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Why control theory?

A theory for intelligent behaviour:
- neuroscience
- robotics

',e Bert Kappen Oxford 2015 21@‘



Control theory

Given a current state and a future desired state, what is the best/cheapest/fastest
way to get there.

.
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Why stochastic control?
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How to control?

Hard problems:

- a learning and exploration problem

- a stochastic optimal control computation
- a representation problem u(x, 1)
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The idea: Control, Inference and Learning

Linear Bellman equation and path integral solution
Express a control computation as an inference computation.
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The idea: Control, Inference and Learning

Linear Bellman equation and path integral solution
Express a control computation as an inference computation.
Compute optimal control using MC sampling

Importance sampling
Accellerate with importance sampling, a state-feedback controller
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The idea: Control, Inference and Learning

Linear Bellman equation and path integral solution
Express a control computation as an inference computation.
Compute optimal control using MC sampling

Importance sampling
Accellerate with importance sampling, a state-feedback controller
Learn controller from self-generated data

Optimal importance sampler is optimal control

Learn a good importance sampler using PICE
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Outline

Introduction to control theory

Link between control theory, inference and statistical physics

— Schrodinger, Fleming Mitter ’82, Kappen ’05, Todorov '06

Importance sampling

— Relation between optimal sampling and optimal control

Cross entropy method for adaptive importance sampling (PICE)

— A criterion for parametrized control optimization
— Learning by gradient descent

Some examples
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Discrete time optimal control

Consider the control of a discrete time deterministic dynamical system:

Xev1 = X+ f(xpuy), t=0,1,...,T -1

x; describes the state and u, specifies the control or action at time t.
Given xy and ug.7_;, we can compute xj.7.

Define a cost for each sequence of controls:

T-1
C(xo, 1) = ) V(i u)
=0

Find the sequence uy.7_; that minimizes C(xy, uo.7_1).
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Dynamic programming

Find the minimal cost path from A to J.
C(F) = mn6+CH),3+C)) ="

Minimal cost at time ¢ easily expressable in terms of minimal cost at time ¢ + 1.
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Discrete time optimal control

Dynamic programming uses concept of optimal cost-to-go J(z, x).

One can recursively compute J(z, x) from J(¢ + 1, x) for all x in the following way:

T-1
J(t,x;) = min Vixg, ug
(t.x) = min (Z ( ))

= min(V(t, x,u,) + J(@t+ 1, x, + f(t, x;, uy)))

J(T,x) = 0
J0,x) = min C(x,up.r-1)
up.T7-1

This is called the Bellman Equation. Computes u,(x) for all intermediate ¢, x.

0.0(-14./-20.|-22. — = |9
-14.]-18.]-20 |-20. T e |
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Stochastic optimal control

Consider a stochastic dynamical system

dX; = fi(X[, u)dt + dW,; E(dWldWJ) = Vijdt
Given x(0) find control function u(x, tr) that minimizes the expected future cost

T
C = E(¢(XT)+f dtV(X,,u(Xt,t)))
0

Expectation is over all trajectories given the control path.

J(t, x)

min (V(x,u) + E J(t + dt, x + dx))

—0;J(t,x) = min (V(x, u)+ f(x,u)VyJ(x, 1) + %VVJQCJ (x, t))

with u = u(x, t) and boundary condition J(x, T) = ¢(x). This is HJB equation.
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Computing the optimal control solution is hard
- solve a Bellman Equation, a PDE
- scales badly with dimension

Efficient solutions exist for
- linear dynamical systems with quadratic costs (Gaussians)
- deterministic systems (no noise)
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Path integral control theory

T
C = E(¢(XT)+ f dsV(X,, s)+%uT(Xt, HRu(X,, z))

with E(dW,dW,) = vgpdt and R = Av™ 1,1 > 0. f e R", g € R™™ y € R™.

The HJB equation becomes
1 1
—-0,J = min (EuTRu +V+(f+ gu) (V) + ETr (gngV2]))

with boundary condition J(x, T) = ¢(x).
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Path integral control theory

Minimization wrt u yields:

u(x,t) = —-R'gT(x,)VI(x, 1)

1 1
—4,J = —E(V])TgR‘l gD +V+fIVI+ ST (gvs"V?J)

Define ¥(x, t) through J(x,t) = —Alogy(x, t). We obtain a linear HJB:

Ol = (g - £V - %Tr (gngVZ)) v
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Feynman-Kac formula

Denote g(7|x, t) the distribution over uncontrolled trajectories that start at x, ¢:
with 7 a trajectory x(t —» T). Then

Ylx, 1) = fdQ(TIX, 1) exp (—?) = E, (e—S//l)

S(7)

T
d(x(T)) + f dsV(x(s), 5)
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Posterior distribution over optimal trajectories

Y(x, 1) is the partition sum for the distribution over paths under optimal control:

1
p(rlx,0) = e Z)q(flx, 1) exp (—?)
The optimal cost-to-go is a free energy:
J(x,t) = -AlogE, (e_SM)

The optimal control is an expectation wrt p:

E, (dWe™s1)
E, (e

u(x,t)dt = E,«(dW,;) =

J,u* can be computed by forward sampling from g.
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Delayed choice

dX, (X, )dt +dW,  (dW}) = vd
21

Cp) = Bpgan)+ [ dizuy
0

Cost encodes targets at ¢ = 2.

®
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Delayed choice

Time-to-go 7T =2 —t.

J(x,1) = —vIog E, exp(—¢(X2)/v)

Decision is made at 7 = %

®
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Delayed choice

Time-to-go 7' =2 —1t.

— T=2
— T
———T=05

J(x,1) = —vIog E, exp(—¢(X2)/v)

"When the future is uncertain, delay your decisions.”

e

7 Bert Kappen Oxford 2015 24*@‘



KL control
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dsV(xg, s).

T

&

Uncontrolled dynamics specifies distribution g(t|x, ) over trajectories T from¢ — T.
Find optimal distribution p(t|x.r) that minimizes E, S and is ‘close’ to g(7lx, ).

Cost for trajectory 7is S (1) = ¢(x7) + f;
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KL control
Find p* that minimizes

p(tlx, 1)
q(tlx, 1)

Cp) = KL(plg) +E, S KL(plg) = f drp(rix, 1) log

The optimal solution is given by

p(tlx, 1) = q(tlx, ) exp(=S (7lx,1)  Y(x, 1) = f drq(t|x, 1) exp(—S (7]x, 1))

1
W(x, 1)

The optimal cost is:

C(p") = —logy(x,1)
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Controlled diffusions are special case

In the case of controlled diffusions, p is parametrised by functions u(x, ):

dX;

f(Xy, )dt + g( Xy, H)(u(Xy, H)dt + dW,) E(dW;dW;) = v;;dt

T
C(p) = E, (¢(XT)+ f ds%u(XS, Ty luX,, s) + V(X,, s))

W(x,t) is the solution of the linear Bellman equation and J(x, t) = —log ¥(x, t) is the
optimal cost-to-go.
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Sampling efficiency

10 - -
I

~10 - -
0 0.5 1 1.5 2

Sampling with uncontrolled dynamics is theoretically correct, but inefficient in effi-
cient in practice.

®
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Consider simple 1-d sampling problem. Given g(x), compute

with I(x) = 0,1 if x > 0, x < O, respectively.

Importance sampling

1t
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a = Prob(x < 0) = f

2

[09]

— 0

Naive method: generate N samples X; ~ ¢

4

I[(x)g(x)dx
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Importance sampling
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Consider another distribution p(x). Then

[6.¢)

a = Prob(x < 0) = f 1 (x)@p(x)dx
o D)

Importance sampling: generate N samples X; ~ p

Unbiased (= correct) for any p!
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Optimal importance sampling

1.2
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The distribution

() = LD

is the optimal importance sampler. One sample X; ~ p* is sufficient to estimate a:

"Optimal importance sampler has zero variance”.
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Importance sampling and control
Theorem 1. The solution of the control problem is given by

d u
J(x,t) = -—log qu_S = —log Epe_Sd—q = —log E,e™
4
E, (d W,e‘S) E. (d W™ u)
“(x, tydt = u(t, x)dt + .
u(x.1) E, (e™>) u(t, x) E,(e™")
dgq

T 1 T
i S exp(—f dtiu(x,t)Tv_lu(x,t)—f u(x,t)Tv_ldW,)
t t

with E, = E,.

We can choose any p, ie. any sampling control u.
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Importance sampling and control

10 | I | 10
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Relation between optimal sampling and optimal control
Definition 2.

e—Su(to,xO)
E[e™S"“(0-%0)]"

1. The weight of a path is defined as a* =

1 _ 1
E[(a*)2] ~ Var(@®)+1

2. The fraction of effective samples is FES =

Theorem 3. Let0 < e < 1. Then:

1. (' —w)'(u” — u) < 5 point-wise implies Var (a") < 1=

2. Var(a") < e implies ft: (w* —u) (U —u)dt <e.

1. Better u (in the sense of optimal control) provides a better sampler (in the sense
of effective sample size).

2. Optimal u = u* (in the sense of optimal control) requires only one sample.

e
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The Cross-entropy method

Let X be a random variable taking values in the space X. Let f,(x) be a family of
probability density function on X parametrized by v and A(x) be a positive function.
Suppose that we are interested in the expectation value

a=E, h= fdxfu(x)h(x)

where E, denotes expectation with respect to the pdf f, for a particular value of
V = U.

The optimal importance sampling distribution is g*(x) = h(x) f.(x)/a.

The cross entropy method suggests to find the distribution £, in the parametrized
family of distributions that minimises the KL divergence

*

g (x)
(%)

KL(g"|f,) = f dxg"(x)log === o —Ey log f,(X) oc —E,h(X) log £,(X) = —D(v)
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The Cross-entropy method

We can use again importance sampling to compute D(v):

Ju(X)

D(v) = E,i(X) log f,(X) = E,i(X) 0

log f,(X)

We estimate the expectation value by drawing N samples from f,,. If D is convex
and differentiable with respect to v, the optimal v is given by

1 (X)) d
_Zh(Xl)f( ) lgfv(X)_ Xi"“fw
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The CE algorithm

Initialize wy = u.

fork=0,...,Kdo
generate N samples Xj.y from f,,
compute v by solving

1 N
NZ ,>f(X)d log ,(Xi) = 0

end for
return wy
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The CE method for Pl control: Preliminaries

Let X denote the space of continuous trajectories on the interval [£, T]: 7 = X(s),1 <
s < T with fixed initial value X(¢) = x satisfying the dynamics

dX; = f(X;, dt + g(X;, 1) (u(X;, H)dt + dW,)

Denote p,(7) the distribution over trajectories T with control u.

The distributions p, and py are related by the Girsanov Theorem.

p(Xs+ds|Xs) = N(XS+dS|,uS’ Esds) Hs = X + BdX; By = EdX?
T—ds

lIim 1—[ N(Xs+ds|,us, Es)
S=t

pu(T) ds—0

T T
= Po(T)€Xp(— f dS%uz(S,XsH f u(S,Xs)g(S,Xs)_l(dXs—f(s,Xs)dS))
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The Radon-Nikodym can be used to rewrite the optimal distribution:

T T
Zi(’g; - exp(—f ds%uz(s,X(S))—f “(S’X(S))dW(S))
o o L dp@)
P®) = e Pom (VD) = o pum) R exp(=V(T)
1
=y PO eREsthn)
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The CE method for Pl control

We have a family of distributions p,. We wish to compute a near optimal control i
such that p; is close to p*. Following the CE argument, we minimise

KL(p'lpa) = Eplogp” —E,logp; < —E,log p;

T
« E, ( f %ﬁz(s, Xs)ds — (s, X,)g(s, Xs) " (dXs — f(s, Xs)ds))

T
S (t.x.) f ds (%a(s, X(5))? = a(s, X(5)) (u(s, X(s)) + dXs))

The expression must be optimized with respect to the functions i,.r = {ii(s, Xy), t <
s < T}. ltis independent of the sampling control u;.;7 = {u(s, X,),t < s < T}.
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The CE method for Pl control: Time-dependent solution

We now assume that it is a parametrized function with parameters 6. In the time-
dependent case, we consider different 6, for each of the functions (s, x|6,) sepa-
rately. The gradient is given by:

OKL(p'lp) _ 1

50, bt x) PC

=S (t,x,u) (l’/\t(S, X(S)) . I/t(S, X(S)) _ dWs) 01,/2(*99 X(S))

ds 00

Choosing u = i1 yields the gradient procedure

OKL(p*|p)

Qs n+l = Qs n_— |
) s a@s’n U=uy

dW,0u(s, X(s))
= Os.n
’ +77< ds 06, >

with (F) = M},x)Epe‘S txF and n > 0 a small parameter.

Convergence is guaranteed. We refer to this gradient method as PICE.
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The CE method for Pl control: Time-dependent solution

Linear basis functions:
K K
(s, %) = > Ouhgx)  u(s,x) = D Ohu(x)
k=1 k=1

we obtain regression problem:

K
dW,
§ sl <hslhsk> — < d Sk>
S

=1

For each s a system of K linear equations with K unknowns 6,k =1,...,K. The
statistics (hyhy) and <dXShsk> can be estimated for all times t < s < T simultane-
ously from a single Monte Carlo sampling run using the control u parametrized by

6.
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The CE method for Pl control: Time-independent solution

We consider ii(X;) independent of time parametrised by 6. The gradient of the KL
divergence involves an integral:

OKL(p*|p) . 1 _S(t,x.u) fT N _ _fT 0nu(X(s))
50 = —w(t,x)Epe ( t ds ((X(s)) — u(X(s))) t dW(s) Y

Choosing u = i yields the gradient procedure

OKL(p*|p L on(X(s
Opr1 = 6,—1 a(ep p)|u:ﬁn =0, + 77<f dW; (59( ))>
n 14 n
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Example: Linear time-dependent feedback control

For ¢ty <t < t1, the 1-dimensional problem

dt
dXt :Xt (5 + u(tXt, t)dt + th )
C =E %log(XT)z

has solution

—Qlog(x)
Ot —H+1

u(t, x) =

For the experiments we will take xo = 1/2,1, =0, =1, Q = 10.
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Example: Linear time-dependent feedback control

Consider different state-dependent parametrizations:

e one basis function: log(x) yields exact controller

e three polynomial parameterizations: a constant-, affine- and quadratic-function
of the state denoted by u®, u'V, u®, e.g. u'®(t, x) = a(t) + b(t)x + c(H)x>.

u=>0 u® u' u® a(t) log(x) u
E[S] 7.526 5.139 1.507 1.461 1.422 1.420
Var(a*) | 1.981 1.376 0.143 0.0506 0.0085 0.0071
FES(%) | 34.3 42.08 87.5 95.2 99.1 99.3

Performance estimates of various controllers based on 10000 sample paths.
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Example: Linear time-dependent feedback control

4 T T T T T 1400
T )
3 _ - ugli __________ 4 1200
2
o Lunl L uw {1 1000
\i;:-“ U 0
’Qﬁ 1 F \_ 4 800 .%;))
% 0 —_ 'T_\\ - 4 600 g
9L \l‘;\‘\*x;'L';';‘;'::;_- 200
-3 i ! ! ! —I_l‘l'l_l_l\—\n\—\..l_.— 0
o 05 1 15 2 25 3

x(t) at t=1/2

State dependence of the feed-back controllers at the intermediate time ¢ = 1/2. The approximate
controls were calculated with 10000 sample paths using a time discretization of dt = 0.001 for
numeric integration. The histogram was created with 10000 draws from X () atr=1/2.
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Example: Latent state estimation

The path integral control computation is mathematically equivalent to a Bayesian
inference problem in a time series model with po(r) the forward model and e=V® =

[1; pO:lx;) is the likelihood of the trajectory T = x.r|x. The Bayesian posterior is
then given by p*(1).

PICE provides an efficient alternative to particle smoothing methods.

Feadback contoler; N=6000

Left: MSE of posterior mean versus time of a chaotic 3-d Lorentz attractor with 7 1-d noisy obser-
vations. Pl computed i;(z, x) = ;zlA,-j(t)xj + bi(t) (red) using 80 importance sampling iterations
with 6000 particles per iteration. Particle smoothing method (green) using N = 6000 forward and

M = 2100 backward particles. Middle: open loop control b; versus time. Right: diagonal feedback
control terms A;; versus time.
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Example: Linear time-independent feedback control

Consider a simple inverted pendulum, that satisfies the dynamics
@ =—CosSa+u

where « is the angle that the pendulum makes with the horizontal, @ = 37/2 is
the initial ‘'down’ position and a = n/2 is the target 'up’ position, — cos « is the force
acting on the pendulum due to gravity. Introducing x; = a, x, = & and adding noise,
we write this system as

dXi(s) = fi(X(s))ds + gi(u(s, X(s) + dW(s)) 0<s<T, i=1,2

fix) = x
fr(x) = —cosx
g = (0,1)

T
C = E f dsgu(s,X(s))2+%(sinXl(s)—1)2+%X2(s)2
0 2 2 2

with EdW? = vds and v the noise variance.
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Example: Linear time-independent feedback control

We estimate a time-independent feed-back controller on a grid
l’/\t(xl, XQ) = le,k2 if (xl, x2) 1s 1in cell (kl, kz)

with k;,i = 1,2 integers that label the grid points.

The results of the path integral learning rule Eqg. 1 are shown in fig. ??.
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Fig. 1. The Acrobor,

dugr+dizgz+h +01=0 ()

dug + daga + ha + d2 =1, (2)

where
dyi = myidy + ma(it + 2 + 2hilacos(ga)) + 1) + Iz
dy = mali2 + by
dia = ma(l22 + hilcacos(ga)) + I2
day = my(lh + Ll acos(ga)) + ha
hy = —mal) f:-zﬁﬁﬂ{qz}fﬁ = 2mzlilcasin{g2)q 2
ha = mal Lasin{g2)gt
o1 = (myley + mali)goos(gr) + malcageos(gn + g2)
b2 = maicageosigr + qa).

-~
e
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Acrobot

(movie92.mp4)

Result after 100 iterations, 50 samples per iteration.

®
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movie92_0.mp4
Media File (video/mp4)


Quadrotors

e circular holding/hovering pattern

— penalizes large deviations from the centers, collisions and too large/small
velocities
— 15 quadrotor units, rollouts N=7000, horizon H=4

e cat & mouse

— penalizes large deviations from the mouse, collisions and large/small veloci-
ties.
— Mouse is not controlled and tries to escape the cats

Compute (feed-back) control for current state. Use adaptive importance sampling.

e ~ 100.000 trajectories/second for 1 second of 1 quadrotor simulation.
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UAVs

(AAMAS 2015.mp4)

Kappen et al. 2015
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PI_quadrotors.mp4
Media File (video/mp4)


Discussion

PICE presents challenging learning problems, as is evident from the large fluctua-
tions despite the large number of samples for these relatively small problems.

e The weights of the trajectories are proportional to e™ with S « 1/1and 1 = Ry

— Small A yields small sample size and difficult learning
— Large v requires large controls, requires small R.

This problem is due to the log transform that is used to linearize the Bellman
equation.

e Small deviations from optimallity may yield large decrease in sample size.

— Optimal model is infinitely large
— An infinite model requires infinitely many samples to avoid overfitting.
— for finite samples there is an optimal finite model
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Conclusion

Importance sampling improves sampling efficiency:
- optimal control = optimal sampling
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Conclusion

Importance sampling improves sampling efficiency:
- optimal control = optimal sampling

Learning state dependent/feedback control with PICE
- CE provides a criterion for parametrized controllers

- learn from self-generated data

- use oo data to learn co models

- Connecting Control, Inference and Learning

- application in robotics
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Conclusion

Importance sampling improves sampling efficiency:
- optimal control = optimal sampling

Learning state dependent/feedback control with PICE
- CE provides a criterion for parametrized controllers

- learn from self-generated data

- use oo data to learn co models

- Connecting Control, Inference and Learning

- application in robotics

Inference:
- reformulate as control problem
- improve estimates through importance sampling controls

~ " Bert Kappen
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