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Outline

Introduction: Tagged particle motion in one dimensional systems

Hamiltonian systems: effect of integrability
Harmonic crystal → Fermi-Pasta-Ulam chain

Equal mass hard point gas → Alternate mass hard point gas

General approach for “identity-exchange” dynamics:-
Large deviations and two-particle distributions.

Conclusions
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Introduction - Single file motion

L

X XXX1 M N2

Let ∆x(t) = xM (t)− xM (0).
Consider the correlation functions 〈[∆x(t)]2〉, 〈∆x(t)v(0)〉 and 〈v(t)v(0)〉.

D(t) =
1
2

d
dt
〈[∆x(t)]2〉 =

∫ t

0
〈v(0)v(t ′)〉dt ′ = 〈∆x(t)v(0)〉 .

The average is over thermal initial conditions ( and also over trajectories, for stochastic dynamics ).

Let N/L = ρ.
If D = limt→∞ limL→∞ D(t) is finite, then we say tagged particle motion is diffusive,

thus 〈[∆x(t)]2〉 = 2Dt .

D → 0 implies sub-diffusion and D →∞ implies super-diffusion.
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Review of earlier work

One dimensional gas with Hamiltonian dynamics – equal mass particles moving balistically
between elastic collisions.

Exact results for infinite system with a fixed density n of particles —

〈[x(t)− x(0)]2〉 ∼ 2Dt , D = 1
n

√
kBT
2πm ,

〈v(t)v(0)〉 ∼
√

m
2πkBT (−1 + 5

2π ) 1
n3t3 .

Averaging is over thermal initial conditions.
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Review of earlier work

Harmonic crystals — Exact results for infinite systems—

Finite diffusion constant

D =
kBT
2ρc

ρ = m/a, c = a
√

k/m

〈v(t)v(0)〉 ∼
sin(ω0t)

(2πω0t)1/2
.

Averaging is over thermal initial conditions.
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Review of earlier work

One dimensional gas with Brownian dynamics – particles freely diffusing but with no-crossing
condition. Similar to simple exclusion process.

Exact results for infinite system with a fixed density n = N/L of particles —

〈[x(t)− x(0)]2〉 ∼
2
n

√
Dt
π
.

Averaging is over thermal initial conditions and
also stochastic paths.

Thus the caging effect of single file diffusion leads to a subdiffusive motion of particles.
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Experiments

Science 287, 5453 (2000).
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Experiments
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Some open questions

The equal mass HP gas and the harmonic chain are both very special systems — both are
integrable models. What happens with more realistic models ? Do we still get diffusion in
systems with any generic Hamiltonian dynamics ?
Relation to thermal conduction studies ?

Finite size effects. Eventually, in any finite system, the mean square displacement will stop
growing with time and will saturate to a finite value determined by the equilibrium distribution
((∆x)2 ∼ N). How does this approach to the saturation value take place ?

If the motion is diffusive, how do we determine the diffusion constant ?
Prediction from hydrodynamic theory ?

Mostly the second moment (MSD) has been computed. What about large deviations?
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Earlier work – Hamiltonian systems

Non-integrable dynamics
Alternate mass HP gas – Marro and Masoliver: Phys. Rev. Lett. 54, 731 (1985)

〈v(0)v(t)〉 ∼ −
1
tδ

δ < 1 .

This implies a negative divergent diffusion constant and is impossible!

Lennard Jones gas – Bishop, Derosa and Lalli: J. Stat. Phys. 25, 229 (1981)
Srinivas and Bagchi: J. Chem. Phys. 112, 7557 (2000).
Finite diffusion constant and

〈v(0)v(t)〉 ∼
1
t3

δ < 1 .

Finite size effects in equal mass HP gas.
Some general results have been obtained in —

Lebowitz and Percus: Phys. Rev. 155, 122 (1967)
Lebowitz and Sykes: J. Stat. Phys. 6, 157 (1972)
Percus: J. Stat. Phys. 138, 40 (2010)

However, the results are mostly formal, and not very explicit.
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Earlier work — Stochastic systems (BM or EP)

Stochastic dynamics — A number of work have studied finite size effects e.g:

Gupta, Majumdar, Godreche and Barma, Phys. Rev. E 76, 021112 (2007)
Lizana and Ambjornsson, Phys. Rev. Lett 100, 200601 (2008)
Barkai and Silbey, Phys. Rev. Lett. 102, 050602 (2009)
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Present work — Mostly Hamiltonian systems.

Finite size effects in harmonic chain and equal mass HP gas — both integrable models.

Simulation results for FPU chain, alternate mass HP gas and Lennard-Jones gas.

Analytic results from linearized hydrodynamic theory.

Hard particle gas and non-crossing Brownian particles: Exact results from mapping to
non-intercting particles— Universal large deviation function, two particle correlations.

Time regimes

“Short time regime” — times at which the tagged particle does not know that the system is
finite.

“Long time regime” — times after which finite size effects start showing up. We use hard walls
so that the mean square diplacement eventually saturates.
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Harmonic chain

The Hamiltonian of the system is

H =
N∑

l=1

m
2

ẋ2
l +

N+1∑
l=1

k
2

(xl − xl−1)2 .

Normal mode frequencies: ω2
s = (2k/m) [1− cos(sπ/(N + 1))] .

A simple analysis, using normal modes gives:

〈[∆x(t)]2〉 = 2
[
〈x2(0)〉 − 〈x(t)x(0)〉

]
=

8kBT
m(N + 1)

∑
s=1,3,...

sin2(ωs t/2)

ω2
s

,

〈v(t)v(0)〉 =
2kBT

m(N + 1)

∑
s=1,3,...

cos(ωs t) .
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N=33 Long time form of MSD of central particle for

small systems, computed from above equations
numerically. Frequency and amplitude of
oscillations scale with system size.

Note: Short time (t . N) is diffusive.
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Harmonic Chain — Short time behaviour
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Harmonic chain — Main results

There are three distinct time regimes:
1 When ωN t << 1, sin2(ωnt/2) ≈ ω2

n t2/4, the MSD is then equal to kBTt2/m .

2 In the second part, t >> 1 and t/N << 1 we get

〈[∆x(t)]2〉 =
8kBT

m(N + 1)

∑
s=1,3,...

sin2(ωs t/2)

ω2
s

=
2kB T a t
π m c

∫ ∞
0

dy
sin2(y)

y2
= 2D t ,

with the diffusion constant D = kBT/(2ρc).

3 “Large times” — there is an almost-periodic behaviour, with the peaks of 〈(∆x)2〉 being
proportional to N while the minimas almost touch zero. We see that plotting 〈(∆x)2〉/N
against t/N gives a good scaling of the data. The near-recurrences (∼ N1/3) are somewhat
surprising since we are averaging over an initial equilibrium ensemble.
(Analytic understanding from more careful analysis of sum)
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Equal mass hard particle gas

Gas of N = 2M + 1 point particles in a one-dimensional box of length L.

Particles interact with each other through hard collisions conserving energy and momentum
— colliding particles simply exchange velocities.
When an end particle collides with the adjacent wall, its velocity is reversed.

Initial state of the system is drawn from the canonical ensemble at temperature T .
Thus, initial positions of the particles are uniformly distributed in the box.
Initial velocities of each particle choosen independently from Gaussian distribution with zero
mean and a variance v2 = kBT/m.

Note: Particles are ordered 0 < x1 < x2 < · · · < xN−1 < xN < L at all times.
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Equal mass hard particle gas – Mapping to non-interacting
problem

y

t

1 2 4 6 73 5

1
34 5627

x

x

y

L

t

1 2 4 6 73 5

1 23 4 567
y

x~

~

x

One can effectively treat the system as non-interacting — keep track of labels.

To find the VAF of the middle particle in the interacting-system from the dynamics of the
non-interacting system, we note that there are two possibilities in the non-interacting picture

1 the same particle is the middle particle at both times t = 0 and t , or

2 two different particles are at the middle position at times t = 0 and t respectively.

Denote the VAF corresponding to these two cases by 〈vM (0)vM (t)〉1 and 〈vM (0)vM (t)〉2. The
complete VAF is given by 〈vM (0)vM (t)〉 = 〈vM (0)vM (t)〉1 + 〈vM (0)vM (t)〉2.
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Equal mass hard particle gas – Mapping to non-interacting
problem

To compute 〈vM (0)vM (t)〉1, —
(i) Pick one of the non-interacting particles at random,
(ii) Find the probability that it goes from (x , 0) to (y , t),
(iii) Find probability that it is the middle particle at both t = 0 and t ,
(iv) Multiplying by v(0)v(t) and integrating over x and y .

To compute 〈vM (0)vM (t)〉2, —
(i) Pick two particles at random at time t = 0,,
(ii) Find probability that they go from (x , 0) to (ỹ , t) and (x̃ , 0) to y , t),
(iii) Find probability that there are an equal number of particles on both sides of x and y at
t = 0 and t respectively,
(iv) Multiply by v(0)ṽ(t) and integrate with respect to x , y , x̃ , ỹ .

Using our approach we get analytic results for the VAF.
We recover the results of Jepsen, Lebowitz, Sykes and Percus. Our approach is much
simpler than the earlier approaches.
Analytic results obtained for the long time behaviour where finite size effects become
important.
[A. Roy, O. Narayan, A. Dhar, S. Sabhapandit, JSP (2012)]

(ICTS) July 29, 2015 18 / 36



Equal mass HP gas
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Simulation results —
also reproduced by exact analysis.

Comparision between harmonic chain (HC) and hard particle gas (HPG):
1 Both integrable models
2 Both diffusive at intermediate time scales.
3 VAF — sin(ω0t)/t1/2 in HC and ∼ −1/t3 in HPG.
4 Finite size effects very different — MSD keeps oscillating in HC, saturates to equilibrium value

for HPG.
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Alternate mass HP gas

What about the case when alternate particles have different masses?
From momentum and energy conservation we have

v ′l =
(ml −ml+1)

(ml + ml+1)
vl +

2ml+1

(ml + ml+1)
vl+1

v ′l+1 =
2ml

(ml + ml+1)
vl +

(ml+1 −ml )

(ml + ml+1)
vl+1 .

In this case the mapping to non-interacting particles breaks down and we do not have any
exact results — Simulation results.
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Hard particle gas- simulation results
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Alternate mass HPG (solid lines) compared with
equal mass HPG.
N = 101 (blue) and N = 201 (red) particles,
density ρ = 1 and kBT = 1. Alternate particles
have masses 1.5 and 0.5.

Note:

VAF for AM-HPG is close to ∼ −1/t .

Oscillations at large times (sound waves).
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Hard particle gas- behaviour of D(t).
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t
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Plot of D(t) = 〈∆x(t)v(0)〉 for the alternate
mass gas for various system sizes. We see
a logarithmic decay of the diffusion
constant.
Dashed line shows saturation to the
expected Jepsen value 1/

√
2π ≈ 0.4 for

equal mass HPG.

A Roy, O. Narayan, A. Dhar and S. Sabhapandit, JSP (2012).

Contradicts results of mode-coupling theory (H van Beijeren) which predicts —
D(t) = D + 0.39/t2/5 with D = kBT/(2nc) = 0.2887.
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Hard particle gas - behaviour of D(t) [Latest simulations !]
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Data seems to approach Beijeren
formula from mode-coupling theory.

Slow decay to a finite asymptotic
diffusion constant D = kBT/(2nc),
where c is the sound speed.

Note that diffusion constant is independent of mass ratio and depends only on the average
density. For unit density and temperature, D = 1/

√
2π = 0.3989... for equal mass case and this

changes to D = 1/(2
√

3) = 0.2886... even if the masses are different by arbitrarily small amounts.
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Hard particle gas - Long time behaviour
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MSD as a function of time for three system
sizes N = 201, 401, 801.

Equilibrium saturation value for alternate
mass and equal mass HPG are the same
but the approach to this is very different.
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Fermi-Pasta-Ulam chain: Short time behaviour

Hamiltonian given by

H =
N∑

l=1

m
2

q̇2
l +

N+1∑
l=1

[
k
2

(ql − ql−1)2 +
ν

4
(ql − ql−1)4]
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D=0.342

We see that there is a fast convergence of
D(t) to the expected diffusion constant
D = kBT/(2nc) = 0.342

Sound speed c can be calculated from
one-dimensinal hydrodynamics theory
(H. Spohn, 2013).

VAF ∼ sin(ω0t)e−At .
Compare with HC (∼ sin(ω0t)/t1/2).
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Fermi-Pasta-Ulam chain: Long time behaviour
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Oscillations with time period N/c and eventual saturation to equilibrium value
〈[∆x(t)]2〉 → 2[ 〈x2〉 − 〈x〉2 ] ∼ N (unlike harmonic case).
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Sound waves with noise and dissipation

Consider hydrodynamic description of the one-dimensional chain in terms of sound modes which
are acted on by momentum-conserving noise and dissipation.

mq̈l = −k(2ql − ql+1 − ql−1)− γ(2q̇l − q̇l+1 − q̇l−1) + (2ξl − ξl+1 − ξl−1) .

For equilibration we require

〈ξ̃p(t) ξ̃q′ (t ′)〉 =
2γkBT
ω2

p
δ(t − t ′) δq,q′ .

Solving the linear equations we get the following correlations for the middle particle:

〈q(t)v(0)〉 =
2kBT

m(N + 1)

∑
s=1,3,...

1
βp

e−αp t sin(βp t) ,

〈v(t)v(0)〉 =
2kBT

m(N + 1)

∑
s=1,3,...

e−αp t
[

cos(βp t)−
αp

βp
sin(βp t)

]
.

Diffusion constant:

D = lim
t→∞
〈q(t)v(0)〉 =

kBT
mcπ

∫ ∞
0

dx
sin x

x
=

kBT
2ρc

.
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Sound waves with noise and dissipation – comparision with FPU
data

Comparision of the predictions of effective model with simulation results of FPU chain (N = 65).
γ is the only fitting parameters. k fixed from FPU speed of sound (Spohn, 2014).
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Very good agreement between model and actual FPU chain data.

The decay of the VAF is as ∼ sin(ω0t)e−αt/t1/2.
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Velocity autocorrelation function

Effective model gives

〈v(t)v(0)〉 =
2kBT

m(N + 1)

∑
s=1,3,...

e−αp t
[

cos(βp t)−
αp

βp
sin(βp t)

]
.

For N →∞, asymptotic (large t) analysis gives

〈v(t)v(0)〉 ∼
e−γt sin(ω0t)

t1/2
.

This approach is similar to harmonization technique used for interacting Brownian particles .
[Lizana, Barkai etal, PRE (2010)] — There one gets

〈∆x2(t)〉 =
2

π1/2

kBT
ρc

(
t

γ/m

)1/2
.
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Identity-exchange dynamics

Definition of dynamics: we define the interacting problem by starting with the non-interacting
trajectories and interchanging particle labels whenever two trajectories cross.

Models of (i) hard particle gas starting from equilibrium velocity distribution and (ii) reflecting
Brownian particles both fall in the above classification.

In both these cases, single particle dynamics is described by the Gaussian propagator

G(y , t |x , 0) =
1√

2πσ2
t

exp

(
−

(y − x)2

2σ2
t

)
.

σt = v̄ t for HPG and σt =
√

2Dt for BM.

It is easy to compute properties of the interacting system by mapping to non-interacting
dynamics.

EXAMPLE: - computing joint distribution of tagged particule P(x , 0; y , t).

(ICTS) July 29, 2015 30 / 36



Mapping to non-interacting problem

In the noninteracting picture, there are two possibilities:
(i) the middle particle at t = 0 is still the middle particle at time t .
(ii) a second particle has become the middle particle at time t.

ti
m

e

x

y

x x

y y

~

~

space

We need to sum over these two processes.
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Mapping to non-interacting problem

ti
m

e

x

y

x x

y y

~

~

space

P(1)(x , 0; y , t) = ρG(y , t |x , 0) F1N (x , y , t).
F1N (x , y , t) is the probability that there are an equal number of particles to the left and right of
x and y at t = 0 and t respectively.

P(2)(x , 0; y , t) = ρ2 ∫∞
−∞ dx̃

∫∞
−∞ dỹG(ỹ , t |x , 0) G(y , t |x̃ , 0) F2N (x , y , x̃ , ỹ , t) .

F2N (x , y , x̃ , ỹ , t) is the probability that there are an equal number of particles on both sides of
x and y at t = 0 and t respectively, given that there is a particle at x̃ at time t = 0, and a
particle at ỹ at time t .

P(x , 0; y , t) = P(1)(x , 0; y , t) + P(2)(x , 0; y , t) .
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Large deviation functions of TPD in single-file systems

[C. Hegde, A. Dhar, S. Sabhapandit, PRL (2014)]

The functions F1N and F2N can be obtained using combinatorial arguments. Hence we can
obtain the exact joint PDF.

The joint PDF gives the full PDF of the tagged particle displacement.

Final result:- PDF has the large deviation form

Ptag(X , t |0, 0) ∼ e−ρσt I(X/σt ) ,

where the large deviation function (LDF) is given exactly by

I(z) = 2Q(z)−
[
4Q2(z)− z2]1/2

, Q(z) =
e−z2/2
√

2π
+

z
2

erf
(
z/
√

2
)
.

Earlier treatment — C. Rödenbeck, J. Kärger, and K. Hahn (1998)—from N-particle propagator.
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Large deviation function
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Can compute leading correction to LDF. This is improtant for numerical comparision.

Can also compute cumulant generating function and all cumulants. No closed-form
expression.
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Other results

Comparision with Macroscopic Fluctuation Theory result.
[P. Krapivsky, K. Mallick, T. Sadhu, PRL (2014)].

Two time correlations can be computed —
From MFT [P. Krapivsky, K. Mallick, T. Sadhu, JSP (2015)].

From non-interacting system mapping [T. Sadhu and B. Derrida, JSM (2015)].

Shows that tagged particle motion is non-Markovian.

Two-particle joint distributions can be computed using the same method.
[ Sabhapandit and Dhar, JSM (2015)]
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Conclusions

Effect of non-integrable interactions on tagged particle diffusion was studied. (Can chaotic
motion give rise to subdiffusive behaviour ?)

Tagged particle motion in Hamiltonian systems is probably diffusive in all cases.
Diffusion constant known exactly for equal mass hard particle model, harmonic chain.
Diffusion constant from linearized hydrodynamic equations is D = kBT/(2ρc). The speed of
sound in terms of parameters of microscopic models is known [Spohn (2013)]. Very accurate
in many cases, less so in some.

For the alternate mass case, approach to asymptotic behaviour seems to be slow
— Mode coupling theory (Beijeren)

For the FPU case we get a fast approach to the expected asymptotic diffusion constant.

The velocity autocorrelation function can have a wide range of asymptotic behaviour including
power-law decay, oscillatory decay, as well as exponential decay.

The approach to equilibration and finite-size effects are also very different in different models.

Proposed a powerful method for exact computations in class of single-file systems.
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