Glassy Dynamics and spinodal
decomposition

Vincent Testard
Ludovic Berthier
Walter Kob

University of Montpellier

http://www.12c.univ-montp2.fr/kob

YITP, Kyoto
August 11-14, 2015




The glass transition

«If in an experiment (or simulation) one wants to investigate the
properties of a system at a given T, one first has to bring the system to
this temperature (by coupling it to a heat bath)

*If one wants to study the equilibrium dynamics one will have to allow
the system to equilibrate and uswally this takes a time that is
comparable with the relaxation time t of the system

*Due to the strong increase of t with
decreasing T there will exist a temp. T
at which the system falls out of
equilibrium (because we don’t have
enough patience) and forms a glass

= the system undergoes a glass
transition

N.B.: The temperature of this glass
transition and the properties of the
glass depend depends on the
experiment
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disordered structure (=glass) -
structure is open (not like dense glasses)
often soft

complex rheological properties

often produces via a chemical reaction
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Producing gels via spinodal decomposition
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Phase diagram of a liquid
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* What happens with the spinodal

decomposition at low T's?

* What happens when the glass-transition line

meets the binodal?
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Experiments:
«Cardinaux et al. PRL 2007
Lu et al. Nature (2008)

4



Our Glass-former (=Sample)

 Binary mixture of Lennard-Jones particles

(model for Nig,P,,, @ metalic 3.0
glass-former) < 20
>5
10
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Parameters: e,p= 1.0 €,5=1.5 ¢53=0.5
oap= 1.0 6,5=0.8 ops=0.88

« System size: N=8000, 49000, 300000, 106
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Phase diagram
*spinodal has been calculated by Sasty (PRL 2000)
*binodal is determined by p=0 simulations/quenches to low T's
*glass transition line = Vogel-Fulcher line (Berthier et al. PRE 2010)
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Configuration after a fixed, large time
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Energy of the system

Look at potential energy as a function of time (after the quench)
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* At intermediate temperatures E, decreases with T
* Atlow T, E, increases with decreasing T
— Competition between driving force and greediness 8



Total surface of the interface
Look at surface of G-L interface as a function of time
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* Non-monotonic t-dependence of Surface(t)

* At long times Surface(t) increases with decreasing T
(structure becomes more spongy)



Static structure factor

Experiments usually consider the first peak in the static structure factor
to characterize the size of the domains
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» Even for large systems (N=300Kk) it is hard to
extract from S(q,t) a length scale at long times
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Chord length distribution

Define chords = chord length |
(for the liquid and the gas); P. Levitz CD
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Distribution P(l,t)
*P(l,t) is at intermediate | given by an exponential
*Peak at large | is finite size effect

*Use first moment of P(l,t) to define a length scale L
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OTime dependence of chord length distribution

 For all t the shape of P(l,t) is
the same

= definition of length scale L(t)
via integral of P(l,t) is
reasonable

* Peak at large | is finite size
effect, but iIs under control
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length scale(t)

Chord length distribution

T

t=120 t=03
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Compare L(t) with length
obtained from S(q,t): 2n/q;, .,
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p,=0.25 T=0.1 |

* The two definitions
give the same result
* [Lquid and gas
chord length show
the same time
dependence
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Growth of length scale

» Spinodal decomposition: growth of length depends on model (type of
order parameter), dynamics, theory,... S

- Usually L(t) o< 2 with 6=1/3 (Kawasaki), 1/2 ( | #=06 t/ R
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e Nait cliear winettner
power-laws give a
good description of
growth.

*At low T’s we rather
see logarithmic growth;
relation to visco-elastic
effects?
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Relaxation mechanism

 How do the particles move during the spinodal decomposition?
— Look at a growth of fixed length scale: L > L+
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Relaxation mechanism 2

Displacement field of the fastest 3% of particles

1=0.5;p,=04 1=0.1;p,=04
Relaxation is quite homogeneous Relaxation is very heterogeneous
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Relaxation mechanism 3
How do at low T and onq times the particles relax?
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» Arms are stretched and broken like in a very viscous fluid

*Relaxation of surface extremely slow = surface tension is no 17
longer relevant



Summary
» Simulations of liquid-gas spinodal decomposition of a simple glass former

* For simulations static structure factor is not very helpful to characterize
length scales = use chord length distribution

» At low T's the time dependence of domain growth is very complex and not
described by usual spinodal decomposition theories; need to include
visco-elastic effects

» At low T’s the relaxation events are very localized in space and time
= driving force for relaxation is the stored stress in the sample
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