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The glass transition 
• If in an experiment (or simulation) one wants to investigate the 

properties of a system at a given T, one first has to bring the system to 

this temperature (by coupling it to a heat bath) 

 

• If one wants to study the equilibrium dynamics one will have to allow 

the system to equilibrate and usually this takes a time that is 

comparable with the relaxation time  of the system 

•Due to the strong increase of  with 

decreasing T there will exist a temp. T 

at which the system falls out of 

equilibrium (because we don’t have 

enough patience) and forms a glass 

       the system undergoes a glass    

           transition 
 

 

N.B.: The temperature of this glass                          

transition and the properties of the 

glass depend depends on the 

experiment 



On gels (as seen by Google) 
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• disordered structure (=glass) 

• structure is open (not like dense glasses) 

• often soft 

• complex rheological properties 

• often produces via a chemical reaction 

(e.g. vulcanization) or… 



Producing gels via spinodal decomposition 

Phase diagram of a liquid 
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• What happens with the spinodal 

decomposition at low T’s? 

• What happens when the glass-transition line 

meets the binodal?  

Experiments:  

•Cardinaux et al. PRL 2007 

•Lu et al. Nature (2008)  

? 



Our Glass-former (=Sample)   

• Binary mixture of Lennard-Jones particles 

   (model for Ni80P20, a metalic  

    glass-former) 

 

 

 

 

 

 

 

• System size: N=8000, 49000, 300000, 106  
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Parameters: AA= 1.0    AB= 1.5    BB= 0.5 

                    AA= 1.0   AB= 0.8    BB= 0.88 



Phase diagram 
•spinodal has been calculated by Sasty (PRL 2000)  

•binodal is determined by p=0 simulations/quenches to low T’s 

•glass transition line = Vogel-Fulcher  line (Berthier et al. PRE 2010) 
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Configuration after a fixed, large time 
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Look at potential energy as a function of time (after the quench) 

Energy of the system 

• At intermediate temperatures Ep decreases with T 

• At low T, Ep increases with decreasing T 

 Competition between driving force and greediness 
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Look at surface of G-L interface as a function of time 

Total surface of the interface 

• Non-monotonic t-dependence of Surface(t) 

• At long times Surface(t) increases with decreasing T 

(structure becomes more spongy)  
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Experiments usually consider the first peak in the static structure factor 

to characterize the size of the domains 

Static structure factor 

• Even for large systems (N=300k) it is hard to 

extract  from S(q,t) a length scale at long times  
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Define chords  chord length l  

(for the liquid and the gas); P. Levitz 

Chord length distribution 

•Distribution P(l,t)  

•P(l,t) is at intermediate l given by an exponential 

•Peak at large l is finite size effect 

•Use first moment of P(l,t) to define a length scale L 
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Time dependence of chord length distribution 

• For all t the shape of P(l,t) is 

the same  

 definition of length scale L(t) 

via integral of P(l,t) is 

reasonable 

 

• Peak at large l is finite size 

effect, but is under control 
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Compare L(t) with length 

obtained from S(q,t): 2/qmax 

Chord length distribution 

• The two definitions 

give the same result 

• lLquid and gas 

chord length show 

the same time 

dependence 
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• Spinodal decomposition: growth of length depends on model (type of 

order parameter), dynamics, theory,... 

• Usually L(t)  t with =1/3 (Kawasaki), 1/2  (Glauber), 1.0,... 

Growth of length scale 

• not clear whether 

power-laws give a 

good description of 

growth.  

•At low T’s we rather 

see logarithmic growth 

• Not clear whether 

power-laws give a 

good description of 

growth.  

•At low T’s we rather 

see logarithmic growth; 

relation to visco-elastic 

effects? 
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• How do the particles move during the spinodal decomposition? 

 Look at a growth of fixed length scale:  L  L +  

Relaxation mechanism 
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Displacement field of the fastest 3% of particles 

Relaxation mechanism 2 

T=0.5 ; 0 = 0.4 

Relaxation is quite homogeneous 

T=0.1 ; 0 = 0.4 

Relaxation is very heterogeneous 
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How do at low T and long times the particles relax? 

Relaxation mechanism 3 

• Arms are stretched and broken like in a very viscous fluid 

•Relaxation of surface extremely slow  surface tension is no 

longer relevant  

t=10000 

t=2300 

t=2100 

t=1300 

t=1100 

t=50 



Summary 

• Simulations of liquid-gas spinodal decomposition of a simple glass former 

• For simulations static structure factor is not very helpful to characterize 

length scales   use chord length distribution 

• At low T’s the time dependence of domain growth is very complex and not 

described by usual spinodal decomposition theories; need to include 

visco-elastic effects 

• At low T’s the relaxation events are very localized in space and time       

 driving force for relaxation is the stored stress in the sample 
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