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• The dynamics after a quench at low temperature of a

ferromagnetic system is studied since a very long time.

• For a dynamics with a non conserved order parameter, the

evolution is controlled by the growth of a characteristic length

scale R(t) ≃ t1/2 with an equilibrium reached when R(t) ≃ L
with L the linear size of the considered system. Natural time

scale is then t/L2.

• Finite size spin clusters can also be considered. It can be seen

that these clusters will shrink and disappear due to a

curvature-driven ordering processes described by the

Allen-Cahn equation : the local velocity of an interface is

proportional to the local curvature.

• For crossing or wrapping interfaces, the curvature is zero.
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• This explains the existence of metastable stripe states.

Krapivsky, Redner and collaborators have obtained recently

results on the probability existence of such metastable strip

states for the ferromagnetic 2dIM model at T = 0.

• While it was observed since a very long time (2001) that the

proportion is ≃ 1/3 for strip states and ≃ 2/3 for ground states, it

is only recently (2009) that a link with percolation was obtained.

• For the FBC case, the proportion of ground states is

2πhv =
1
2
+

√
3

2π
log

(

27
16

)

= 0.64424.. and the probability of strip

states is πh + πv =
1
2
+

√
3

2π
log

(

27
16

)

= 0.35576..., (J. Cardy, 1992,

G. Watts, 1996).

• Similar results for PBC and also with an aspect ratio r = LX/LY .
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• A link with the percolation was already observed in a serie of

works by Arenzon, Bray, Cugliandolo and collaborators (2007)

who considered the statistics of spin clusters for the Ising model

after a quench at a subcritical point and observed that after few

steps, the distribution scales like for percolation.

• Question : where and how does the percolation come in this

problem ?
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• Ising model defined with a spin variable S = ±1 on each site of

a lattice:

H = −J
∑

〈ij〉
SiSj, (1)

with 〈ij〉 the sum on nearest neighbours and J = 1. We will

consider the square lattice, the triangular lattice, the kagome,

the bowtie-a or the hexagonal lattice with N = L× L spins and

either the free boundary conditions (FBC) or the periodic

boundary conditions (PBC). For each of these lattice, a 2nd

order phase transition at a finite Tc separates a paramagnetic

phase from a ferromagnetic phase.

• The choice of boundary conditions can have some influence on

the final state after a quench from a paramagnetic state to zero

temperature.
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• We consider dynamics with non conserved order parameter :

Glauber type. At the time t = 0, instantaneous change 1/T = 0
to T = 0.

• At T = 0, the dynamics is particularly simple since the system

tries to minimise its energy: To each spin Si is associated a

local field hi =
∑

|i−j|=1 Sj. We choose at random a position i. If

Sihi < 0, the spin is reversed, otherwise if Sihi = 0, the spin is

reversed with a probability 1/2.

• After an equilibration time teq ≃ L2, finite domains have

disappeared and the configuration is either completely

magnetised or in a striped state.
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• Arenzon et al. have shown that after a subcritical quench

starting from infinite temperature, the distribution of the spin

clusters N (A, t), as a function of their area A, is similar to the

one of percolation.

• This distribution is related to the one of the percolation after a

very short time t ≃ 10, with a power law behaviour of the form

N (A, t) ≃ A−τA .

• This was established by looking at the behaviour for small A and

the value of the overall constant which is known exactly in the

case of the 2d percolation or for the 2d critical Ising model.
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Tc.
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• For t ≥ 16 we can clearly distinguish the two parts of the

distribution (2). A first part in the range 1000 ≤ A ≤ 106 with a

power law behaviour. The second part is the small bump at

around A ≃ 2.106.

• We measure τA = 2.020− 2.040 which is close to both the

exponent for percolation, τA = 2 + 5/91 ≃ 2.05495 and for the 2d

critical Ising model, τA = 2 + 5/187 ≃ 2.02674. Difficult to

distinguish between these two cases ...

• A better way to distinguish between these two distributions is to

look at the part of the distribution corresponding to the large

(percolating) clusters.

• A more complete version of the distribution is

N (A, t) ≃ A−τA +Np(A/L
2−β/ν, t) . (2)

The second part corresponds to the percolating states.
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• L2−β/ν corresponds to the average size of the percolating states,

with β/ν the order parameter critical exponent.

β/ν = d
(

τA − 2

τA − 1

)

. (3)

• AτAN (A, t) vs. A/L2−β/ν with the parameters of the percolation.

For t ≃ 2, the distributions depend on the size, while for t ≃ 16,

they all become similar and percolation like. Inset : similar plot

but with parameters of critical Ising.
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• t = 2, L = 160, 640 ↔ t = 4, L = 640, 2560
t = 4, L = 160, 640 ↔ t = 8, L = 640, 2560.

• Saturation : t = 4 for L = 160, t = 8 for L = 640, t = 16 for

L = 2560.

• This suggests a time dependance of the form t/L1/2 up to some

saturation at tp ≃ L1/2.

• Note that the existence of a percolating clusters is not enough to

predict the faith of the configuration.

• In the next figure, we show snapshots at different times of a

single configuration with 128× 128 spins and FBC after a

quench from infinite temperature to T = 0 at initial time t.
Percolating clusters are shown in a different colour.
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• We observe that percolating cluster already appear at a very

earlier time, t = 0.57533 but next it can disappear, re-percolate

again, etc. It is only after a much later time, t = 7.46144 that the

configuration reach a final percolating state.

• We want a more accurate way of measuring the time tp(L) it

takes to reach a percolating state : after a quench from 1/T = 0
to T = 0 we let evolve the system up to t = tw, then we make

two identical copies of the configuration, si(tw) = σi(tw). Next

we let evolve each copy with a different history.

• We then compute the overlap between the two copies at the

subsequent times:

qtw(t, L) =
1

N

∑

i

〈si(t)σi(t)〉 . (4)
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• It is only after having let the system evolve with the T = 0
dynamics for some time (the tp of prevision section !!!) that a

percolating state is reached.

• If we let the system evolve beyond tp, and we make the two

copies at tw ≥ tp, the two clones should be strongly correlated

for all subsequent times, with an asymptotic finite overlap.

• We observe that if tw(L) increases as L1/2, the overlap remains

finite and close to 1. This indicates that tp ≃ L1/2 is the time it

takes for a totally disordered configuration to reach a percolating

state.
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Figure 1: qtw(t) between two copies vs. the size L for a quench at

t = 0 and a common evolution up to tw(L). Left panel, FBC of the

square lattice. Right panel, PBC for the triangular lattice.
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Another way of investigating the approach to percolation is by

computing the overlap of the number of crossings between a given

time tw and at the final time Ac(t) = 〈δnc(t),nc(teq)〉 as a function of

t/Lx
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Consequence : correlation

function and finite temperature
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• We want to show some of the consequences of the existence of

the percolating time tp.
We consider a two points correlation function defined as

G(r, t) = 〈Si(t)Sj(t)〉 = f

[

r

ξ(t)

]

= g

[

r

ξ(t)
,
L(L)

ξ(t)

]

(5)

with r = |i− j|, ξ(t) = t1/z the characteristic length and

L(L) = ξ(tp) ≃ L0.5/z. In the following figure, we show the

correlation function as function of r
ξ(t)

and also in the case we

impose the condition L(L)
ξ(t)

= cst.
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Figure 2: G(r, t, L) vs. r/ξ(t) for the 2dIM after a quench from T = 0.
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• With a final state at finite temperature we expect that the

thermal fluctuations will destroy the crossing states and the

system will end in a completely magnetised state.

• At T = 0, the magnetisation converges to a finite value

≃ 0.733181 = 2πhv + (πh + πv)1/4 , with 2πhv =
1
2
+

√
3

2π
log 27

16
and

πh + πv = 1− 2πhv

• For finite temperature, the behaviour is similar up to t/L2 ≃ 1 for

T < Tc.

• For t/L2 > 1, the magnetisation will eventually go to 1 but after a

time which increases with the size and the distance from Tc.
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Figure 3: Mag vs. t/L2 for different final temperatures T .
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• We can also look the restricted overlap of the number of

crossings with a final state i defined as

A(i)
c (t) =< δnc(t),i > . (6)

Clear correspondence between A(1)
c (t) and the evolution of the

magnetisation. ( (1) = crossing in both directions)

• In the following figures, we show A(1)
c (t) as a function of t/L2,

t/L0.5 and t/L3.333.

• We observe that the earlier dynamics scales as a power of

t/L0.5 up to the value A(1)
c (t/L0.5 = 1) ≃ 2πhv = 0.64424

corresponding to the final value at zero final temperature.

• The late dynamics is controlled by a scaling of t/L3.333.
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Figure 4: A(1)
c (t) vs. t/L2 for different final temperatures T .
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Figure 5: A(1)
c (t) vs. t/L0.5 for different final temperatures T .
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c (t) vs. t/L3.333 for different final temperatures T .
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• Other 2d lattices : triangular : tp ≃ L2/6; kagome : tp ≃ L2/4;

bowtie-a : tp ≃ L2/5; hexagonal : tp ≃ log(L) → tp = Lz/nc?

• the hexagonal (or honeycomb) lattice is particular since the

state is blocked very quickly due to the existence of clusters with

6 spins which will never disappear at T = 0 (Takano and

Miyashita, 1993). Still the percolation is present at T = 0.

• Other dynamics : Voter model tp ≃ 1.666.

• Similar results also for the directed Ising model, Godrèche and

Pleimling, 2015

• d = 3 dimension ? For the 3d Ising model, the percolation

threshold is at pc ≃ 0.3. So starting from the paramagnetic state,

we already have two percolating states.
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Other quantities can also be considered like the fractal dimension

DH = 1.75 associated to the length interface lc of the percolating

cluster or the variance of the winding angle < θ2(x) > which has to

behave has a+ 4k
8+k

log x with k = 6 for percolation.
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• The dynamics after a quench from an high temperature (T > Tc)

to a low temperature (T < Tc) is described by the coarsening of

finite clusters and physical quantities are functions of t/L2.

• The final state is controlled by the existence of percolating

states. These states appear after a time tp ≃ L1/2 for the square

lattice and tp ≃ L1/3 for the triangular lattice. tp ≃ Lz/c with c the

lattice coordination number ?

• These percolation states will become stripe states which will be

present with a finite probability at T = 0 in the large time limit.

• At finite temperature < Tc, the stripe states can also be

observed and will disappear, due to thermal fluctuations after a

time ≃ L3.33.
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