(2sin kZ(t))e *w (k)
™ —T

™ t
+ ﬂ dk sin? k/ dr cosh(2sin k(Z(t) — Z(T)))e*‘“’w(k)(t*‘f) =1
0

T J-x

: dynamics driven by initial fluctuations

much as in phase-ordering kinetics in simple magnets

spherical constraint : | e®* = Io(\/(4vt)2 + (2Z(t))? )

asymptotic solution for t > 1 : Z(t) ~ (vtIn(wvt))/?



slope response choose units such that v = 1

_ [ paltx) Ob(t.x)
Roy(t:5) = < 9j*(s,y) j0> " < 9~ (s,y) 10>
- % " dk sin ke 209 sinh(sin k(Z(£) — Z(s))) cos k(x — y)

slope correlator

Cey(t,s) = (a(t, x)a(s, y) + b(t, x)b(s, y))
S dk e 2¢(k)(t+9) cosh(sin k(Z(t) + Z(s))) cos k(x — y)

27 ),

both can be evaluated as sums of modified Bessel functions



analysis of the long-time scaling behaviour, T =0

it turns out that simple ageing is not obeyed !

rather, consider as a scaling variable ‘ T:=t—s=ysIn™

‘scaling limit t,s — oo with y fixed and ¢ > 0‘ ‘logarithmic sub-ageing’

use Z(t) ~ VtInmt for t — oo :

slope autocorrelator C(t,s) = Coo(t,s)

lo (2t + )T+ (Z(6) + Z(5)? /(e +5)) )

C(t,s) =

32

* try simple ageing ¢ = 0 : = no data collapse & multiscaling !

* only find dynamical scaling if

* same sub-ageing behaviour as in the 2D spherical magnet with

o (2t +5)V1+ Z2((t+5)/2) )

2
~ exp (_y Int=2

)

>0

conserved order parameter (model B)

BERTHIER 00



slope autoresponse R(t,s) = Ryo(t,s)

2 :
R(t,s) ~ /= sty =3/2|n1*+3/2 zs
T

* looks very similar to simple ageing
* but breaks dynamical scale-invariance

spatial equal-time correlator C,(t) = C,o(t,t)

I <4t\/1 + Z2(t)/4t? ) cos (narctan Z(t)/2t)
lo (4t\/1 + Z2%(t)/4t? )

2
n n
~ exp|—|—= cos | ———
p( <\/8t) > <\/2t/|n7rt>
* find two marginally different length scales

* simple scaling ansatz leads to multiscaling
*

Co(t) =

analogue : spherical magnet at T = 0, conserved order-parameter ConicLio & ZannerT 89

but the |



6. Conclusions

* long-time dynamics of growing interfaces naturally evolves towards
dynamical scaling & ageing

* phenomenology very similar to ageing phenomena in simple magnets

* subtleties in the precise scaling forms

* exactly solvable model with proven sub-ageing, although the A/l does
not have a macroscopic conservation law !

proving dynamical symmetries can remain a delicate affair!



