
Control, inference and learning

Bert Kappen
: SNN Donders Institute, Radboud University, Nijmegen

Gatsby Unit, UCL London

July 21, 2015

Bert Kappen



Why control theory?

A theory for intelligent behaviour:
- neuroscience

Bert Kappen Oxford 2015 1/58



Why control theory?

A theory for intelligent behaviour:
- neuroscience
- robotics

Bert Kappen Oxford 2015 2/58



Control theory

Given a current state and a future desired state, what is the best/cheapest/fastest
way to get there.
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Why stochastic control?
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How to control?

Hard problems:
- a learning and exploration problem
- a stochastic optimal control computation
- a representation problem u(x, t)

Bert Kappen Oxford 2015 5/58



The idea: Control, Inference and Learning

Linear Bellman equation and path integral solution
Express a control computation as an inference computation.
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The idea: Control, Inference and Learning

Linear Bellman equation and path integral solution
Express a control computation as an inference computation.
Compute optimal control using MC sampling

Importance sampling
Accellerate with importance sampling, a state-feedback controller
Learn controller from self-generated data

Optimal importance sampler is optimal control

Learn a good importance sampler using PICE
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Outline

• Introduction to control theory

• Link between control theory, inference and statistical physics

– Schrödinger, Fleming Mitter ’82, Kappen ’05, Todorov ’06

• Importance sampling

– Relation between optimal sampling and optimal control

• Cross entropy method for adaptive importance sampling (PICE)

– A criterion for parametrized control optimization
– Learning by gradient descent

• Some examples
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Discrete time optimal control

Consider the control of a discrete time deterministic dynamical system:

xt+1 = xt + f (xt, ut), t = 0, 1, . . . ,T − 1

xt describes the state and ut specifies the control or action at time t.

Given x0 and u0:T−1, we can compute x1:T .

Define a cost for each sequence of controls:

C(x0, u0:T−1) =

T−1∑
t=0

V(xt, ut)

Find the sequence u0:T−1 that minimizes C(x0, u0:T−1).
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Dynamic programming

Find the minimal cost path from A to J.

C(F) = min(6 + C(H), 3 + C(I)) = 7

Minimal cost at time t easily expressable in terms of minimal cost at time t + 1.
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Discrete time optimal control

Dynamic programming uses concept of optimal cost-to-go J(t, x).

One can recursively compute J(t, x) from J(t + 1, x) for all x in the following way:

J(t, xt) = min
ut:T−1

T−1∑
s=t

V(xs, us)


= min

ut
(V(t, xt, ut) + J(t + 1, xt + f (t, xt, ut)))

J(T, x) = 0

J(0, x) = min
u0:T−1

C(x, u0:T−1)

This is called the Bellman Equation. Computes ut(x) for all intermediate t, x.
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Stochastic optimal control

Consider a stochastic dynamical system

dXi = fi(Xt, u)dt + dWi E(dWidW j) = νi jdt

Given x(0) find control function u(x, t) that minimizes the expected future cost

C = E

(
φ(XT ) +

∫ T

0
dtV(Xt, u(Xt, t))

)
Expectation is over all trajectories given the control path.

J(t, x) = min
u

(V(x, u) + E J(t + dt, x + dx))

−∂tJ(t, x) = min
u

(
V(x, u) + f (x, u)∇xJ(x, t) +

1
2
ν∇2

xJ(x, t)
)

with u = u(x, t) and boundary condition J(x,T ) = φ(x). This is HJB equation.
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Computing the optimal control solution is hard
- solve a Bellman Equation, a PDE
- scales badly with dimension

Efficient solutions exist for
- linear dynamical systems with quadratic costs (Gaussians)
- deterministic systems (no noise)
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Path integral control theory

dXt = f (Xt, t)dt + g(Xt, t)(udt + dWt)

C = E

(
φ(XT ) +

∫ T

t
dsV(Xs, s) +

1
2

uT (Xt, t)Ru(Xt, t)
)

with E(dWadWb) = νabdt and R = λν−1, λ > 0. f ∈ Rn, g ∈ Rn×m, u ∈ Rm.

The HJB equation becomes

−∂tJ = min
u

(
1
2

uT Ru + V + ( f + gu)T (∇J) +
1
2

Tr
(
gνgT∇2J

))
with boundary condition J(x,T ) = φ(x).
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Path integral control theory

Minimization wrt u yields:

u(x, t) = −R−1gT (x, t)∇J(x, t)

−∂tJ = −
1
2

(∇J)T gR−1gT (∇J) + V + f T∇J +
1
2

Tr
(
gνgT∇2J

)

Define ψ(x, t) through J(x, t) = −λ logψ(x, t). We obtain a linear HJB:

∂tψ =

(
V
λ
− f T∇ −

1
2

Tr
(
gνgT∇2

))
ψ
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Feynman-Kac formula

Denote q(τ|x, t) the distribution over uncontrolled trajectories that start at x, t:

dXt = f (Xt, t)dt + g(Xt, t)dW

with τ a trajectory x(t → T ). Then

ψ(x, t) =

∫
dq(τ|x, t) exp

(
−

S (τ)
λ

)
= Eq

(
e−S/λ

)
S (τ) = φ(x(T )) +

∫ T

t
dsV(x(s), s)
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Posterior distribution over optimal trajectories

ψ(x, t) is the partition sum for the distribution over paths under optimal control:

p∗(τ|x, t) =
1

ψ(x, t)
q(τ|x, t) exp

(
−

S (τ)
λ

)

The optimal cost-to-go is a free energy:

J(x, t) = −λ logEq

(
e−S/λ

)
The optimal control is an expectation wrt p:

u∗(x, t)dt = Ep∗(dWt) =
Eq

(
dWe−S/λ

)
Eq

(
e−S/λ)

J, u∗ can be computed by forward sampling from q.
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Delayed choice

dXt = u(Xt, t)dt + dWt

〈
dW2

t

〉
= νdt

C(p) = Epφ(xT ) +

∫ 2

0
dt

1
2

u(t)2

Cost encodes targets at t = 2.
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Delayed choice

Time-to-go T = 2 − t.
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Decision is made at T = 1
ν
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Delayed choice

Time-to-go T = 2 − t.
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”When the future is uncertain, delay your decisions.”
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KL control

Uncontrolled dynamics specifies distribution q(τ|x, t) over trajectories τ from t → T .

Cost for trajectory τ is S (τ) = φ(xT ) +
∫ T

t dsV(xs, s).

Find optimal distribution p(τ|x.t) that minimizes Ep S and is ’close’ to q(τ|x, t).
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KL control

Find p∗ that minimizes

C(p) = KL(p|q) + Ep S KL(p|q) =

∫
dτp(τ|x, t) log

p(τ|x, t)
q(τ|x, t)

The optimal solution is given by

p∗(τ|x, t) =
1

ψ(x, t)
q(τ|x, t) exp(−S (τ|x, t)) ψ(x, t) =

∫
dτq(τ|x, t) exp(−S (τ|x, t))

The optimal cost is:

C(p∗) = − logψ(x, t)
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Controlled diffusions are special case

In the case of controlled diffusions, p is parametrised by functions u(x, t):

dXt = f (Xt, t)dt + g(Xt, t)(u(Xt, t)dt + dWt) E(dWidW j) = νi jdt

C(p) = Ep

(
φ(XT ) +

∫ T

t
ds

1
2

u(Xs, s)Tν−1u(Xs, s) + V(Xs, s)
)

ψ(x, t) is the solution of the linear Bellman equation and J(x, t) = − logψ(x, t) is the
optimal cost-to-go.
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Sampling efficiency

0 0.5 1 1.5 2
−10

−5

0

5

10

Sampling with uncontrolled dynamics is theoretically correct, but inefficient in effi-
cient in practice.
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Importance sampling
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Consider simple 1-d sampling problem. Given q(x), compute

a = Prob(x < 0) =

∫ ∞

−∞

I(x)q(x)dx

with I(x) = 0, 1 if x > 0, x < 0, respectively.

Naive method: generate N samples Xi ∼ q

â =
1
N

N∑
i=1

I(Xi)
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Importance sampling
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Consider another distribution p(x). Then

a = Prob(x < 0) =

∫ ∞

−∞

I(x)
q(x)
p(x)

p(x)dx

Importance sampling: generate N samples Xi ∼ p

â =
1
N

N∑
i=1

I(Xi)
q(Xi)
p(Xi)

Unbiased (= correct) for any p!

Bert Kappen Oxford 2015 30/58



Optimal importance sampling
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The distribution

p∗(x) =
q(x)I(x)

a

is the optimal importance sampler. One sample Xi ∼ p∗ is sufficient to estimate a:

â =
1
N

N∑
i=1

I(Xi)
q(Xi)
p∗(Xi)

= a

”Optimal importance sampler has zero variance”.
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Importance sampling and control
Theorem 1. The solution of the control problem is given by

J(x, t) = − log Eqe−S = − logEpe−S dq
dp

= − logEue−S u

u∗(x, t)dt =
Eq

(
dWte−S

)
Eq

(
e−S ) = u(t, x)dt +

Eu

(
dWte−S u)
Eu

(
e−S u)

dq
dp

= exp
(
−

∫ T

t
dt

1
2

u(x, t)Tν−1u(x, t) −
∫ T

t
u(x, t)Tν−1dWt

)

with Ep = Eu.

We can choose any p, ie. any sampling control u.
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Importance sampling and control
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Relation between optimal sampling and optimal control
Definition 2.

1. The weight of a path is defined as αu = e−S u(t0,x0)

E[e−S u(t0,x0)]
.

2. The fraction of effective samples is FES = 1
E[(αu)2] = 1

Var(αu)+1.

Theorem 3. Let 0 < ε < 1. Then:

1. (u∗ − u)′(u∗ − u) ≤ ε
t1−t0

point-wise implies Var (αu) ≤ ε
1−ε

2. Var(αu) ≤ ε implies
∫ t1

t0
〈u∗ − u〉′ 〈u∗ − u〉 dt ≤ ε.

1. Better u (in the sense of optimal control) provides a better sampler (in the sense
of effective sample size).

2. Optimal u = u∗ (in the sense of optimal control) requires only one sample.
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The Cross-entropy method

Let X be a random variable taking values in the space X. Let fv(x) be a family of
probability density function on X parametrized by v and h(x) be a positive function.
Suppose that we are interested in the expectation value

a = Eu h =

∫
dx fu(x)h(x)

where Eu denotes expectation with respect to the pdf fu for a particular value of
v = u.

The optimal importance sampling distribution is g∗(x) = h(x) fu(x)/a.

The cross entropy method suggests to find the distribution fv in the parametrized
family of distributions that minimises the KL divergence

KL(g∗| fv) =

∫
dxg∗(x) log

g∗(x)
fv(x)

∝ −Eg∗ log fv(X) ∝ −Euh(X) log fv(X) = −D(v)
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The Cross-entropy method

We can use again importance sampling to compute D(v):

D(v) = Euh(X) log fv(X) = Ewh(X)
fu(X)
fw(X)

log fv(X)

We estimate the expectation value by drawing N samples from fw. If D is convex
and differentiable with respect to v, the optimal v is given by

1
N

N∑
i=1

h(Xi)
fu(Xi)
fw(Xi)

d
dv

log fv(Xi) = 0 Xi ∼ fw
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The CE algorithm
Initialize w0 = u.
for k = 0, . . . ,K do

generate N samples X1:N from fwk

compute v by solving

1
N

N∑
i=1

h(Xi)
fu(Xi)
fw(Xi)

d
dv

log fv(Xi) = 0

Set wk+1 = v.
end for
return wK
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The CE method for PI control: Preliminaries

LetX denote the space of continuous trajectories on the interval [t,T ]: τ = X(s), t ≤
s ≤ T with fixed initial value X(t) = x satisfying the dynamics

dXt = f (Xt, t)dt + g(Xt, t) (u(Xt, t)dt + dWt)

Denote pu(τ) the distribution over trajectories τ with control u.

The distributions pu and p0 are related by the Girsanov Theorem.

p(Xs+ds|Xs) = N(Xs+ds|µs,Ξsds) µs = Xs + EdXs Ξs = EdX2
s

pu(τ) = lim
ds→0

T−ds∏
s=t

N(Xs+ds|µs,Ξs)

= p0(τ) exp
(
−

∫ T

t
ds

1
2

u2(s, Xs) +

∫ T

t
u(s, Xs)g(s, Xs)−1(dXs − f (s, Xs)ds)

)
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The Radon-Nikodym can be used to rewrite the optimal distribution:

dp0(τ)
dpu(τ)

= exp
(
−

∫ T

t
ds

1
2

u2(s, X(s)) −
∫ T

t
u(s, X(s))dW(s)

)
p∗(τ) =

1
ψ(t, x)

p0(τ) exp(−V(τ)) =
1

ψ(t, x)
pu(τ)

dp0(τ)
dpu(τ)

exp(−V(τ))

=
1

ψ(t, x)
pu(τ) exp(−S (t, x, u))
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The CE method for PI control

We have a family of distributions pu. We wish to compute a near optimal control û
such that pû is close to p∗. Following the CE argument, we minimise

KL(p∗|pû) = Ep∗ log p∗ − Ep∗ log pû ∝ −Ep∗ log pû

∝ Ep∗

(∫ T

t

1
2

û2(s, Xs)ds − û(s, Xs)g(s, Xs)−1(dXs − f (s, Xs)ds)
)

=
1

ψ(t, x)
Epe−S (t,x,u)

∫ T

t
ds

(
1
2

û(s, X(s))2 − û(s, X(s))
(
u(s, X(s)) +

dWs

ds

))
The expression must be optimized with respect to the functions ût:T = {û(s, Xs), t ≤
s ≤ T }. It is independent of the sampling control ut:T = {u(s, Xs), t ≤ s ≤ T }.
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The CE method for PI control: Time-dependent solution

We now assume that û is a parametrized function with parameters θ. In the time-
dependent case, we consider different θs for each of the functions û(s, x|θs) sepa-
rately. The gradient is given by:

∂KL(p∗|p̂)
∂θs

=
1

ψ(t, x)
Epe−S (t,x,u)

(
û(s, X(s)) − u(s, X(s)) −

dWs

ds

)
∂û(s, X(s))

∂θs

Choosing u = û yields the gradient procedure

θs,n+1 = θs,n − η
∂KL(p∗|p̂)
∂θs,n

∣∣∣
u=ûn

= θs,n + η

〈
dWs

ds
∂û(s, X(s))

∂θs,n

〉

with 〈F〉 = 1
ψ(t,x)Epe−S (t,x,u)F and η > 0 a small parameter.

Convergence is guaranteed. We refer to this gradient method as PICE.
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The CE method for PI control: Time-dependent solution

Linear basis functions:

û(s, x) =

K∑
k=1

θskhsk(x) u(s, x) =

K∑
k=1

θ0
skhsk(x)

we obtain regression problem:

K∑
l=1

(
θsl − θ

0
sl

)
〈hslhsk〉 =

〈
dWs

ds
hsk

〉

For each s a system of K linear equations with K unknowns θsk, k = 1, . . . ,K. The
statistics 〈hslhsk〉 and

〈
dWs
ds hsk

〉
can be estimated for all times t ≤ s ≤ T simultane-

ously from a single Monte Carlo sampling run using the control u parametrized by
θ0.
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The CE method for PI control: Time-independent solution

We consider û(Xs) independent of time parametrised by θ. The gradient of the KL
divergence involves an integral:

∂KL(p∗| p̂)
∂θ

=
1

ψ(t, x)
Epe−S (t,x,u)

(∫ T

t
ds (û(X(s)) − u(X(s))) −

∫ T

t
dW(s)

∂û(X(s))
∂θ

)

Choosing u = û yields the gradient procedure

θn+1 = θn − η
∂KL(p∗|p̂)

∂θn

∣∣∣
u=ûn

= θn + η

〈∫ T

t
dWs

∂û(X(s))
∂θn

〉
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Example: Linear time-dependent feedback control

For t0 ≤ t ≤ t1, the 1-dimensional problem

dXt =Xt

(
dt
2

+ u(tXt, t)dt + dWt

)
,

C =E
Q
2

log(XT )2

has solution

u∗(t, x) =
−Q log(x)

Q(t1 − t) + 1
.

For the experiments we will take x0 = 1/2, t0 = 0, t1 = 1, Q = 10.
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Example: Linear time-dependent feedback control

Consider different state-dependent parametrizations:

• one basis function: log(x) yields exact controller

• three polynomial parameterizations: a constant-, affine- and quadratic-function
of the state denoted by u(0), u(1), u(2), e.g. u(2)(t, x) = a(t) + b(t)x + c(t)x2.

u = 0 u(0) u(1) u(2) a(t) log(x) u∗

E[S ] 7.526 5.139 1.507 1.461 1.422 1.420
Var(αu) 1.981 1.376 0.143 0.0506 0.0085 0.0071
FES(%) 34.3 42.08 87.5 95.2 99.1 99.3

Performance estimates of various controllers based on 10000 sample paths.
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Example: Linear time-dependent feedback control
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Example: Latent state estimation

The path integral control computation is mathematically equivalent to a Bayesian
inference problem in a time series model with p0(τ) the forward model and e−V(τ) =∏

t p(yt|xt) is the likelihood of the trajectory τ = xt:T |x. The Bayesian posterior is
then given by p∗(τ).

PICE provides an efficient alternative to particle smoothing methods.
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Example: Linear time-independent feedback control

Consider a simple inverted pendulum, that satisfies the dynamics

α̈ = − cosα + u

where α is the angle that the pendulum makes with the horizontal, α = 3π/2 is
the initial ’down’ position and α = π/2 is the target ’up’ position, − cosα is the force
acting on the pendulum due to gravity. Introducing x1 = α, x2 = α̇ and adding noise,
we write this system as

dXi(s) = fi(X(s))ds + gi(u(s, X(s) + dW(s)) 0 ≤ s ≤ T, i = 1, 2

f1(x) = x2

f2(x) = − cos x1

g = (0, 1)

C = E

∫ T

0
ds

R
2

u(s, X(s))2 +
Q1

2
(sin X1(s) − 1)2 +

Q2

2
X2(s)2

with EdW2
s = νds and ν the noise variance.
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Example: Linear time-independent feedback control

We estimate a time-independent feed-back controller on a grid

û(x1, x2) = θk1,k2 if (x1, x2) is in cell (k1, k2)

with ki, i = 1, 2 integers that label the grid points.

The results of the path integral learning rule Eq. 1 are shown in fig. ??.
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Acrobot
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Acrobot

(movie92.mp4)

Result after 100 iterations, 50 samples per iteration.
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Quadrotors

• circular holding/hovering pattern

– penalizes large deviations from the centers, collisions and too large/small
velocities

– 15 quadrotor units, rollouts N=7000, horizon H=4

• cat & mouse

– penalizes large deviations from the mouse, collisions and large/small veloci-
ties.

– Mouse is not controlled and tries to escape the cats

Compute (feed-back) control for current state. Use adaptive importance sampling.

• ≈ 100.000 trajectories/second for 1 second of 1 quadrotor simulation.
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UAVs

(AAMAS 2015.mp4)

Kappen et al. 2015
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Discussion

PICE presents challenging learning problems, as is evident from the large fluctua-
tions despite the large number of samples for these relatively small problems.

• The weights of the trajectories are proportional to e−S with S ∝ 1/λ and λ = Rν

– Small λ yields small sample size and difficult learning
– Large ν requires large controls, requires small R.

This problem is due to the log transform that is used to linearize the Bellman
equation.

• Small deviations from optimallity may yield large decrease in sample size.

– Optimal model is infinitely large
– An infinite model requires infinitely many samples to avoid overfitting.
– for finite samples there is an optimal finite model
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Conclusion

Importance sampling improves sampling efficiency:
- optimal control = optimal sampling
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- learn from self-generated data
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- Connecting Control, Inference and Learning
- application in robotics
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Conclusion

Importance sampling improves sampling efficiency:
- optimal control = optimal sampling

Learning state dependent/feedback control with PICE
- CE provides a criterion for parametrized controllers
- learn from self-generated data
- use ∞ data to learn ∞ models
- Connecting Control, Inference and Learning
- application in robotics

Inference:
- reformulate as control problem
- improve estimates through importance sampling controls
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