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« Background: Compressed sensing
* Problem setup: Restricted isometry constant (RIC)

* Spin glass approach
— Replica symmetric analysis
— Improvement by replica symmetry breaking

 Summary
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Compressed sensing

Reconstruct original signal X
from its undersampled measurement Y.
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Compressed sensing

Reconstruct original signal X
from its undersampled measurement Y.
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Reconstruction is possible
when X is sufficiently “sparse”.
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Practical relevance

* The problem is related to various technologies of modern
signal processing

« Many application domains
— Refraction seismic survey (mine examination)
— Tomography (X-ray CT, MRI)
— Single pixel camera
— Noise removal of image
— Data streaming computing
— Group testing
— etc.
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Simulation of tomography

LT: Original(Logan-Shepp Phantom)
#512x512

RT:Sampling 512 points of 2D FT from
22 directions.

LB :Recovery of pseudo-inverse
(standard approach)

RB:Recovery utilizing the “sparseness”
of spatial variations. “Original” is
perfectly recovered.

Perfect recovery is realized by only 2%
samples of what Nyquist-Shannon’s

. theory requires.

—Breaking of the conventional limit!

EJ Candes J Romberg and T. Tao, IEEE Trans. IT Vol. 52, 489—502 (2006)
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Two major reconstruction methods

[, reconstruction

X =arg n;m”x‘ »subjecttoY = Ax

[, reconstruction

/\ .

X = arg n}m\ x

»subjecttoY = Ax

Sufficient conditions for the reconstruction
are given by
Restricted Isometriy Constant (RIC).

7129




Restricted Isometry Constant (RIC)

Definition (Candés and Tao (2006)). 2. A, =1for Vi]
u=l1

Let 4 be a column-wisely normalized M x N matrix.

Let x€ RY be an arbitrary S-sparse vector, whose number
of non-zero components 1s smaller than S.

Then, if there exists such a constant d. = max {d,™", d/mx}
that satisfies

(1= 87| pelf, <lAx]f; < (1+67)

A 1s said to satisfy the S-restricted 1sometry property (RIP)
with the restricted 1sometry constant (RIC) d..

2
-

Intuitively, d, quantifies how A deviates from orthogonal transforms
in terms of Frobenius (L,) norm for S-sparse vectors.
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Sufficient conditions for /,, /, reconstruction

1. /, reconstruction gives the unique S-sparse solution

when d, < 1.

2. [, reconstruction gives the same unique S-sparse solution
as [, reconstruction when d,, <212 —1.

[Candes and Tao, IEEE Trans. Inform. Theory (2005)]

3. (Improvement of 2.)

[, reconstruction gives the same unique S-sparse solution

as [, reconstruction when (4\/5 — 3)5211;“ +0,¢ < 4(\/5 —1).

[Foucart and Lai, Appl. Comput. Harmon. Anal. (2009)]
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Computational difficulty

* RIC plays a key role in theoretical analysis and
performance guarantee of compressed sensing.

« On top of this, it is purely of great interest as a
fundamental problem of linear algebra.

* Unfortunately, “there are no known large (systematic)
matrices with bounded RICs (and computing RICs is
strongly NP-hard),...”.

— Wikipedia

- On the other hand, many random matrices have been
shown to remain bounded. Therefore, much effort has
been paid for improving the bounds.

— Qur study is along this line.
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Why computationally difficult?

Suppose a situation where non-zero components are fixed.

N = 5! v={1 5253!455}5 S = 2! _T= {2!4}

0
b 3 k
A 0 AT
a, a, a; a, a: E a, a, XT

X
T ATADX L <[AX, [ < A (ATA,)[x;

The change of norm can be easily characterized
by eigenvalues of “sub-matrix” A-.
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Why computationally difficult?

® In cvaluation of RIC, the inequalities must hold for all possible
combinations of the positions of non-zeros.

® This causes a combinatorial difficulty, yielding an exact
expression of RIC as

Z’min (A;F"AT)

9@ o ﬂ“max(A;r“AT) o 1}

0, = max{l—

All possible column choices
=> Combinatorial difficulty

Structures of the problem and the difficulty are
analogous to those of spin glass problems.
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Analogy to spin glasses

The choice of T are represented by binary vector {c.} € {0, 1}".

N=5,8S=2T={24}—>c={0,1,0,1, 0}
0
1
A 0 — 0 0 0 —VAT
d, 4, d; 4, As 1 a, a, a, d,
0
diag(c)

A . (A7A )and A_ (ALA.) can be regarded as
‘energy functions’ of ¢ given A.
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Analogy to spin glasses

0, = max {1—c znim_s _(c|A), ) znj_allx_s _(c|A)-1}

RIC is given by minimum and maximum ‘energy’ of c.

® Energy of ‘0-1 spin’ ¢
A (clA)=A_ (c,A)
A (clA)= (c,A)

® ‘Canonical distribution’ of ¢

P(c] A; 11) o< exp(—UN A, (] A))5(2N:ci — S]

i=1

® ‘Quenched randomness’

max

P(A)=(2zm™) """

L
2
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Spin glass approach

Z(ulA): Partition function
A

l ) |
d(ulA)= %log|: 2 exp(—,uNAsgn(u)(c | A))5LZCZ. —Sﬂ

cef01}"

* Free entropy (free energy)

* Typical properties can be assessed by the replica method.

o()=[0(114)], = lim--tog 2" (1 4)],

Energy (min/max eigenvalues) Entropy (# of T producing A)
0P (1) 0P (1)
A =7/ — _ =7
(1)=~=3 u O (1)=9(k) = 1= i



Possible minimum and maximum eigenvalues

@, (A,) 0_ (A )

0
T—Possible minimum Possible maximum —T
eigenvalue eigenvalue
ﬂ‘min ﬂ“max
) -4 A —1
S _maX{ ~ “Ymin® “Ymax }
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Replica symmetric analysis

(1) = — Zloglar+  + (1 - q>}+ %10g(0{+ 7)

2
o prui-) 2 2| a2
( & ~ 22 )
+JDzlog 1+e_KJDyeXp (\/ql quA+ \/;02)
\ 2Q )

* a=M/N(compression rate)
e p=S8/N (fraction of non-zero components)

19, %, Q, q,,9,,K} are determined by saddle point equations.
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Replica symmetric entropy

« 0=05,0=0.1
w+(ﬂ‘min)
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Replica symmetric RIC

X o=
x N,P

,,,,,'----""é:a-h-Tanner 1
(2010)

Our result

Lower bound
(Dossal et al, 2010) |

02 03 04 05
plo
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l,, [, reconstruction limit
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Improvement by RSB

® The RS RIC estimate is lower than any existing upper
bounds, being consistent with a known lower bound.

® On the other hand, there are non-negligible deviations
from the experimental data.

® |n fact, detailed analysis shows that the replica symmetry
IS broken for the left and right edges of the entropy
curves.

® However, physical interpretation of RSB indicates that
the RS estimates still serve as upper bounds of RIC, and
the bounds are improved as the higher RSBs are taken
iInto account.
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Replica symmetric entropy (again)

Il Il Il Il Il Il Il @
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max

O, =max{l-A A -1}

min
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Physical interpretation of RSB

State space energy : A _ _
9.. Do {entrropy s .....Smglce;udsc:(rar:mant
'-o.or ‘“V
RS 14 RS, 1RSB degenerated |#:|  1RSB |

Complexity = entropy of pure states

X(A,s)= %log(#pure states specified by (4,s))

Non-negativity constraint: Must be non-negative.

Total entropy

w(A)= %log(jdsexp(N(s + Z(ﬂ,,s)))) = msax{s +2(A,5)}

Cf) Montanari and Ricci-Tersenghi (2003), Krzakala et al (2007), ...
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Physical interpretation of RSB

State space energy : A _ _
9.. Do {entrropy s .....Smglce;udsc:(rar:mant
'-o.or ‘“V
RS 14 RS, 1RSB degenerated |#:|  1RSB |

RS evaluation: the complexity constraint is ignored.
Wys (2)=max{s+Z(2,s)}

1RSB evaluation: the complexity constraint is taken into account.

@, psp (A) = m;alx{s + Z(),,S)‘ X(A,s)> O}

The non-negativity constraint of the 1RSB evaluation means

s (1) 2 0,0 (2).
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Physical interpretation of RSB

State space | . . i ..;v.-'., energy : A ;
: - X 7 entrropy :s{
Single dominant - - | @ e Y
cluster . ‘ | * 0,07 .“

k
kRSB ] kRSB, (k+1)1RSB  |HS| (kerss M
degenerated
If necessary, a similar argument may be applied for the dominant cluster of 1RSB,
which yields

a)RS (/l) > a)lRSB (A‘) 2 wZRSB (A’) )

Applying the similar argument repeatedly concludes

wRS (ﬂ’) > wlRSB (A’) 2 6OZRSB (2’) =
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Monotonic improvement by RSB

The series of inequalities

Wy ()2 O (1) 2 Orsy (1) 2.

indicates that bounds are monotonically improved by incorporating the higher RSB.

@, (/lmin ) a_ (;Lmax )

A A

0

—

higher RSB higher RSB
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1RSB results

® The estimates are actually improved by the 1RSB solution!

® Two scenarios for the RSB transition
® A _. :Random first order transition (RFOT)
® ﬂ,max : de Almeida-Thouless instability (full RSB)

o=05,p=
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« Evaluation of the restricted isometry constant (RIC) can
be formulated as a spin glass problem.

« We provided a replica based-framework for accurate
evaluation of RICs.
— Replica evaluation provides the current best accuracy.

— Although the RS solution is not thermodynamically stable, the
physical interpretation of RSB implies that the RS estimates still
have the meaning of “upper-bounds”.

— The bounds are monotonically improved by taking the higher
RSB into account.

* Future work
— Application to other matrix ensembles
— Mathematical justification
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