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Outline of the talk

• Two different derivations of mean-field approximations



• Plefka expansion



• Cluster Variational Method



• How good these approximations are?



• How one can try to improve it in order to overcome the 
limitations due to:



• Loops



• Ergodicity breaking



Physics & Machine Learning

• This is a Physics talk!



• But useful for Machine Learning (I hope ;-)



• Common problem: compute quickly and accurately 
the free-energy 
 
 
 
and the marginals

F (J ,h) = logZ(J ,h) = log
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Simplifications for this talk

• Ising variables              …can be extended to Potts



• Pairwise interactions  
 
 
 
…can be extended to more general graphical models



• The measure is 
 
 
 
Often 



• No hidden variables
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Inferring marginals is useful for machine learning

• Willing to maximize the log-likelihood 
 
 
 
with respect to J and h one gets 
 
 

• Most likely model parameters can be found matching 
empirical marginals with model marginals

L(J ,h) =
X

i

hihsiidata +
X

ij

Jijhsisjidata � logZ(J ,h)

hsiidata = @hiF (J ,h) = mi(J ,h)

hsisjidata = @JijF (J ,h) = Cij(J ,h) +mimj



Boltzmann machine learning

• Matching between empirical and model marginals is 
achieved via a learning



• Marginals can be computed by:



• Monte Carlo -> exact but slow…



• Mean-field approximations  
-> faster 
-> no learning, if analytic expressions for 
                          can be inverted

�hi = ⌘
⇣
hsiidata �mi

⌘

�Jij = ⌘
⇣
hsisjidata � (Cij +mimj)

⌘

mi(J ,h), Cij(J ,h)



Alternatively…

• Directly maximize an easy-to-compute approximation to  
          (e.g. the pseudo-likelihood)  
-> see next talk by Aurelien Decelle



• If input data are not configurations but average values 
for the marginals                      then:



• No pseudo-likelihood maximization



• Matching empirical and model marginals



• The maximum entropy probability distribution has only 
fields and pairwise couplings

L(J ,h)

hsiidata, hsisjidata



Free-energy mean-field expansions

• How to generalize most common mean-field approx?



• Plefka derives an expansion in the couplings intensity for 
the Gibbs free-energy with given magnetizations



• Cluster Variational Method (Kikuchi, Morita, An) 
is an expansion of the entropy in terms of correlations 
up to a given distance (maximal region size)



• Both expansions have the naive mean-field approximation 
as the first-order approximation



• Beyond naive MF and Bethe approximations the relation 
among the 2 expansions in not trivial (Yasuda Tanaka)



Plefka’s expansion

In the present paper, we expand some approximate free
energies in the CVM based on moments10,21) explicitly for
infinitesimal exchange interactions and compare them
with Plefka’s expansion. While it is well-understood how
Plefka’s mathematical expansion treats correlations among
nodes, how the CVM treats correlations among nodes has
yet to be fully understood. Therefore, it is interesting to
study the relationship between Plefka’s expansion and the
CVM.

2. Plefka’s Expansion

In this section, we give Plefka’s expansion of the free
energy for a random Ising model. We consider a system
consisting of nodes and singly connecting links between
distinct nodes. Each node is labeled by i and the set of whole
nodes is denoted by !. Each link connecting nodes i and j is
labeled by ðijÞ and the set of whole links is denoted by B.
Here ðijÞ and ð jiÞ refer to the same link. A spin is assigned on
each node i. Each spin can take two different states specified
by þ1 and $1. These two different spin states at each node i
are described by using the state variable si 2 fþ1;$1g. The
state variable si is often referred to as spin variable in
statistical mechanics. The configuration for spins on all the
nodes belonging to ! is denoted by a set of spin variables,
s ¼ fs1; s2; . . . ; sj!jg. The energy function for the random
Ising model in the present paper is expressed in terms of the
set s as follows:

HðsÞ ¼ $
X

i2!

hisi $
X

ði jÞ2B

Ji jsis j; ð1Þ

where hi is the external field on node i, and Jij is the
exchange interaction assigned to each link ðijÞ. The
summation in the first term of eq. (1) is taken over all
nodes and in the second term of eq. (1) is taken over all

links. We denote the sets of all the external fields and of all
the exchange interactions by h ¼ fhi j i 2 !g and J ¼
fJi j j ðijÞ 2 Bg, respectively. For the specified energy func-
tion HðsÞ, the probability distribution is defined by

!ðsÞ ¼
exp

!
$"HðsÞ

"
X

z

exp
!
$"HðzÞ

"; ð2Þ

where " is the inverse temperature. For convenience, the
Boltzmann constant kB is set to 1 and the relationship
between inverse temperature " and absolute temperature T
is given by " ¼ 1=T in the present paper. The notation z is
also the set of all the spin variables, fz1; z2; . . . ; zj!jg, and

P
z

refers to the summation of all configurations of spin
variables, such that

P
z ¼

P
z1¼&1

P
z2¼&1 ' ' '

P
zj!j¼&1. The

Helmholtz free energy is expressed in terms of the energy
function HðsÞ:

F ¼ $
1

"
ln

X

z

exp $"HðzÞ
! "

 !

: ð3Þ

A set of nodes is referred to as a cluster. Each set of
three distinct nodes i, j, and k connected by three distinct
links, ðijÞ, ð jkÞ, and ðkiÞ belonging to B, is labeled by ðijkÞ.
Every irreducible cluster ðijkÞ is referred to as triplet, and the
set of all triplets is denoted by T . Each set of four distinct
nodes i, j, k, and l connected by four or more distinct
links which belong to B is labeled by ðijklÞ. Every
irreducible cluster ðijklÞ is referred to as quadruplet. The
set of all quadruplets is denoted by Q. We introduce a
thermal average of spin variable si defined by mi (P

zzi!ðzÞ. In Plefka’s argument,13) the mean-field and the
TAP free energies are derived systematically. The explicit
expression for Plefka’s expansion up to the fourth order is
given by14,15)
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Plefka’s expansion can be regarded as a perturbation
expansion of the free energy with respect to the exchange
interactions Ji j. Note that the set of thermal averages,
m! ¼ fmi j i 2 !g, is determined by the stationary condition
of the perturbative expression of the free energy given in the
right-hand side of eq. (4), such that @F Plefka½m!*=@mi ¼ 0
for all i. By truncating Plefka’s expansion up to first order
terms, one can obtain the mean-field free energy, and by
truncating it up to second order terms, one can derive the
TAP free energy. Plefka’s expansion up to nth order terms in

eq. (4) can provide us the nth order approximation for the
system.

In Fig. 1, we show a diagrammatical representation of
Plefka’s expansion up to fourth order terms by referring to
Georges and Yedidia’s argument.14) In the diagrammatical
representation, each link represents the exchange interaction
Ji j, while the nodes represent the functions of mi in eq. (4).
The diagram with one node in the first term of Fig. 1
represents the first and the second terms in the right-hand
side of eq. (4), the diagram consisting of two nodes with
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singly connecting in the second term of Fig. 1 represents the
third term of eq. (4), the diagram consisting of two nodes
with doubly connecting in the third term of Fig. 1 represents
the fourth term of eq. (4) and so on. Higher order terms will
be also expressed in terms of larger diagrams.

3. The Bethe Approximation and Plefka’s Expansion

As we mentioned in the previous section, the Plefka’s
expansion for the random Ising model in eq. (4) includes the
TAP free energy. On the other hand, it is known that the
TAP free energy can be derived by means of a perturbative
calculation in the approximate free energy of the Bethe
approximation.21) In this section, we provide the relation-
ships between the Bethe approximation and Plefka’s
expansion in higher order terms than the TAP free energy.

The Bethe approximation and its approximate free energy
can be derived using the context in the CVM.19,21) The
CVM is formulated by using a trial free energy which is
constructed in terms of the entropies for some marginal
probabilities.

We consider one-body and two body marginal probabil-
ities defined by

!iðsiÞ #
X

z

"si;zi!ðzÞ; ð5Þ

!i jðsi; sjÞ #
X

z

"si;zi"s j;z j!ðzÞ: ð6Þ

In the Bethe approximation, we introduce the following
entropies:

Si # $
X

zi¼&1

!iðziÞ ln !iðziÞ; ð7Þ

Si j # $
X

zi¼&1

X

z j¼&1

!i jðzi; zjÞ ln !i jðzi; zjÞ: ð8Þ

Because si ¼ &1 at every node i, the marginal probabilities
!iðsiÞ and !i jðsi; sjÞ in eqs. (5) and (6) can be expressed in
terms of moments mi and correlations mij #

P
zziz j!ðzÞ:

!iðsiÞ ¼
1

2

!
1þ simi

"
; ð9Þ

!i jðsi; sjÞ ¼
1

4

!
1þ simi þ sjmj þ sis jmi j

"
: ð10Þ

In order to interpret the Bethe approximation by means of
the CVM, we consider the trial free energy which is defined
in terms of m! ¼ fmi j i 2 !g and mB ¼ fmij j ðijÞ 2 Bg
by

F Bethe½m!;mB)

# $
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himi $
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"
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Here we note that the trial free energy can be expressed
in terms only of the moments m! and mB by substituting
eqs. (7)–(10) to the right-hand side of eq. (11). The trial free
energy given in eq. (11) is referred to as the Bethe free
energy. In eq. (11), Si and Si j $ Si $ S j can be regarded
as entropies of node i and of link ðijÞ, respectively.
The approximate values of the moments m! and mB in
the Bethe approximation are determined so as to minimize
the Bethe free energy and then so as to satisfy the stationary
conditions of eq. (11). That is to say, @F Bethe½m!;mB)=
@mi ¼ 0 and @F Bethe½m!;mB)=@mij ¼ 0. The stationary
conditions are reduced to the following self-consistent
equations:10)

mi ¼ tanh # hi þ
X

j2Bi

Ji j

 !

þ
X

j2Bi

tanh$1 mi $ tanh$1 mi þ mij

1þ mj

# $# $( )

; ð12Þ

mij ¼ cothð2#JijÞ 1$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ ð1$ mi

2 $ mj
2Þ tanh2ð2#Ji jÞ $ 2mimj tanhð2#Ji jÞ

q# $
; ð13Þ

where Bi # f j j ðijÞ 2 Bg is the set of all the nodes which are connected with the node i by link.
In order to see the relationship between the Bethe approximation and Plefka’s expansion, we have to carry out the

perturbation expansion of F Bethe½m!;mB) with respect to Ji j. We first expand eq. (13) to third order with respect to Ji j:

mij ¼ mimj þ #ð1$ mi
2Þð1$ mj

2ÞJi j þ 2#2mimjð1$ mi
2Þð1$ mj

2ÞJ2i j

þ
#3

3
ð1$ mi

2Þð1$ mj
2Þð15mi

2mj
2 $ 3mi

2 $ 3mj
2 $ 1ÞJi j3 þOðJi j4Þ: ð14Þ

By substituting eq. (14) to the Bethe free energy in eq. (11), we obtain the following expansion for the Bethe free energy:

terms of larger diagram

F =

Fig. 1. Diagrammatical representation in Plefka’s
expansion up to fourth order.
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The Bethe approximation for solving the inverse Ising problem

required information about the model is encoded in the free energy

F (J ,h) = ln Z(J ,h). (2)

In the rest of this section, I summarize the most common MFA to the free energy: I am
particularly interested in deriving the self-consistency equations for the magnetizations
that are used in section 2 for obtaining two-point correlations.

The simplest MFA, also known as the naive MF (nMF) approach, approximates the
model in terms of local magnetizations mi = ⌦si↵, where the angular brackets represent
the average w.r.t. the measure in equation (1). The corresponding approximation to the
free energy is

FnMF =
X

i


H

✓
1 + mi

2

◆
+ H

✓
1 � mi

2

◆�
+

X

i

himi +
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Jijmimj, (3)

where H(x) ⇥ �x ln(x) and the mi must be fixed according to the self-consistency
equations

⌅FnMF

⌅mi
=

X

j

Jijmj + hi � atanh(mi) = 0 ⌃ mi = tanh

"

hi +
X

j

Jijmj

#

. (4)

A better MFA can be obtained by considering also the Onsager reaction term [26],
leading to the following TAP approximated free energy and self-consistency equations:

FTAP =
X

i


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✓
1 + mi
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◆
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✓
1 � mi

2

◆�

+
X
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2
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i )(1 � m2
j)

�
, (5)

mi = tanh

"

hi +
X

j

Jij(mj � Jij(1 � m2
j)mi)

#

. (6)

In the TAP approximation, when computing the marginal probability of spin si

(i.e. its magnetization mi), the reaction term modifies the marginal probabilities of the
neighboring spins, mj ⌅ (mj � Ji,j(1 � m2

j)mi), in order to try to remove the e⇥ect of
the spin si under study. It has been recognized [13, 14] that FnMF and FTAP are only the
first two terms of the expansion of F (J ,h) in small couplings J at fixed magnetizations
m = {mi}. This expansion contains [14] both loop terms, like JijJj�J�i, and terms with
higher powers of a single coupling, i.e. Jk

ij: the latter terms, that correspond to considering
recursively the reaction to the reaction between spins si and sj, can be resummed and
lead to the BA.

The BA gives a description of the model in terms of magnetizations mi and connected
correlations cij = ⌦sisj ↵ � mimj between neighboring spins (i.e. spins connected by a non-
zero coupling Jij). The BA can be derived in two equivalent ways. The first way consists
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that are used in section 2 for obtaining two-point correlations.

The simplest MFA, also known as the naive MF (nMF) approach, approximates the
model in terms of local magnetizations mi = ⌦si↵, where the angular brackets represent
the average w.r.t. the measure in equation (1). The corresponding approximation to the
free energy is

FnMF =
X

i


H

✓
1 + mi

2

◆
+ H

✓
1 � mi

2

◆�
+

X

i

himi +
X

i6=j

Jijmimj, (3)

where H(x) ⇥ �x ln(x) and the mi must be fixed according to the self-consistency
equations

⌅FnMF

⌅mi
=

X

j

Jijmj + hi � atanh(mi) = 0 ⌃ mi = tanh

"

hi +
X

j

Jijmj

#

. (4)

A better MFA can be obtained by considering also the Onsager reaction term [26],
leading to the following TAP approximated free energy and self-consistency equations:

FTAP =
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"
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X

j

Jij(mj � Jij(1 � m2
j)mi)

#

. (6)

In the TAP approximation, when computing the marginal probability of spin si

(i.e. its magnetization mi), the reaction term modifies the marginal probabilities of the
neighboring spins, mj ⌅ (mj � Ji,j(1 � m2

j)mi), in order to try to remove the e⇥ect of
the spin si under study. It has been recognized [13, 14] that FnMF and FTAP are only the
first two terms of the expansion of F (J ,h) in small couplings J at fixed magnetizations
m = {mi}. This expansion contains [14] both loop terms, like JijJj�J�i, and terms with
higher powers of a single coupling, i.e. Jk

ij: the latter terms, that correspond to considering
recursively the reaction to the reaction between spins si and sj, can be resummed and
lead to the BA.

The BA gives a description of the model in terms of magnetizations mi and connected
correlations cij = ⌦sisj ↵ � mimj between neighboring spins (i.e. spins connected by a non-
zero coupling Jij). The BA can be derived in two equivalent ways. The first way consists
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Onsager reaction term



Bethe approximation

• On a tree



• Not easy to write the explicit expression for the Bethe 
approximation



• Very hard to go beyond the Bethe approximation…

singly connecting in the second term of Fig. 1 represents the
third term of eq. (4), the diagram consisting of two nodes
with doubly connecting in the third term of Fig. 1 represents
the fourth term of eq. (4) and so on. Higher order terms will
be also expressed in terms of larger diagrams.

3. The Bethe Approximation and Plefka’s Expansion

As we mentioned in the previous section, the Plefka’s
expansion for the random Ising model in eq. (4) includes the
TAP free energy. On the other hand, it is known that the
TAP free energy can be derived by means of a perturbative
calculation in the approximate free energy of the Bethe
approximation.21) In this section, we provide the relation-
ships between the Bethe approximation and Plefka’s
expansion in higher order terms than the TAP free energy.

The Bethe approximation and its approximate free energy
can be derived using the context in the CVM.19,21) The
CVM is formulated by using a trial free energy which is
constructed in terms of the entropies for some marginal
probabilities.

We consider one-body and two body marginal probabil-
ities defined by

!iðsiÞ #
X

z

"si;zi!ðzÞ; ð5Þ

!i jðsi; sjÞ #
X

z

"si;zi"s j;z j!ðzÞ: ð6Þ

In the Bethe approximation, we introduce the following
entropies:

Si # $
X

zi¼&1

!iðziÞ ln !iðziÞ; ð7Þ

Si j # $
X

zi¼&1

X

z j¼&1

!i jðzi; zjÞ ln !i jðzi; zjÞ: ð8Þ

Because si ¼ &1 at every node i, the marginal probabilities
!iðsiÞ and !i jðsi; sjÞ in eqs. (5) and (6) can be expressed in
terms of moments mi and correlations mij #

P
zziz j!ðzÞ:

!iðsiÞ ¼
1

2

!
1þ simi

"
; ð9Þ

!i jðsi; sjÞ ¼
1

4

!
1þ simi þ sjmj þ sis jmi j

"
: ð10Þ

In order to interpret the Bethe approximation by means of
the CVM, we consider the trial free energy which is defined
in terms of m! ¼ fmi j i 2 !g and mB ¼ fmij j ðijÞ 2 Bg
by

F Bethe½m!;mB)

# $
X

i2!

himi $
X

ði jÞ2B

Ji jmij

$
1

#

X

i2!

Si $
1

#

X

ði jÞ2B

!
Si j $ Si $ S j

"
: ð11Þ

Here we note that the trial free energy can be expressed
in terms only of the moments m! and mB by substituting
eqs. (7)–(10) to the right-hand side of eq. (11). The trial free
energy given in eq. (11) is referred to as the Bethe free
energy. In eq. (11), Si and Si j $ Si $ S j can be regarded
as entropies of node i and of link ðijÞ, respectively.
The approximate values of the moments m! and mB in
the Bethe approximation are determined so as to minimize
the Bethe free energy and then so as to satisfy the stationary
conditions of eq. (11). That is to say, @F Bethe½m!;mB)=
@mi ¼ 0 and @F Bethe½m!;mB)=@mij ¼ 0. The stationary
conditions are reduced to the following self-consistent
equations:10)

mi ¼ tanh # hi þ
X

j2Bi

Ji j

 !

þ
X

j2Bi

tanh$1 mi $ tanh$1 mi þ mij

1þ mj

# $# $( )

; ð12Þ

mij ¼ cothð2#JijÞ 1$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ ð1$ mi

2 $ mj
2Þ tanh2ð2#Ji jÞ $ 2mimj tanhð2#Ji jÞ

q# $
; ð13Þ

where Bi # f j j ðijÞ 2 Bg is the set of all the nodes which are connected with the node i by link.
In order to see the relationship between the Bethe approximation and Plefka’s expansion, we have to carry out the

perturbation expansion of F Bethe½m!;mB) with respect to Ji j. We first expand eq. (13) to third order with respect to Ji j:

mij ¼ mimj þ #ð1$ mi
2Þð1$ mj

2ÞJi j þ 2#2mimjð1$ mi
2Þð1$ mj

2ÞJ2i j

þ
#3

3
ð1$ mi

2Þð1$ mj
2Þð15mi

2mj
2 $ 3mi

2 $ 3mj
2 $ 1ÞJi j3 þOðJi j4Þ: ð14Þ

By substituting eq. (14) to the Bethe free energy in eq. (11), we obtain the following expansion for the Bethe free energy:

terms of larger diagram

F =

Fig. 1. Diagrammatical representation in Plefka’s
expansion up to fourth order.
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Cluster Variational Method (CVM)Cluster Variation Method 5

The CVM can be derived from the variational principle of equilibrium statistical
mechanics, where the free energy is given by

F = − lnZ = min
p

F(p) = min
p

∑

s

[p(s)H(s) + p(s) ln p(s)] (8)

subject to the normalization constraint
∑

s

p(s) = 1. (9)

It is easily verified that the minimum is obtained for the Boltzmann distribution

p̂(s) =
1

Z
exp[−H(s)] = arg minF (10)

and that the variational free energy can be written in the form of a Kullback–Leibler
distance

F(p) = F +
∑

s

p(s) ln
p(s)

p̂(s)
. (11)

The basic idea underlying the CVM is to treat exactly the first term (energy) of
the variational free energy F(p) in Equation (8) and to approximate the second one
(entropy) by means of a truncated cumulant expansion.

We first define a cluster α as a subset of the factor graph such that if a factor node
belongs to α, then all the variable nodes i ∈ a also belong to α (while the converse
needs not to be true, otherwise the only legitimate clusters would be the connected
components of the factor graph). Given a cluster we can define its energy

Hα(sα) =
∑

a∈α

Ha(sa), (12)

probability distribution

pα(sα) =
∑

s\sα

p(s) (13)

and entropy

Sα = −
∑

sα

pα(sα) ln pα(sα). (14)

Then the entropy cumulants are defined by

Sα =
∑

β⊆α

S̃β , (15)

which can be solved with respect to the cumulants by means of a Möbius inversion,
which yields

S̃β =
∑

α⊆β

(−1)nα−nβSα, (16)

where nα denotes the number of variables in cluster α. The variational free energy
can then be written as

F(p) =
∑

s

p(s)H(s) −
∑

β

S̃β , (17)

where the second summation is over all possible clusters.
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energy (easy)
entropy (hard) -> approximate by



truncating the expansion in cumulants

sum over regions counting numbers (Moebius coeff.)

local
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Cluster Variational Method (CVM)

• Beliefs must be normalized and locally consistent  

• Local consistency is not global consistency!



• Beliefs are approximations to true marginals



• Beliefs can be parametrized by magnetizations and 
connected correlations, e.g.

X

sr

br(sr) = 1
X

sr\t

br(sr) = bt(st)

bi(si) =
1 +misi

2
bij(si, sj) =

1 +misi +mjsj + (cij +mimj)sisj
4
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(a symmetric solution) it is

!
P3
ij − !exact

ij = β7
∑

k<l(̸=i,j )

2Jkl[JijJkl(JikJjl + JilJjk)2

+ 2JikJjkJilJjl(JijJkl + JikJjl + JilJjk)]

+O(β8), (25)

to be compared to O(β5) errors for the standard LR imple-
mentation. The errors in (24) and (25) are evaluated given
the exact value of C, which is pertinent to an idealized inverse
problem application. If instead we consider the direct problem,
we are more interested in errors on the statistics C; these errors
depends on the on-diagonal component error of !, which is
unimproved in our method. In Ref. [19] an analysis and remedy
is proposed that involves including on-diagonal constraints, as
discussed in Appendix H.

B. Direct problem

The direct problem of determining magnetizations {Ci} and
correlations (e.g., {Cij }) given H ,J requires the simultaneous
solution to (12), (14), (15), and (19). A possible iterative
scheme for the NMF, Bethe, and Plaquette approximations
is

Ct+1
i ← tanh

[

β

(

Hi +
∑

j

JijC
t
j

)

− Li(Ct )

]

, (26)

Ct+1
ij ← χ t

ij = {[−βJ + !(Ct )]−1}ij , (27)

bt
P ← argmin

{
Tr

[
bt

P log bt
P

]∣∣{Ct
i

}
,Ct

$

}
. (28)

All approximations (NMF, Bethe, and PX) require (26), only
the Bethe and PX approximations (λ ̸= 0) require (27), and
only the PX approximations require (28), where bt

P is the belief
parameterized by the correlations {Ct

s : s ∈ P }. Thus, (28)
assigns the maximum entropy estimate to all connected
correlations on a plaquette region P not fixed by (26) and (27).
Equations (28) is an easily solved local convex optimization,
subject to linear constraints determined by Ct

$ and {Ct
i }. At

sufficiently high temperature the scheme is convergent and the
solution stable. However, at lower temperatures the process
may be unconvergent, and so strong damping and/or special
update ordering is required. We describe in more detail solving
the equations for the special case of homogeneous solutions
on a lattice in Appendix F.

We find our method to be promising for models with many
short loops. The homogeneous triangular lattice model (HTL),
with Hi = 0, Jij = 1 for nearest neighbors and 0 otherwise,
is a well-understood canonical model that has a ferromagnetic
transition point at βc = 0.275 [20] and for β < 0 is fully
frustrated with no long-range order but a Kosterlitz-Thouless
transition [21,22]. For finite lattice implementations we choose
periodic boundary conditions (periodicity L). Figure 1 shows
the corresponding region based approximations in the direct
problem.

Figure 2 shows nearest-neighbor correlation estimates
obtained in the thermodynamic limit by Fourier techniques,
as described in Appendix F 2. We show the exact result by
the black line, standard LR methods in red (label χ ), standard
methods minimizing F in the variational parameters in green

c = 1i

c   = 1ijk

c  = 1ijc = −5i c  = −1ijc = 1i

nn

nnn
a

b

c
NMF Bethe Plaquette

FIG. 1. (Color online) Regions and counting numbers for a
triangular lattice. {a,c} are nearest neighbors (nn), and {a,b} are
next-nearest neighbors (nnn). We abbreviate {χnn,Cnn,λnn} and χnnn

for the corresponding homogeneous quantities.

(label C), and our method in blue. All methods perform well
at high temperature (small |β|), and magnetized solutions
are accurate for β ≫ βc. Standard methods undergo spurious
continuous transitions for β ! βc, and the NMF and Plaquette
approximations also undergo a transition in the frustrated
regime β < 0. LR estimates diverge at these spurious critical
points. The standard (λ = 0) P3 method performs well in
the estimate of Cnn (nearest-neighbor correlation), for the
unmagnetized solutions, but only in the stable range β ∈
(−1.01,0.255), while our P3 method performs well in the
entire frustrated region and up to the true critical temperature
β < βc (see the inset of Fig. 2). However, the unmagnetized
solution does not exhibit continuous phase transitions for
our methods for β ∼ βc, as it should. At low temperature,
convergence problems hinder the construction of solutions
(iteration of (27) fails due to large gradients, as shown in
Fig. 5), and the unmagnetized P3 solution is constructed
only for β < 0.3. Certainly the P3 unmagnetized solution
is unfeasible for β > 0.35 (already significantly below the
critical temperature), since the Hessian becomes singular for
any Cnn < 1, the unmagnetized Bethe solution is stable to
much larger β as shown.

Lattice models with finite L do not, strictly speaking,
exhibit a phase transition, but many phenomena are well
described by models with this feature. However, data collected
in real applications often do not show any phase-transition
phenomena [14,15]; a more general test of inference methods
is the quality of the marginals predicted.
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FIG. 2. (Color online) Nearest-neighbors correlation estimates
for the asymptotic (L → ∞) HTL. Magnetized branches are shown
only for Bethe and Plaquette (λ = 0,β > 0) correlation parameters.
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How to choose the regions

• Original CVM: all maximal regions and all their 
intersections (recursively until single site regions)



• Region-based free energy approximation (Yedidia et al.): 
choose regions at your will as long as each site (variable 
node) and interaction (factor node) has coefficient c=1



• More is better, but computationally ineffective



• Try to include all relevant correlations



• Easy to derive Bethe and clear how to go beyond Bethe

diam(r
max

) ⇡ ⇠



How to find the beliefs

• Introduce Lagrange multipliers (called messages) 
enforcing the consistency constraint for each pair of 
regions 
 
These are generalized cavity probability distributions



• Solve equations for messages iteratively -> Belief 
Propagation (BP), Generalized Belief Propagation (GBP)

mr!t(st) 8r, t 2 R : t ⇢ r

J.S
tat.M

ech.
(2011)

P
12007

Characterizing and improving generalized belief propagation algorithms on the 2D Edwards–Anderson model

Figure 2. The message passing equations (5) and (6), shown schematically.
Messages are depicted as arrows, going from parent regions to child regions.
On any link Ji,j , represented as a bold line between spins (circles), a Boltzmann
factor eβJi,jsisj exists. Dark circles represent spins to be traced over. Messages
from plaquettes to links νP→L(si, sj) are represented by triple arrows, because
they can be written in terms of three parameters U , ui and uj , defining the
correlation ⟨sisj⟩ and magnetizations ⟨si⟩ and ⟨sj⟩, respectively.

Similarly, by imposing the marginalization of the beliefs at plaquettes onto their child
links, we find the self-consistent expression for the plaquette-to-link cavity fields:

UP→L = Û(#) =
1

4β
log

K(1, 1)K(−1,−1)

K(1,−1)K(−1, 1)
,

uP→i = −uD→i + ûi(#) = uD→i − uD→i +
1

4β
log

K(1, 1)K(1,−1)

K(−1, 1)K(−1,−1)
,

uP→j = −uU→j + ûj(#) = uU→j − uU→j +
1

4β
log

K(1, 1)K(−1, 1)

K(1,−1)K(−1,−1)
,

(6)

where

K(si, sj) =
∑

sk,sl

exp[β((UU→U + Jjk)sjsk + (UR→R + Jkl)sksl + (UD→D + Jli)slsi

+ (uU→k + uC→k + uE→k + uR→k)sk + (uR→l + uF→l + uG→l + uD→l)sl)]

and the symbol # stands for all incoming fields on the right-hand side of the equations.
The functions û(u, U, h) and [Û(#), ûi(#), ûj(#)] will be used in section 3 for the average
case calculation.

For a given system of size N (number of spins) there are 2N links and N square
plaquettes, and therefore there are 4N plaquette-to-link fields [UP→L, uP→i, uP→j], and
4N link-to-spin fields uL→i. At the stationary points of the free energy their values are
related by the set of 4N + 4N equations (5) and (6).

The set of 4N + 4N self-consistent equations is also called the message passing
equations when they are used as update rules for fields in the message passing algorithm,
or cavity iteration equations in the context of cavity calculations. The field notation
is more comprehensible than the original Lagrange multiplier notation, and has a clear
physical meaning: each plaquette is telling its child links that they should add an effective
interaction term UP→L to the direct interaction Ji,j, due to the fact that the spins si and
sj are also interacting through the other three links in the plaquette. Terms ui act like

doi:10.1088/1742-5468/2011/12/P12007 7



How to find the beliefs

• After converging to the fixed point of the message 
passing algorithm, compute beliefs from the messages



• N.B. several equivalent MPA and each may have several 
equivalent fixed point (gauge invariance).
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Characterizing and improving generalized belief propagation algorithms on the 2D Edwards–Anderson model

Figure 1. Schematic representation of the belief equations (2). Lagrange
multipliers are depicted as arrows, going from parent regions to child regions.
Italic capital letters are used to denote plaquettes, simple capital letters denote
links, and lower case letters denote spins.

A graphical representation of these equations is given in figure 1. Lagrange multipliers
are shown as arrows going from parent regions to children. Take, for example, the middle
equation for the belief in link regions bL(σL) = bL(si, sj). The sum of the two Lagrange
multipliers νP→L(si, sj) corresponds to the triple arrows on both sides of the link in the
middle of figure 1, while the two sums over three messages µL′→i(si) correspond to the
three arrows acting over the top (j) and bottom (i) spins, respectively. In equations (2),
the ZR are normalization constants. The terms EP(σP) = EP(si, sj, sk, sl) = −(Ji,jsisj +
Jj,ksjsk + Jk,lsksl + Jl,islsi) and EL(si, sj) = −Ji,jsisj are the corresponding energies
in plaquettes and links respectively, and are represented in the diagram by the lines
(interactions) between circles (spins); zero since no field is acting upon the spins.

The Lagrange multipliers can be parametrized in terms of the cavity fields u and
(U, ua, ub) as

−µL→i(si) = βuL→i si, (3)

−νP→L(si, sj) = β(UP→L sisj + uP→i si + uP→j sj). (4)

In particular, the field uL→i corresponds to the cavity field in the Bethe approximation [17].
The choice of these parametrizations is the reason for the use of single and triple arrows in
figures 1 and 2. In particular, the messages going from plaquettes to links are characterized
by three fields (UP→L, uP→i, uP→j), and the capital UP→L acts as an effective interaction
term.

The Lagrange multipliers are related among them by the constraints they are supposed
to impose (see [26]). In terms of the cavity fields and using the notation in figure 2, link-
to-spin cavity fields will be related by

uL→i = û(uP→i + uL→i, UP→L + UL→L + Jij, uP→j + uL→j + uA→j + uB→j + uU→j), (5)

where

û(u, U, h) ≡ u +
1

2β
log

cosh β(U + h)

cosh β(U − h)
.

Note that the usual cavity equation for fields in the Bethe approximation [3] is recovered
if all contributions from plaquettes P and L are set to zero.
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Plefka’s expansion vs. CVM

• Plefka’s expansion has N parameters (the magnetizations)  
nMF, TAP, 3rd order, 4th order,…,Bethe.



• CVM may have much more parameters to optimize over 
E.g. on the 2D square lattice:  
- nMF -> N magnetizations  
- Bethe -> N magnetizations + 2N nn correlations 
- Plaquette -> N magnetizations + 2N nn correlations + 
2N nnn correlations + 4N 3-spin corr. + N 4-spin corr.



• CVM much richer description, but hard to get analytical 
expressions to estimate model parameters



Bethe approximation

• The two derivations are equivalent: correlations only 
depends on magnetizations at the fixed point

@FBethe

@Cij
= 0 =)
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The Bethe approximation for solving the inverse Ising problem

in finding values of m and c minimizing the following free energy:

FBA =
X

i6=j


H

✓
(1 + mi)(1 + mj) + cij

4

◆
+ H

✓
(1 � mi)(1 � mj) + cij

4

◆

+ H

✓
(1 + mi)(1 � mj) � cij

4

◆
+ H

✓
(1 � mi)(1 + mj) � cij

4

◆�

+
X

i

(1 � di)


H

✓
1 + mi

2

◆
+ H

✓
1 � mi

2

◆�
+

X

i

himi

+
X

i6=j

Jij(cij + mimj), (7)

where di is the degree of spin si, i.e. the number of its neighboring spins. In equation (7)
the last two terms correspond to the average value of the energy at given magnetizations
and neighboring correlations, while the first two terms correspond to the entropy of the
Bethe approximation to the joint probability distribution of the N spin variables,

P (s1, . . . , sN)
BA⇧

Y

(ij)

pij(si, sj)

pi(si)pj(sj)

Y

i

pi(si), (8)

where the first product runs over all pairs of neighboring spins and the two-spin and
single-spin marginal probabilities are given respectively by pij(si, sj) = [(1 + misi)(1 +
mjsj) + cijsisj]/4 and pi(si) = (1 + misi)/2. The conditions ⌅FBA/⌅cij = 0 can be solved
analytically and lead to

Jij =
1

4
ln

✓
((1 + mi)(1 + mj) + cij)((1 � mi)(1 � mj) + cij)

((1 + mi)(1 � mj) � cij)((1 � mi)(1 + mj) � cij)

◆
, (9)

cij(mi, mj, tij) =
1

2tij

⇣
1 + t2ij �

q
(1 � t2ij)

2 � 4tij(mi � tijmj)(mj � tijmi)
⌘

� mimj. (10)

where tij = tanh(Jij). Please note that equation (9) is identical to equation (26) in [16] and
this is a further confirmation that resumming all two-spin terms in the Plefka expansion
leads to the BA. Moreover equation (9) has been used in the literature [7, 27] as the
independent-pair (IP) approximation for inferring couplings from magnetizations and
correlations: such an approximation infers the coupling Jij by assuming that spins si and
sj form an isolated pair with magnetizations mi and mj and correlation cij. Unfortunately
under this IP approximation, computing the external fields is not immediate and moreover
even the estimates of the couplings are rather poor (see section 5).

By making the substitution cij ⌅ cij(mi, mj, tij) in FBA one can obtain the Bethe
free energy only in terms of magnetizations, from which the self-consistency equations for
the magnetizations can be derived. However this derivation requires a rather complicated
algebra and I prefer to obtain the same equations in a much simpler alternative way.

In the so-called cavity method [2], local magnetizations mi and neighboring
correlations cij are expressed in terms of some auxiliary variables, the cavity

magnetizations m(j)
i (i.e. the mean value of si in the absence of a neighboring spin sj):

mi =
m(j)

i + tij m(i)
j

1 + m(j)
i tij m(i)

j

, (11)
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and neighboring correlations, while the first two terms correspond to the entropy of the
Bethe approximation to the joint probability distribution of the N spin variables,
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BA⇧
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where the first product runs over all pairs of neighboring spins and the two-spin and
single-spin marginal probabilities are given respectively by pij(si, sj) = [(1 + misi)(1 +
mjsj) + cijsisj]/4 and pi(si) = (1 + misi)/2. The conditions ⌅FBA/⌅cij = 0 can be solved
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(1 � t2ij)

2 � 4tij(mi � tijmj)(mj � tijmi)
⌘

� mimj. (10)

where tij = tanh(Jij). Please note that equation (9) is identical to equation (26) in [16] and
this is a further confirmation that resumming all two-spin terms in the Plefka expansion
leads to the BA. Moreover equation (9) has been used in the literature [7, 27] as the
independent-pair (IP) approximation for inferring couplings from magnetizations and
correlations: such an approximation infers the coupling Jij by assuming that spins si and
sj form an isolated pair with magnetizations mi and mj and correlation cij. Unfortunately
under this IP approximation, computing the external fields is not immediate and moreover
even the estimates of the couplings are rather poor (see section 5).

By making the substitution cij ⌅ cij(mi, mj, tij) in FBA one can obtain the Bethe
free energy only in terms of magnetizations, from which the self-consistency equations for
the magnetizations can be derived. However this derivation requires a rather complicated
algebra and I prefer to obtain the same equations in a much simpler alternative way.

In the so-called cavity method [2], local magnetizations mi and neighboring
correlations cij are expressed in terms of some auxiliary variables, the cavity

magnetizations m(j)
i (i.e. the mean value of si in the absence of a neighboring spin sj):

mi =
m(j)

i + tij m(i)
j

1 + m(j)
i tij m(i)

j

, (11)
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Moreover Eq.(9) has been used in the literature [7, 27] as the independent-pair (IP) approximation

for inferring couplings from magnetizations and correlations: such an approximation infers the

coupling Jij by assuming spins si and sj form an isolated pair with magnetizations mi and mj and

correlation cij . Unfortunately under this IP approximation computing the external fields in not

immediate and moreover even the estimates of the couplings are rather poor (see Section V).

By making the substitution cij ⇥ cij(mi,mj , tij) in FBA one can obtain the Bethe free-energy

only in terms of magnetizations, from which the self-consistency equations for the magnetizations

can be derived. However this derivation requires a rather complicated algebra and I prefer to

obtain the same equations in a much simpler alternative way.

In the so-called Cavity Method [2] local magnetizations mi and neighbouring correlations cij

are expressed in terms of some auxiliary variables, the cavity magnetizations m(j)
i (i.e. the mean

value of si in the absence of a neighboring spin sj):

mi =
m(j)

i + tij m
(i)
j

1 +m(j)
i tij m

(i)
j

, (11)

mj =
tij m

(j)
i +m(i)

j

1 +m(j)
i tij m

(i)
j

, (12)

cij =
tij +m(j)

i m(i)
j

1 +m(j)
i tij m

(i)
j

�mimj . (13)

Cavity magnetizations must satisfy the self-consistency equations

m(j)
i = tanh

�

⇤hi +
⇧

k( �=j)

atanh(tik m
(i)
k )

⇥

⌅ . (14)

These equations are often solved by an iterative algorithm known as Belief Propagation (BP) [28]:

in case of convergence, the fixed point of BP gives directly the Bethe free-energy that admits an

expression in terms of cavity magnetizations only [2].

In order to obtain a closed set of self-consistency equations in the magnetizations m, let me

solve eqs.(11-12) for the cavity magnetizations and find

m(j)
i = f(mi,mj , tij) m(i)

j = f(mj ,mi, tij) , (15)

where

f(m1,m2, t) =
1� t2 �

⌃
(1� t2)2 � 4t(m1 �m2t)(m2 �m1t)

2t(m2 �m1t)
. (16)

The sign in front of the square root has been chosen such that f(0, 0, t) = 0 as it should. A

consistency check can be made by substituting expressions (15) in Eq.(13) to obtain again the result

6

in Eq.(10). Finally, combining Eq.(11) and Eq.(14), it is possible to obtain the self consistency

equation for the magnetizations under the BA:

mi = tanh

⇤

⇧hi +
⌥

j

atanh
�
tijf(mj ,mi, tij)

⇥
⌅

⌃ . (17)

It is fair to comment that the use of this formula for finding Bethe magnetizations is not a good

idea: indeed an iterative solution of Eq.(17) is typically more unstable than BP solving Eq.(14).

My interest in this formula is that it involves only physical magnetizations (not cavity ones) and

can be used to obtain correlations (see Section II) and to solve in a fast way the inverse Ising

problem (see Section V).

A series expansion of the exponent in Eq.(17) for small couplings gives

hi +
⌥

j

atanh
�
tijf(mj ,mi, tij)

⇥
⇤ hi +

⌥

j

�
Jijmj � J2

ij(1�m2
j )mi + . . .

⇥
, (18)

and one recognizes that the first two terms of the expansion are the naive MF approximation and

the Onsager reaction term. This expansion should make clearer that the BA is a way of considering

recursively all the reactions between a pair of neighboring variables.

II. COMPUTING CORRELATIONS BY LINEAR RESPONSE

A preliminary step to solve the inverse Ising problem by any MFA is to derive an analytical

expression for the pairwise correlations as a function of the coupling constants. Actually, the MFA

discussed in Section I do not provide information about the correlation between distant variables:

indeed, naive MF and TAP approximations give cij = 0 for any pair of variables, and the BA only

provides an expression for correlation between neighboring spins, see Eq.(10), which is trivially

cij = tij in case of null magnetizations.

Nonetheless, a closed set of equations for the connected correlations1, Cij ⇥ ⌅sisj⇧� ⌅si⇧⌅sj⇧ for

any pair i, j, can be derived from the magnetizations self-consistency equations, Eqs.(4), (6), (17),

through the linear response [8, 12]

Cij =
⇤mi

⇤hj
, (C�1)ij =

⇤hi
⇤mj

. (19)

1 Please do not confuse the correlation Cij with the parameter cij appearing in the BA: the two coincide only when
the BA is exact.

Independent


pair approx.

Small couplings expansion leads to nMF, TAP, …



• Connected correlations are always null in nMF, TAP  
Even in Bethe between non-neighbours spins



• Non trivial (and better) correlations can be obtained via 
linear response (Kappen Rodriguez, 1998)

Computing correlations by linear response

7

The inverse correlation matrices C�1 for the three MFA discussed above are given by the following

expressions:

naive MF (C�1
nMF)ij =

�ij
1�m2

i

� Jij , (20)

TAP (C�1
TAP)ij =

⇤
1

1�m2
i

+
⇧

k

J2
ik(1�m2

k)

⌅
�ij �

�
Jij + 2J2

ijmimj
⇥
, (21)

Bethe (C�1
BA)ij =

⇤
1

1�m2
i

�
⇧

k

tikf2(mk,mi, tik)

1� t2ikf(mk,mi, tik)2

⌅
�ij �

tijf1(mj ,mi, tij)

1� t2ijf(mj ,mi, tij)2
, (22)

where f1(m1,m2, t) ⇥ ⌅f(m1,m2, t)/⌅m1 and f2(m1,m2, t) ⇥ ⌅f(m1,m2, t)/⌅m2. From these

expressions one can obtain directly any correlation by simply computing the inverse of a matrix.

Please note that Eq.(22) gives exactly the same solution found by the SuscProp iterative al-

gorithm [9], which is presently considered one among the best inference algorithms. The main

advantage of Eq.(22) is that it always provides the correlation matrix, even in those cases where

SuscProp does not converge to the fixed point. Moreover inverting a matrix takes roughly the same

time of a single iteration of SuscProp, and so using Eq.(22) is much faster than running SuscProp,

even when the latter converges.

Nevertheless, it is fair to notice that the use of Eq.(22) does not solve all the problems related to

the lack of convergence of SuscProp. Indeed, during the many tests I have run, I noticed that often

the lack of convergence of SuscProp does correspond to the BA fixed point becoming unphysical:

in these cases, by inverting the correlation matrix provided by Eq.(22), one gets an unphysical

correlation matrix (e.g. a correlation matrix with negative diagonal elements!). In this sense the

lack of convergence of SuscProp gives a warning that the “blind” use of Eq.(22) does not provide.

So, a general suggestion when using the above formulas, providing an analytical expression for the

correlation matrices under a MFA, is to check explicitly the physical consistency of the outcome.

One may comment that Eq.(22) contains the magnetizations and the iterative computation of

these (i.e. the BP algorithm) su�ers the same convergence problems of SuscProp: this is easy to

prove, given that the homogeneous SuscProp equations are nothing but the iterative equations for

evolving under BP a small perturbation in the magnetization, and so BP is unstable if SuscProp

does not converge. However there are provably convergent algorithms for the computation of

magnetizations under the BA [29, 30]: the use of these algorithms in conjunction with Eq.(22)

allows a direct computation of correlations under the BA. Moreover there are situations where

magnetizations are known a priori and Eq.(22) can be applied directly: e.g. when symmetries in

the probability measure force magnetizations to be zero, or in the inverse Ising problem, where

(��1
nMF)ij

(��1
TAP)ij

�ij =
@mi

@hj
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The Bethe approximation for solving the inverse Ising problem

2. Computing correlations using the linear response

A preliminary step to solving the inverse Ising problem by using any MFA is to derive an
analytical expression for the pairwise correlations as a function of the coupling constants.
Actually, the MFA discussed in section 1 do not provide information about the correlation
between distant variables: indeed, naive MF and TAP approximations give cij = 0 for any
pair of variables, and the BA only provides an expression for the correlation between
neighboring spins (see equation (10)), which is trivially cij = tij in the case of null
magnetizations.

Nonetheless, a closed set of equations for the connected correlations1, Cij ⇥ ⌦sisj ↵ �
⌦si↵⌦sj ↵ for any pair i, j, can be derived from the magnetizations self-consistency equations,
equations (4), (6) and (17), through the linear response [8, 12]:

Cij =
⌅mi

⌅hj
, (C�1)ij =

⌅hi

⌅mj
. (19)

The inverse correlation matrices C�1 for the three MFA discussed above are given by the
following expressions:

naive MF (C�1
nMF)ij =

⇥ij

1 � m2
i

� Jij, (20)

TAP (C�1
TAP)ij =

"
1

1 � m2
i

+
X

k

J2
ik(1 � m2

k)

#

⇥ij �
�
Jij + 2J2

ijmimj

�
, (21)

Bethe (C�1
BA)ij =

"
1

1 � m2
i

�
X

k

tikf2(mk, mi, tik)

1 � t2ikf(mk, mi, tik)2

#

⇥ij � tijf1(mj, mi, tij)

1 � t2ijf(mj, mi, tij)2
, (22)

where f1(m1, m2, t) ⇥ ⌅f(m1, m2, t)/⌅m1 and f2(m1, m2, t) ⇥ ⌅f(m1, m2, t)/⌅m2. From
these expressions one can obtain directly any correlation by simply computing the inverse
of a matrix.

Please note that equation (22) gives exactly the same solution as is found by the
SuscProp iterative algorithm [9], which is currently considered among the best inference
algorithms. The main advantage of equation (22) is that it always provides the correlation
matrix, even in those cases where SuscProp does not converge to the fixed point. Moreover
inverting a matrix takes roughly the same time as a single iteration of SuscProp, and so
using equation (22) is much faster than running SuscProp, even when the latter converges.

Nevertheless, it is only fair to note that the use of equation (22) does not solve all the
problems related to the lack of convergence of SuscProp. Indeed, during the many tests
that I have run, I noticed that often the lack of convergence of SuscProp does correspond to
the BA fixed point becoming unphysical: in these cases, by inverting the correlation matrix
provided by equation (22), one gets an unphysical correlation matrix (e.g. a correlation
matrix with negative diagonal elements!) In this sense the lack of convergence of SuscProp
gives a warning that the ‘blind’ use of equation (22) does not provide. So, a general
suggestion when using the above formulas, providing an analytical expression for the

1 Please do not confuse the correlation Cij with the parameter cij appearing in the BA: the two coincide only
when the BA is exact.
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Estimating model parameters via MFA

• Assume          !



• Estimate couplings from matching only off-diagonal 
elements of       and



• Easier than computing marginals: no need to run MPA!
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for the BA, thus leading to

JTAP
ij =

p
1 � 8mimj(C�1)ij � 1

4mimj
, (33)

JBA
ij = �atanh


1

2(C�1)ij

q
1 + 4(1 �m2

i )(1 �m2
j)(C

�1)2
ij �mimj

� 1

2(C�1)ij

r⇣q
1 + 4(1 �m2

i )(1 �m2
j)(C

�1)2
ij � 2mimj(C�1)ij

⌘2

� 4(C�1)2
ij

�
. (34)

The fourth approximation that I am considering has been obtained from a small correlation
expansion by Sessak and Monasson [16] and has been further simplified in [27] to the
following expression

JSM
ij = �(C�1)ij + J IP

ij � Cij

(1 �m2
i )(1 �m2

j) � (Cij)2
. (35)

For each approximation, I measure the error in inferred couplings J 0
ij with respect to

the true ones Jij by using the following expression:

�J =

sP
i<j(J

0
ij � Jij)2

P
i<j J2

ij

. (36)

I study both the diluted ferromagnetic model with a fraction p of non-zero couplings
(Jij = �) and undiluted spin glass models (Jij = ±� with probability 1/2). I also consider
several topologies: 2D square lattices, 3D cubic lattices, random regular graphs with
fixed degree c = 4 and fully connected (FC) graphs. In the latter case the couplings are
normalized in order to have a phase transition at �c = 1 in the thermodynamic limit. I
restrict the study to models of small sizes, with N ranging between 20 and 100, because
these are the sizes for problems of biological interest. Moreover, as discussed below, the
number M of independent measurements of the correlation matrix that make inferred
coupling reasonably good grows linearly with N , and so for larger systems the number of
measurements needed becomes too large. The data shown in section 5 have been obtained
with M = 106 independent measures of the correlation matrix (unless stated otherwise)
and going to much larger values seems to me rather unrealistic as compared with practical
applications.

4.1. The normalization trick for the inverse Ising problem

The trick of normalizing the correlation matrix to improve inference (see section 3) can
be extended to the inverse Ising problem. In practice, it corresponds to solving all the
equations relating the inverse correlation matrix C�1 to the couplings Jij, including also
those for the diagonal elements which are usually ignored.

Let me illustrate the new method for the simple case of the TAP approximation with
null magnetizations. In this case, solving the inverse Ising problem only on the o⇥-diagonal
elements is equivalent to solving the equations

(C�1)ij = �Jij ⇥ Dij  (i �= j),
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The fourth approximation that I am considering has been obtained from a small correlation
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I study both the diluted ferromagnetic model with a fraction p of non-zero couplings
(Jij = �) and undiluted spin glass models (Jij = ±� with probability 1/2). I also consider
several topologies: 2D square lattices, 3D cubic lattices, random regular graphs with
fixed degree c = 4 and fully connected (FC) graphs. In the latter case the couplings are
normalized in order to have a phase transition at �c = 1 in the thermodynamic limit. I
restrict the study to models of small sizes, with N ranging between 20 and 100, because
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measurements needed becomes too large. The data shown in section 5 have been obtained
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and going to much larger values seems to me rather unrealistic as compared with practical
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The trick of normalizing the correlation matrix to improve inference (see section 3) can
be extended to the inverse Ising problem. In practice, it corresponds to solving all the
equations relating the inverse correlation matrix C�1 to the couplings Jij, including also
those for the diagonal elements which are usually ignored.
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Estimating model parameters via MFA

• Independent Pair (IP) approximation  
 

• Sessak-Monasson (SK) small correlation expansion  
 

• Fields estimates from self-consistency equation  
E.g. for nMF

13

IV. METHODS FOR THE INVERSE ISING PROBLEM

I consider 4 di⇥erent approximations for solving the inverse Ising problem. The simplest one

is the independent-pair (IP) approximation, already discussed in Section I and recalled here for

convenience

J IP
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4
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⇥
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Among the MFA which can be derived from the Plefka expansion, I consider only TAP and BA,

because are those performing better in the direct problem of estimating correlations (see Section II).

The corresponding expressions for the inferred couplings can be obtained by solving the equation

2mimjJ
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undiluted spin glass models (Jij = ±� with probability 1/2). I also consider several topologies: 2D
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How good are MFA?

• Estimating marginals
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tat.M

ech.(2012)P
08015

The Bethe approximation for solving the inverse Ising problem

Figure 1. Error incurred by five mean-field approximations in estimating the
correlation matrix, given the couplings. Shown are typical samples of size N = 52

(the qualitative behavior does not change for larger sizes).

The purpose is to understand whether and to what extent the estimate of the correlation
matrix improves upon adding terms in the Plefka expansion.

I have tested the accuracy of formulas in equations (23)–(27) for ferromagnetic
(Jij = 1) and spin glass (Jij = ±1) models defined on fully connected (FC) topologies,
on a 2D square lattice and on a 3D cubic lattice. In diluted versions of these models a
fraction (1 � p) of couplings has been set to zero. In models defined on FC graphs the
couplings have been normalized so as to have a critical inverse temperature �c = 1 in the
thermodynamic limit.

The discrepancy between true correlations C and those inferred C 0 is defined as

�C ⇥
s

1

N2

X

i,j

(Cij � C 0
ij)

2. (28)

In figures 1 and 2 I report the typical behavior of the error �C between exact and estimated
correlation matrices for five di⇥erent MFA. Figure 1 shows results for models defined on
a 2D square lattice, while figure 2 refers to FC and 3D topologies. In order to compare
the MFA estimates with the exact correlation matrices I am studying small systems here,
but the qualitative behavior does not change for larger sizes.

Although the quantitative behavior of �C depends on the specific sample, some general
statements can be made:
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How good are MFA?

• Estimating model parameters



How good are MFA?

• Problems with strongly frustrated models in a field



• Due to negative discriminants in coupling estimates

J.S
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The Bethe approximation for solving the inverse Ising problem

Figure 9. Errors in the couplings inferred from several approximations: the SK
model with h = 0 (upper left, just for comparison), the SK model with h = 0.1
(upper right), the SK model with h = 0.3 (lower left) and the spin glass on a
random regular graph with fixed degree c = 4 and h = 0.7 (lower right). The
vertical dotted lines mark the loci of the spin glass phase transitions in the
thermodynamic limit. In the presence of an external field, TAP and BA cease
to have a solution for high enough � values.

these approximations on the basis of how good they are at solving the direct problem
(i.e., computing the correlations given the couplings). TAP and Bethe turned out to be
in general the best approximations available.

Secondly I derived the new analytical formula (34) for inferring couplings from
magnetizations and correlations under the Bethe approximation. This formula allows one
to infer couplings without running the susceptibility propagation algorithm, thus avoiding
all the serious problems related to the lack of convergence of such an algorithm.

After having summarized the formulas giving the inferred couplings for the four
approximations tested (the independent-pair one, TAP, the Bethe one and the small
correlation expansion of [16]), I introduced a trick that, normalizing the correlation matrix,
improves the TAP and the Bethe approximations in the case of models being unfrustrated
or weakly frustrated.

Finally I presented the results of the comparison among the four approximations
for inferring couplings in diluted ferromagnetic models and spin glass models. I have

doi:10.1088/1742-5468/2012/08/P08015 20



How good are MFA?

• The linear response correlation matrix (the only we can 
compute in MFA) has “wrong” element on the diagonal.



• It is different from the true correlation matrix.



• In the Bethe approximation the 2 estimates of nearest 
neighbor correlations (     and     ) are different.  
And linear response estimate is generally better.



• This is due to loops ignored in the MFA

0

B@
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. . .
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�ij �NN
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Limitations of MFA

• Ergodicity breaking



• MFA assume that a single state exists, and that 
correlations decay fast with distance



• If many states exist correlations no longer decay, and 
MF estimates become poor



• Presence of loops



• Even in presence of a single state, the loops may 
change a lot the correlations with respect to 
Susceptibility Propagation estimate, obtained assuming 
a loopless graph



MFA fail because of loops

• E.g. Bethe approximation in the high temperature phase



• Since m=0, at the CVM free-energy minimum



• Linear response (Susceptibility Propagation)  

• So in general for a ferromagnet  
in the high T phase holds

h⇥i⇥jiBA
c = c⇤ij = tanh(�Jij) < h�i�jiexactc

�ii = 1 +
X

j2�i

uj!i,i 6= 1

BP for SG on a 2D lattice

pure ferro
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ech.
(2011)

P
12007

Characterizing and improving generalized belief propagation algorithms on the 2D Edwards–Anderson model

Figure 4. Probability of convergence of BP and GBP on a 2D EA model, with
random bimodal interactions, as a function of the inverse temperature β = 1/T .
The Bethe spin glass transition is expected to occur at βBethe ≃ 0.66 on a random
graph with the same connectivity. The BP message passing algorithm on the 2D
EA model stops converging very close to that point. Above that temperature,
BP equations converge to the paramagnetic solution, i.e. all messages are trivial,
u = 0. Below the Bethe temperature (nearly) the Bethe instability takes messages
away from the paramagnetic solution, and the presence of short loops is thought to
be responsible for the lack of convergence. On the other hand, the GBP equations
converge at lower temperatures, but eventually stop converging as well.

high temperatures (above TBethe = 1/βBethe ≃ 1.51) in a typical instance of the model
with bimodal interactions, we find the paramagnetic solution (given by all fields u = 0),
and, therefore, the system is equivalent to a set of independent interacting pairs of spins,
which is only correct at infinite temperature. The Bethe temperature TBethe (computed in
the average case and exact on acyclic graphs4), seems to mark precisely the point where
BP stops converging (see figure 4). Indeed messages flow away from zero below TBethe,
and convergence of the BP message passing algorithm is not achieved anymore. So, the
Bethe approximation is disappointing when applied to single instances of the Edwards–
Anderson model: either it converges to a paramagnetic solution at high temperatures, or
it does not converge at all below TBethe.

The natural question arises as to what extent the GBP message passing algorithm for
the plaquette-CVM approximation is also nonconvergent below its critical temperature,
and whether this temperature coincides with the average case one. To check this we
used GBP message passing equations (5) and (6), with a damping factor of 0.5 in the

4 The Bethe temperature TBethe is the one at which a nontrivial spin glass solution appears for a random regular
Bethe lattice with connectivity K = 4. The Bethe lattice looks locally like a tree.
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∑
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Adding loops to Bethe ?

• Several attempts



• Loop calculus (Chertkov Chernyak)



• BP + correlations between neighbors 
(Montanari Rizzo, Mooij Kappen,  
Rizzo Wammenhove Kappen, Ohzeki)



• All require in some sense the convergence of BP, but 
loops make BP stop converging…



• None is able to make predictions in a frustrated model 
with many loops at low enough temperatures



Make MFA & LR consistent

• Choose your preferred MFA free-energy



• Enforce consistency with linear response estimates

FMFA({mi}, {Cij}, . . .)

�ii = 1�m2
i �ij = Cij

free energy 
minimum 
location

free energy 
minimum 
curvature



General framework for MFA + LR

Your preferred MFA

F� = FMFA({mi}, {Cij}, . . .) +
X

i

�im
2
i +

X

i<j

�ijCij

can be set to zero to 
recover known approx. 

or used to satisfy 
�ii = 1�m2

i �ij = Cij



Other proposals for fixing

• Kappen Rodriguez (1998) 
MF + self-couplings



• Opper Winter (2001) 
Adaptive TAP = TAP + 



• FRT (2012) 
Bethe with normalized correlations 
useful for the inverse pb.



• Yasuda Tanaka (2013) 
I-SuscP = Bethe + 

�ii

b�ij ⌘
�ijp
�ii�jj

�i

�i

Jii



Bethe + linear response

• Ising model on a 2D square lattice
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MFA + LR: estimating marginals
where ti = tanh(Ji), Ti = 1 − t2i and we define Jijk =
JikJjktitjTk. The response and on-diagonal errors are

LX
i − L∗

i
.
= tiD

X
i ; ΦX

ii − Φ∗
ii

.
= DX

i . (37)

For the NMF and Bethe methods we define respectively

DN
i = −

∑

j( ̸=i)

J2
ijTj ; DB

i = 2
∑

j<k( ̸=i)

JjkJijJikTjTk .

(38)
In the Bethe method where Cij ̸= χij the error on Cij is
dominated by

LB
ij − L∗

ij
.
=

∑

k( ̸=i,j)

JikJjkTk . (39)

In (35) and (36) we demonstrate also the leading order diagram
relevant for high temperature at O(β3) and O(β5) respectively.

We calculate errors for both the weak coupling (small J)
and high temperature (J and H are O(β)) cases solving the
linearized equations. We summarise the consequences for the
error in Ci, χi̸=j and Cij according to constraints introduced
(left label in list). For NMF errors are

∅ From (31) and (37) δCi is determined as O(J2,β3).
The response error δχij is O(J2,β3).

(10) We find λN
i = DN

i , removing the most significant
source of error in δCi, the error on the magnetization
improves to O(J3,β4), the error on δχij remains
limited to O(J2,β3) by the error (35).

For Bethe errors are

∅ δCi and δχij are O(J3,β4).

(10) We find δCi is improved to O(J4,β5), δχij remains
O(J3,β4). Error sources (37) are improved, but (39)
remains a significant constraint on accuracy of δχij .

(12) δCi remains O(J3,β4) but δχij is improved to
O(J4,β4). The errors on δC are made independent
of (39), but the error sources (37) are unimproved.

(10,12) The combined effect is to remove the most signif-
icant sources of error, both δCi and δχij become
O(J4,β5). The remaining error on δχij is limited at
leading order only by (36).

For Bethe introducing the constraint (12) always reduces the
error on δCij , which is O(J2,β2) in the standard method.

B. Iterative scheme

The non-convex nature of the constraints we are introduc-
ing makes algorithm development a challenge, but we can
solve in general these equations for weak-coupling, with a
naive iterative scheme

Ct+1
i = tanh

⎛

⎝Hi +
∑

j

Jijmj + λt
iC

t
i − Lt

i

⎞

⎠ . (40)

If applying the constraint (10), we can simultaneously infer

λt+1
i = λt

i − Φt
ii((1 − (Ct

i )
2) − χt

ii)Φ
t
ii , (41)
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Fig. 1. Full correlations estimates on nearest neighbors based on linear
response bLR

ij , compared to the exact result (black think curve), and the
parameters bij determined for a standadrd implentation of the Bethe approxi-
mation (thin red). Curves are labeled in the legend according to the constraints
introduced. For negative J the new methods perform admirably compared to
standard implementations. All methods perform poorly in the vicinity of the
phase transition, the paramagnetic solutions of the new methods can be stable
even beyond the true critical point J > 0.275, though performance is poor.

otherwise λi = 0. Applying constraint (12), for the Bethe
method,

χt
ij = [(Φt − βJ)−1]ij ; Ct+1

ij = χt
ij . (42)

with λij fixed by (16); otherwise λij = 0 and we fix

bt
ij = argminbij

{bij log bij − JijTr[bijσiσj ] : Ct
i , C

t
j} . (43)

To fix bt
ij at fixed Ct

i and Ct
j is equivalent to fixing Ct

ij .

The instantaneous mean field is used to update the mag-
netization in (40), a linear expansion of (10) is used to deter-
mine (41), a naive iteration matching successively the linear
responses is used in (42). At large |J | (40)-(42) can be unstable
individually or in combination, damping and annealing can be
effective strategies to arrive at a solution for strong coupling.
The procedure (43) is one of convex optimization and doesn’t
contribute to instability.

C. Strong coupling regime experiments

We consider a simple model the triangular lattice model
with uniform couplings Jij = J and zero fields Hi = 0
in the large system limit. This model is problematic for
standard Bethe and NMF for several reasons: it involves short
loops not accounted for by the region selection; there is a
continuous symmetry breaking transition at J = 0.275 with
associated long range correlations [18]; for J < 0 there is
frustration; for J < 0 there are Kosterlitz-Thouless transitions,
but no symmetry breaking transitions [19], [20]. For these
reasons Bethe and NMF estimates for bR or bLR

R can be
poor. The solution can be found for our new methods by
Fourier analysis. Figure 1 presents a comparison of methods.
We present only the solution found continuously from J = 0
by the iterative method, and we do not present the symmetry
breaking solutions at J < 0, where they exist.

(10) �ii = 1�m2
i

(12) �ij = Cij



MFA + LR: estimating model param.
• Inferring the couplings 

of a 2D triangular 
diluted antiferromagnet  
from correlations 
(infinite statistics)



• Inferring the couplings 
of a 2D diluted Ising  
model (finite stat.)

c = 1i

c   = 1ijk

c  = 1ijc = −5i c  = −1ijc = 1i

nn

nnn
a

b

c
NMF Bethe Plaquette

FIG. 1: Regions and counting numbers for a triangular lat-
tice. {a, c} are nearest neighbors (nn), {a, b} are next-nearest
neighbors (nnn). We abbreviate χ and C indices accordingly.
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FIG. 2: (color online) Nearest neighbors correlation estimates
for the HTL L → ∞. Magnetized branches are shown only for
Bethe and Plaquette (λ = 0, β > 0) correlation parameters.

methods in red (label χ), standard methods minimizing
F in the variational parameters in green (label C) and
our new method in blue. All methods perform well at
high temperature (small |β|), and magnetized solutions
are accurate for β ≫ βc. Standard methods undergo con-
tinuous transitions for β ∼ βc, and in some cases even
for β < 0. LR estimates diverge at these points. The
standard (λ = 0) P3 method performs well in the esti-
mate of Cnn, for the unmagnetized solutions, but only
in the stable range β ∈ (−1.01, 0.255), while our new
P3 method performs well in the entire frustrated region
β < 0 (see the inset of Fig. 2). The unmagnetized solu-
tion does not exhibit continuous phase transitions for the
new methods, as it should. At low temperature conver-
gence problems hinder the construction of solutions, the
unmagnetized P3 solution is constructed only for β < 0.3,
certainly this solution disappears at β = 0.35, where the
Hessian becomes singular for any Cnn < 1.

Long range correlations are not amongst the CVM pa-
rameters, LR is required to determine correlations out-
side plaquette regions. For β ∈ (−∞,βc] the new method
improves upon standard implementations for many sig-
nificant terms in χ and χ−1. Figure 3 shows the next
nearest correlations calculated on a finite model L = 5,
the new method estimates are superior to their coun-
terparts for most β. The values calculated for L = 5 are
close to those for L → ∞ for β < βc, although in the case
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FIG. 3: Next nearest neighbor correlations for the HTL L = 5,
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FIG. 4: THL: error in inference of J from exact statistics.

of L = 5 the tripartite lattice symmetry is broken so that
for β < 0 there is extra frustration, and the paramagnetic
solutions are more stable. The NMF paramagnetic solu-
tion is unstable for β < −0.382 , but other paramagnetic
solutions are stable for −1.2 < β < 0. An interesting fea-
ture of the new method is that it overcompensates the
error of the standard method; so a combination of the
two can lead to even better results.

Inverse problem

A simpler application of our method is for the in-
verse problem: given sample statistics, determine J and
H [17, 21]. With ignorance of the distribution of cou-
plings (and topology), we must have unbiased region se-
lection: all edges for Bethe, and all (triangular) Plaque-
ttes for P3. In the new method we take C and χ equal to
the correlation statistics and solve first (15) for Jij , and
then (12) for H. In standard mean field methods the
same assumptions are made on region selection, but only
χ and {Ci} are determined from the statistics, all other
C obey the saddle point equations (13) with λ = 0 (thus
making equations solvable for Bethe and TAP [17]).

Figure 4 demonstrates the results for estimation of ma-
trix J in the HTL L = 5 based on exact data. The im-
proved scaling at small |β| is as anticipated in Eqs. (19),
(20). However, even at low temperature reconstruction
is significantly improved by the new methods. Although
Φnn determines the error, note that the approximation is
different to that used in the direct problem: the 2D trian-
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FIG. 5: Error in inferring couplings J for a diluted 2D square
ferromagnet, from statistics of 106 independent samples. [KR]
employs the Kappen-Rodriguez normalization [10].

gular structure is discovered, unlike in the direct problem
where it is assumed in the region selection.

Figure 5 demonstrates results for an instance of a 7 by
7 diluted square lattice Ising model in zero field. Each
coupling is assigned according to the probability distri-
bution P (J) = 0.7δJ,1 + 0.3δJ,0. The reconstruction as-
sumes Hi = 0, but no knowledge of J . We generated the
pair-correlation matrix from independent Monte Carlo
measures. Sampling errors limit all methods for small
β. When β is large enough the error of the method ex-
ceeds the sampling one. A β interval exists in which
the new methods improve over standard ones. The tri-
angular Plaquette approximation improves over Bethe,
despite the absense of triangles in the model (the short-
est loop is of length 4). For larger β the model under-
goes a rapid growth in correlation length, far beyond the
edge/triangular regions selected, all mean-field methods
are prone to significant errors.

Conclusion

We propose a minimal modification to the mean-field
free energy functional in order to make max-entropy es-
timates of correlations consistent with LR ones, in other
words the Hessian consistent with the location of its min-
imum.

More detailed calculations for the significant results of

this letter are available [18, 22].

This work is supported by the Italian Research Minis-
ter through the FIRB Project No. RBFR086NN1XYZ .
We extend thanks Aurelien Decelle for useful discussions.
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The Bethe approximation for solving the inverse Ising problem

for the BA, thus leading to

JTAP
ij =

⌃
1 � 8mimj(C�1)ij � 1

4mimj
, (33)

JBA
ij = �atanh

⇤
1

2(C�1)ij

⌥
1 + 4(1 � m2

i )(1 � m2
j)(C

�1)2
ij � mimj

� 1

2(C�1)ij

��⌥
1 + 4(1 � m2

i )(1 � m2
j)(C

�1)2
ij � 2mimj(C�1)ij

⇥2

� 4(C�1)2
ij

⌅
. (34)

The fourth approximation that I am considering has been obtained from a small correlation
expansion by Sessak and Monasson [16] and has been further simplified in [27] to the
following expression

JSM
ij = �(C�1)ij + J IP

ij � Cij

(1 � m2
i )(1 � m2

j) � (Cij)2
. (35)

For each approximation, I measure the error in inferred couplings J ⇥
ij with respect to

the true ones Jij by using the following expression:

�J =

 ⇧
i<j(J

⇥
ij � Jij)2

⇧
i<j J2

ij

. (36)

I study both the diluted ferromagnetic model with a fraction p of non-zero couplings
(Jij = �) and undiluted spin glass models (Jij = ±� with probability 1/2). I also consider
several topologies: 2D square lattices, 3D cubic lattices, random regular graphs with
fixed degree c = 4 and fully connected (FC) graphs. In the latter case the couplings are
normalized in order to have a phase transition at �c = 1 in the thermodynamic limit. I
restrict the study to models of small sizes, with N ranging between 20 and 100, because
these are the sizes for problems of biological interest. Moreover, as discussed below, the
number M of independent measurements of the correlation matrix that make inferred
coupling reasonably good grows linearly with N , and so for larger systems the number of
measurements needed becomes too large. The data shown in section 5 have been obtained
with M = 106 independent measures of the correlation matrix (unless stated otherwise)
and going to much larger values seems to me rather unrealistic as compared with practical
applications.

4.1. The normalization trick for the inverse Ising problem

The trick of normalizing the correlation matrix to improve inference (see section 3) can
be extended to the inverse Ising problem. In practice, it corresponds to solving all the
equations relating the inverse correlation matrix C�1 to the couplings Jij, including also
those for the diagonal elements which are usually ignored.

Let me illustrate the new method for the simple case of the TAP approximation with
null magnetizations. In this case, solving the inverse Ising problem only on the o⇥-diagonal
elements is equivalent to solving the equations

(C�1)ij = �Jij ⇥ Dij ⌅(i ⇤= j),

doi:10.1088/1742-5468/2012/08/P08015 13
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• 2D spin glass in a random field
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Median MAD Cij: max(|∆(1)|)

Median MAD χij: max(|∆(2)|)

Figure 5: L = 4 Wainwright-Jordan set-up: The error in the marginals, and connected
correlations (which together provide a sufficient description of pair probabilities) are im-
proved everywhere by adding constraints - so long as the method converges. As discussed,
the MAD for Cij is worse than for χij , although they are becoming comparable at full scale.

that reported in [Opper et al. (2009)]; where the strongest method (tree-EP) also improves
the MAD result for marginals by approximately one order of magnitude.

The loopy BP implementation follows the same procedure of Appendix B, as the con-
strained cases – with the difference that the inner most do while loop is always convergent
on one iteration. Using a double loop procedure we might force convergence to a minima
of the Bethe approximation, but it seems fair to compare the procedures directly in this
manner. The failure of the constrained methods is in practice due to a time-out in the λ
update loop. Figure 7 indicates why the iterative update is failing: some values of λ are
becoming large and perhaps diverging. As λ departs from zero, feedback in the message
passing increases, so it is not surprising the iterative scheme breaks down; furthermore,
some λ do appear to diverge at finite T , which indicates the non-continuity of the solution,
and probably the absence of any fixed points beyond some critical scaling T ∗. As discussed
in Appendix A, it is possible to build and prove the absence of solutions for specially crafted
grapical models, and λ(T ) does diverge approaching these points.

4.2 The alarm network

The alarm net is shown in figure 1 is a standard toy model that has been studied in the
context of loop correction algorithms and is available in libDAI repository [Mooij et al.
(2007); Mooij (2010)]. The model involves a mixture of factor types and variables.

Two constraint regimes were applied: in the first all pure-diagonal constraints were
applied: {(i, q), (i, q) : ∀, i, q}, and in the second all block diagonal constraints were applied
{(i, q1), (i, q2) : ∀, i, q1, q2}. The ability of both methods to improve local statistics were
comparable and modest; for both the local on-diagonal and off-diagonal statistics as shown
in figure 8. Other schemes such as tree-EP and LCBP have been show improvements of
one or two orders of magnitude on this problem [Mooij et al. (2007); Opper et al. (2009)].
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Figure 6: L = 7 Wainwright-Jordan set up. By comparison with the smaller system in
figure 6, all regimes are failing to reach the full scale. The method which is stable to lowest
temperature is the model with diagonal constraints only.
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Figure 7: Evolution of λ with variation of T for two cases typical of L = 4. Two regimes
are apparent for the small systems, where we expect regime one to be dominated moving
to larger L. To determine which regime prevails consider the self consistency errors for
on-diagonal connected correlations (inset), on the left it is increasing, whereas on the right
it has a peak. In both cases, the on and off diagonal method is breaking down when
the susceptibility becomes large, and this is because of divergence in some λ.(left) The
variables do not become strongly biased, and frustration dominates; for large enough T
all approximations break down, this scenario is typical of larger L. (right) Depite the
frustration, the variables become strongly biased at low temperature so that the Bethe
approximation succeeds even for large 1/T ; there is a maximum error at an intermediate
value of T , this scenario is common for small L and unfrustrated systems.
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Ergodicity breaking & MFA

• Estimate model parameters in a phase with many states



• Pseudo-likelihood based methods are rather 
insensitive to ergodicity breaking (see Aurelien’s talk)



• However also MFA can be used if data are properly 
clustered



• Each cluster of data returns comparable estimates for 
couplings and fields



Ergodicity breaking & MFA
A. Decelle et al.
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Fig. 1: Inference of couplings in the CW model with N = 100
and two di↵erent values of the number M of input configura-
tions. We see that the nMF method with all the input data
is good only for � < �c = 1. For � > �c the phase space
separates in 2 states and the nMF method with 2 clusters give
much better performance (although it fails badly at high tem-
perature). Inference methods, like PLM and nMF with density
clustering, that take correctly into account the clustering of in-
put configurations provide the best estimate in the entire tem-
perature range, both above and below the transition tempera-
ture. In the left inset, we show how the inferred magnetic field
at � = 1.6 decreases when increasing the number of samples
(M 2 [103, 106]) used for the inference process via nMF with
K-means clustering and K = 2. In the right inset the same
inferred magnetic field is plotted versus �, for M = 104, 105.

and hi, but in the ferromagnetic phase, only the solution
with non-zero magnetization of the eq. (5) should be con-
sidered (as discussed in the Introduction). We evaluate
now how the following three inference algorithm perform
in the estimate of couplings in the CW model: (i) the
nMF method used naively, without clustering the config-
urations; (ii) the nMF method on configurations clustered
using two clusters; (iii) the PLM on the original configu-
rations.

In Fig. 1 we report the error achieved by di↵erent meth-
ods in the temperature range � 2 [0.1, 2] with M = 104

and M = 105 in inferring the couplings using the following
definition

✏2 =
2

N(N � 1)

X

i<j

�
Jij � J⇤

ij

�2
(14)

For � < �c the paramagnetic fixed point is correct
and therefore the reconstruction achieve by nMF is the
best possible. However, for � > �c the nMF error (red
curves) suddenly raises, because the mi = 0 fixed point
is no longer the physical one. On the contrary, using the
nMF method on the data clustered with exactly 2 clusters
(green curves), provides a small error in the ferromagnetic
phase, but fails badly in the paramagnetic phase. The
inference methods that provide the best estimate in the

whole temperature range are the PLM (blue curves) and
the nMF with data clustered via density clustering (purple
curve), that automatically split the input data in one or
two clusters, depending on symmetries in the input data.
It is worth stressing that these two methods have essen-
tially the same error at any temperature: that is even the
nMF approximation provides the best possible estimates
if applied to properly clustered data.

In Fig. 1 we show results obtained with M = 104 and
M = 105 in order to make evident whether the uncertain-
ties in the couplings estimates are due to the noise in the
input data or to an intrinsic limitation of the inference al-
gorithm. For example deep in the ferromagnetic phase the
nMF method has an error decreasing only slightly when
M increases, because the error is mainly due to a limita-
tion of the method. On the contrary, PLM and nMF with
properly clustered data provide a result whose uncertainty
is mainly due to noise in the input data: indeed the error
decreases as 1/

p
M .

To confirm the correctness of the inference algorithm
based on data clustering and nMF equations, we also
looked a the inferred value of the magnetic field by us-
ing eqs. (8) and (13). We see clearly in the insets of Fig. 1
that, in the low temperature phase, the clustering+nMF
method does not predict any anomalously large magnetic
field, thanks to the fact that, clustering the input data,
we are actually using the magnetized solutions of eq. (8).
In our numerical experiments, we have found too large in-
ferred magnetic fields only if either system size was too
small or the input data were too noisy: in the former case
the problem resides in the fact eq. (8) is crudely approxi-
mate, while in the latter case it is a consequence of large
errors in couplings reconstruction.

Results on the Hopfield model. – We now extend
our analysis to a more complicated case by considering
the Hopfield model. The Hopfield model has been intro-
duced long time ago [22] to model neural networks: it
is a fully-connected Ising model, whose couplings can be
chosen such that the model free-energy has 2P di↵erent
minima (that act has attractors for the pattern recovery
dynamics). In some sense, the Hopfield model can be seen
as a generalization of the Curie-Weiss model, which is in-
deed equivalent to the P = 1 case. We are interested in
studying the inverse Ising problem in the Hopfield model,
because configurations sampled at low temperature in the
Hopfield model are typically clustered around the 2P free-
energy minima: consequently naive MF methods face even
more severe limitations than in the low temperature phase
of the CW model, and we want to study how much MF
methods for the inverse Ising problem can be improved by
clustering input configurations.

The Hamiltonian of the Hopfield model reads

H(s) = � 1

N

X

ij

1

P

PX

↵=1

⇠↵i ⇠
↵
j sisj , (15)

where the P patterns ⇠↵ identify the directions of the free-

p-4
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Hopfield model P=3 (6 minima)
A. Decelle et al.
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Fig. 3: Errors on inferring couplings in the Hopfield model with
3 patterns (and thus 6 minima). We observe again that our
algorithm, based on MF methods applied to clustered data,
achieves its best performance when input data are split in
6 clusters. We also put for comparison the results obtained
when the clustering is done many times with di↵erent initial
conditions (label ‘many IC’) and then we picked the clustering
having the largest likelihood. In this case, the error matches
the error obtained when putting each configuration in the cor-
rect cluster. We can see that our method performs its best at
almost any � value, but at few points where it is particularly
di�cult to find the best clustering. In the inset we see that
likelihood maximization suggests to use 1 cluster for � < �c

and 6 clusters for � > �c.

robust result, it is impracticable when the number of sam-
ples is very high (however we are aware that the authors
of Ref. [21] are developing a faster version of the density
clustering algorithm). In practice, we observe it is better
to use PLM when the number M of input configurations is
small and nMF withK-means clustering whenM becomes
large.

Conclusions. – In this work we have presented a very
simple way to make mean field approximations to the in-
verse Ising problem e↵ective also in the low temperature
phase, where symmetries get usually broken and, corre-
spondingly, input data get clustered. The idea is to cluster
the input data and to apply mean-field methods to each
data cluster. We have tested this clustering+nMF algo-
rithm on the Curie-Weiss and Hopfield models, comparing
results with the most sophisticated and state-of-the-art
pseudo-likelihood method.

Results are very promising and redeem mean-field ap-
proximations to inverse problems, even in those cases
where the structure of the input data is such that a
straightforward application of mean-field methods would
be ine↵ective.

The natural follow-up to this work is application of clus-
tering+nMF methods to inverse problems based on real
data. It is worth remembering that often in solving inverse
problems based on real and noisy data, the robustness of

simple MF methods is more valuable than the putative
higher accuracy of more sophisticated methods: see e.g.
the case of inferring protein contacts [6]. From this point
of view, enlarging the range of applicability of MF meth-
ods by data clustering is certainly very useful and maybe
better than developing higher order approximations (that
strongly depends on the model used to describe the data).
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Ergodicity breaking & MFA

• The problem of estimating marginals is much harder in 
presence of ergodicity breaking



• What happens when we use MFA in a disordered model 
with many states? (relevant for multimodal models)



• On random graphs: replica symmetry breaking (RSB) and 
Survey Propagation with Parisi parameter m 
a.k.a. SP(m) is ok to describe 1RSB solutions  
With a little effort one can obtain 2RSB solutions…



• On finite dimensional lattices our understanding is still 
very limited :-(



CVM on finite dimensional spin glasses

• Edwards-Anderson (EA) model in d=2 with symmetric 
couplings (           ) is the most difficult situation



• For d=2 the EA model has no phase transition (in the 
thermodynamical limit!) but low temperature physics is 
still dominated by many different local minima in the 
free-energy



• Algorithms to optimize CVM free-energy:  
- BP  
- plaquette GBP (parent-to-child), HAK (2-ways)  
- Double loop  
- MPA on the dual lattice (m=0)

Jij = ±1
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FIG. 1. Schematic representation of belief equations (6).
Lagrange multipliers are depicted as arrows, going from parent
regions to child regions.

In Eq. (6), the ZR are normalization constants, and
the terms EP (σP ) = EP (si,sj ,sk,sl) = −(Jij sisj + Jjksj sk +
Jklsksk + Jlislsi) and EL(σL) = EL(si,sj ) = −Jij sisj are the
corresponding energies in plaquettes and links; they are
represented in Fig. 1 by bold lines (interactions) between
circles (spins). In our case Ei(si) is zero since no external
field is acting on the spins.

The Lagrange multipliers are fixed by the constraints they
were supposed to enforce, Eq. (5), and they must satisfy the
following set of self-consistency equations:

exp[−µL→i(si)]

=
∑

sj

exp

⎡

⎢⎣ − βEL\i(si,sj ) −
2∑

P⊃L

νP→L(si,sj )

−
3∑

L′⊃j

L′ ̸=L

µL′→j (sj )

⎤

⎥⎦,

exp[−νP→L(si,sj ) − µD→i(si) − µU→j (sj )]

=
∑

sk,sl

exp

⎡

⎢⎣−βEP\L(si,sj ,sk,sl) −
3∑

L′∈P
L′ ̸=L

1∑

P ′⊃L′

P ′ ̸=P

νP ′→L′(σL′)

−
2∑

L′⊃k
L′ ̸⊂P

µL′→k(sk) −
2∑

L′⊃l
L′ ̸⊂P

µL′→l(sl)

⎤

⎥⎦. (7)

Again, to help in understanding these equations, we provide
in Fig. 2 their graphical representation. Note that there is
one of these equations for every pair link-site and every pair
plaquette-link in the graph. With EP\L we refer to interactions
in plaquette P that are not in link L.

For each link L in the 2D lattice, there are two link-to-site
multipliers µL→i(si) and µL→j (sj ). For each plaquette there
are four plaquette-to-link multipliers νP→L(si,sj ), correspond-
ing to the four links contained inside the plaquette. Let N be
the number of spins in the lattice; there are 2N links and N
plaquettes. So the originally intractable problem of computing
marginals, has been replaced by the problem of solving a
set of 4N + 4N coupled equations for Lagrange multipliers
like those in Eq. (7). Once these equations are solved, the
approximation for the marginals is obtained from Eq. (6) for
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FIG. 2. Message-passing equations (7), shown schematically.
Messages are depicted as arrows, going from parent regions to
child regions. On any link Jij , represented as bold lines between
spins (circles), a Boltzmann factor eβJij si sj exists. Dark circles
represent spins to be traced over. Messages from plaquettes to links,
νP→L(si ,sj ), are represented by a triple arrow, because they can be
written in terms of three parameters U , ui , and uj , defining the
correlation ⟨sisj ⟩ and magnetizations ⟨si⟩ and ⟨sj ⟩, respectively.

the beliefs, and all thermodynamic quantities are derived from
them as in Eq. (4).

Minimization of a region graph approximation to the free
energy, like that in Eq. (4) with constraints Eq. (5), or
equivalently solution of the set of self-consistent equations
in Eq. (7), is still a nontrivial task. Let us consider two ways
of doing it. The first method is the “direct” minimization of
the constrained free energy, using a double-loop algorithm [7].
This method is quite solid, since it guarantees convergence to
an extremal point of the constrained free energy, but it may be
very slow to converge. The second method, which is generally
faster but is not guaranteed to converge, is the family of the
so called message-passing algorithms, in which the Lagrange
multipliers are interpreted as messages νP→L(σL) going from
plaquettes to links, and messages µL→i(si) from links to sites.
The self-consistency equations (7) can be viewed as the update
rules for the messages in the left hand side, in terms of those in
the right hand side. A random order updating of the messages in
the graph by Eq. (7) (message passing) can reach a fixed point
solution, and therefore an extremal point of the constrained free
energy [5]. Next, we show explicitly what the message-passing
equations look like in terms of fields.

A. From multipliers to fields

A particularly useful way of representing the multipliers
(messages), with a nice physical interpretation, is the one used
in [10], which we adopt here. In full generality [10,11], these
multipliers can be written in terms of effective fields:

−µL→i(si) = β uL→i si , (8)

−νP→L(si,sj ) = β (UP→L si sj + uP→i si + uP→j sj ). (9)

In particular, the field u corresponds to the cavity field in
the Bethe approximation [5]. Use of Lagrange multipliers,
messages, or fields is essentially equivalent. We will often refer
to fields as u messages to emphasize their role in a message-
passing algorithm, and we will refer to the self-consistency
equations (7) as the message-passing equations.

This parametrization of the multipliers has proved useful
to other endeavors, like the extension of the replica theory
to general region graph approximations [11]. Here, all the
relevant information in the Lagrange multipliers is translated
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In Eq. (6), the ZR are normalization constants, and
the terms EP (σP ) = EP (si,sj ,sk,sl) = −(Jij sisj + Jjksj sk +
Jklsksk + Jlislsi) and EL(σL) = EL(si,sj ) = −Jij sisj are the
corresponding energies in plaquettes and links; they are
represented in Fig. 1 by bold lines (interactions) between
circles (spins). In our case Ei(si) is zero since no external
field is acting on the spins.

The Lagrange multipliers are fixed by the constraints they
were supposed to enforce, Eq. (5), and they must satisfy the
following set of self-consistency equations:

exp[−µL→i(si)]

=
∑

sj

exp

⎡

⎢⎣ − βEL\i(si,sj ) −
2∑

P⊃L

νP→L(si,sj )

−
3∑

L′⊃j

L′ ̸=L

µL′→j (sj )

⎤

⎥⎦,

exp[−νP→L(si,sj ) − µD→i(si) − µU→j (sj )]

=
∑

sk,sl

exp

⎡

⎢⎣−βEP\L(si,sj ,sk,sl) −
3∑

L′∈P
L′ ̸=L

1∑

P ′⊃L′

P ′ ̸=P

νP ′→L′(σL′)

−
2∑

L′⊃k
L′ ̸⊂P

µL′→k(sk) −
2∑

L′⊃l
L′ ̸⊂P

µL′→l(sl)

⎤

⎥⎦. (7)

Again, to help in understanding these equations, we provide
in Fig. 2 their graphical representation. Note that there is
one of these equations for every pair link-site and every pair
plaquette-link in the graph. With EP\L we refer to interactions
in plaquette P that are not in link L.

For each link L in the 2D lattice, there are two link-to-site
multipliers µL→i(si) and µL→j (sj ). For each plaquette there
are four plaquette-to-link multipliers νP→L(si,sj ), correspond-
ing to the four links contained inside the plaquette. Let N be
the number of spins in the lattice; there are 2N links and N
plaquettes. So the originally intractable problem of computing
marginals, has been replaced by the problem of solving a
set of 4N + 4N coupled equations for Lagrange multipliers
like those in Eq. (7). Once these equations are solved, the
approximation for the marginals is obtained from Eq. (6) for
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FIG. 2. Message-passing equations (7), shown schematically.
Messages are depicted as arrows, going from parent regions to
child regions. On any link Jij , represented as bold lines between
spins (circles), a Boltzmann factor eβJij si sj exists. Dark circles
represent spins to be traced over. Messages from plaquettes to links,
νP→L(si ,sj ), are represented by a triple arrow, because they can be
written in terms of three parameters U , ui , and uj , defining the
correlation ⟨sisj ⟩ and magnetizations ⟨si⟩ and ⟨sj ⟩, respectively.

the beliefs, and all thermodynamic quantities are derived from
them as in Eq. (4).

Minimization of a region graph approximation to the free
energy, like that in Eq. (4) with constraints Eq. (5), or
equivalently solution of the set of self-consistent equations
in Eq. (7), is still a nontrivial task. Let us consider two ways
of doing it. The first method is the “direct” minimization of
the constrained free energy, using a double-loop algorithm [7].
This method is quite solid, since it guarantees convergence to
an extremal point of the constrained free energy, but it may be
very slow to converge. The second method, which is generally
faster but is not guaranteed to converge, is the family of the
so called message-passing algorithms, in which the Lagrange
multipliers are interpreted as messages νP→L(σL) going from
plaquettes to links, and messages µL→i(si) from links to sites.
The self-consistency equations (7) can be viewed as the update
rules for the messages in the left hand side, in terms of those in
the right hand side. A random order updating of the messages in
the graph by Eq. (7) (message passing) can reach a fixed point
solution, and therefore an extremal point of the constrained free
energy [5]. Next, we show explicitly what the message-passing
equations look like in terms of fields.

A. From multipliers to fields

A particularly useful way of representing the multipliers
(messages), with a nice physical interpretation, is the one used
in [10], which we adopt here. In full generality [10,11], these
multipliers can be written in terms of effective fields:

−µL→i(si) = β uL→i si , (8)

−νP→L(si,sj ) = β (UP→L si sj + uP→i si + uP→j sj ). (9)

In particular, the field u corresponds to the cavity field in
the Bethe approximation [5]. Use of Lagrange multipliers,
messages, or fields is essentially equivalent. We will often refer
to fields as u messages to emphasize their role in a message-
passing algorithm, and we will refer to the self-consistency
equations (7) as the message-passing equations.

This parametrization of the multipliers has proved useful
to other endeavors, like the extension of the replica theory
to general region graph approximations [11]. Here, all the
relevant information in the Lagrange multipliers is translated
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a consequence of the correlations transmitted around the
plaquette. The belief equations (6) also simplify. Obviously

b(si) = 0.5 for every spin in the graph, and the link and
plaquette beliefs are

bL(si,sj ) = 1
ZL

eβ(UL→L+UP→L+Jij )si sj ,

(14)
bP (si,sj ,sk,sl) = 1

ZP
eβ(UL→L+Jij )si sj +β(UU→U +Jjk )sj sk+β(UR→R+Jkl )sksl+β(UD→D+Jli )sl si .

As already mentioned in Sec. II, the entropy in Eq. (4) is always
approximated. The quality of the estimates obtained for the
marginals will depend on the quality of this approximation.
The bigger the correlation length in the system, the more
inaccurate the entropy will be. Therefore, at low temperatures
(even in a paramagnetic phase) the minimization of the
approximated free energy will give worse estimates for the
marginals.

The dual algorithm we are proposing to study the param-
agnetic phase of the EA model is a standard message-passing
algorithm for the U messages, which works as follows.

(1) Start with all U messages null
(2) repeat
(3) Choose randomly one plaquette P and one of its

child links L
(4) Update the field UP→L according to Eq. (13) as in

Fig. 3
(5) until The last change for any U message is less than ϵ

(we use typically ϵ = 10−10)
(6) return The beliefs bL(si,sj ) defined in Eq. (14) for every

pair of neighboring spins
Some damping factor γ ∈ [0,1) can be added in the

update step UP→L = γUP→L + (1 − γ )Û in order to help
convergence.

A. Mapping to the dual model

It is worth noticing that Eq. (13) is nothing but the BP
equation for the corresponding dual model (hence the name
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FIG. 3. Message passing of correlation messages in the dual
approximation. In the right hand side the trace is taken over the
black spins.

of the algorithm). The dual model has a binary variable
xij ≡ sisj on every link of the original model, and the original
coupling constants play now the role of an external polarizing
(eventually random) field

Hdual(x⃗) = −
∑

⟨i,j⟩
Jij xij .

This Hamiltonian looks like the sum of independent variables,
but this is not the case. The dual variables xij = ±1 must
satisfy a constraint for each cycle (or closed path) in the
original graph, enforcing that their product along the cycle
must be equal to 1. On a regular lattice any closed path
can be expressed in terms of elementary cycles of four links
(the plaquettes) and so it is enough to enforce the constraint
on every plaquette: xij xjkxklxli = 1. The Gibbs-Boltzmann
probability distribution for the dual model is then given by

P (x⃗) = 1
Z

e−βHdual(x⃗)
∏

⟨i,j,k,l⟩
δxij xjkxklxli , 1, (15)

where the product runs over all elementary plaquettes.
The model described by the probability measure in Eq. (15)

can be viewed as a constraint satisfaction problem with a
nonuniform prior (given by e−βHdual(x⃗)). It is straightforward to
derive the BP equations for such a problem. Indeed by defining
the marginal for the variable xij on link L in the presence of the
only neighboring plaquette P as (1 + xij tanh βUP→L)/2 ∝
exp(βUP→Lxij ), the BP equations read

1
2

(1 + xij tanh βUP→L)

∝
∑

xjk,xkl ,xli

eβUU→U xjk eβJjkxjk eβUR→Rxkl eβJklxkl eβUD→Dxli eβJlixli

× δxjkxklxli , xij

∝
∑

xjk,xkl ,xli :
xjkxklxli=xij

[1 + xjk tanh β(UU→U + Jjk)][1 + xkl tanh β

× (UR→R + Jkl)][1 + xli tanh β(UD→D + Jli)]

= 1 + xij tanh β(UU→U + Jjk) tanh β(UR→R + Jkl)

× tanh β(UD→D + Jli). (16)

In the second summation the terms containing one or two x
variables sum to zero, while the other two terms are those
written in the last expression. Equating the first and the last
expressions, this equation is manifestly equal to Eq. (13).
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MPA convergence on 2d spin glasses

• Double loop, HAK and MPA on the dual converge at any 
temperature



• BP and GBP only for high enough temperatures
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B. Average case solution

GBPs in general, and the dual approximation in particular,
are methods for the study of the thermodynamic properties of
a given problem. However, in the limit of large systems (N →
∞, the thermodynamic limit), we expect a typical behavior to
arise in some observables. This is the so called self-averaging
property of disordered systems. By “typical” we mean that
almost every realization of the interactions Jij will result in a
system whose thermodynamic properties (free energy, energy,
entropy) are very close to the average values.

Normally, in disordered systems, we cope with the N → ∞
limit and with the average over the random Jij by the replica
method. The application of the replica trick to region graph
approximations is a challenging task [11]. However, we can
still grasp the average case behavior with a cavity average case
solution of the dual message-passing equations, at the price of
neglecting the local structure of the graph (beyond plaquettes).

The idea is to represent the set of U messages flowing in
any given graph, by a population of messages Q(U ). Then the
message-passing Eq. (13) is used to obtain such population in
a self-consistent way. More precisely, in every iteration three
messages U1,U2,U3 are randomly drawn from the population
Q(U ) and a new message U0 = Û (U1,U2,U3) is computed by
Eq. (13) using three couplings randomly selected from P (J ).
The obtained message U0 is put back into the population,
and the iteration is repeated many times, until the population
stabilizes.

Once we have the self-consistent population of messages,
we can compute the average energy

Eav = ⟨−Jij tanh β(Jij + U1 + U2)⟩Q(U1),Q(U2),P (Jij ) (17)

by a random sampling of the population and of the interactions.
The average case solution is supposed to be very good
whenever the network of interactions has no or few short loops.
This is not the case in any finite-dimensional lattice, since there
the short loops (plaquettes) are abundant. Nonetheless, the
average case solution gives a reasonably good approximation
to the single-instance results in 2D and 3D, as shown in the
next section.

IV. RESULTS ON THE 2D EDWARDS-ANDERSON MODEL

Message-passing algorithms work fine in the high-
temperature regime (T > Tc) of models defined on random
topologies: this is the reason why these methods have been
successfully applied in random constraint satisfaction prob-
lems, like random satisfiability or random coloring [16–19].
However, when used on regular finite-dimensional lattices,
they can experience difficulties even in the paramagnetic
phase, because the presence of short loops spoils message-
passing convergence.

It is well known [20,21] that on a random graph of
fixed degree (connectivity) c = 4 the cavity approximation
gives a paramagnetic result above TBethe ≃ 1.52 (i.e., βBethe ≃
0.66) with all cavity fields ui = 0. Below the Bethe critical
temperature, this solution becomes unstable to perturbations,
and we expect many solutions to appear with nontrivial
messages ui ̸= 0. The presence of many solutions in the
message-passing equations is connected to the existence of
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FIG. 4. Convergence probability of BP (Bethe approximation)
and GBP on a 2D square lattice, as a function of inverse temperature.
Data points are averages over 100 systems with random bimodal
interactions. System sizes are N = L2 with L = 32,128 and a
damping factor γ = 0.5 has been used in the iteration of the message-
passing equations. The Bethe spin glass transition is expected to
occur at βBethe ≃ 0.66 (TBethe ≃ 1.52) for a random graph with the
same connectivity as the 2D square lattice. Notably, that temperature
also marks the convergence threshold for BP equations in the 2D
square lattice. GBP, on the contrary, reaches lower temperatures, but
eventually stops converging.

many thermodynamic states in the Gibbs-Boltzmann measure,
or, equivalently, to the presence of replica symmetry breaking.
The appearance of such a spin glass phase is also responsible
for the lack of convergence of message-passing equations,
since the intrinsic locality of the message-passing equations
fails to coordinate distant regions of the graph (which are now
long-range correlated). As a consequence, the application of
BP to the 2D EA model (which also has fixed degree c = 4) still
finds the paramagnetic phase at high temperatures, but below
TBethe, the Bethe instability takes the message-passing iteration
away from the u = 0 solution and does not allow the messages
to converge to a fixed point (i.e., the algorithm wanders
forever). In Fig. 4 we show the convergence probability for
the BP message-passing equations in the 2D EA model.

On the other hand, a straightforward GBP parent-to-child
implementation does not fully overcome this problem. At
high temperatures, the parent-to-child equations converge to
a paramagnetic solution with all u = 0 and nontrivial U ̸= 0,
which turns out to be the same solution found by our dual
algorithm. When the temperature decreases, the convergence
properties of the algorithm worsen and are sensitive to tricks
like damping and bounding in the fields. A thorough discussion
of these properties is left for future work, but let us summarize:
typically the algorithm stops converging at low temperatures,
somewhere below TBethe, as shown in Fig. 4.

So, in general, BP and GBP equations are not simple to
use in finite-dimensional systems at low enough temperatures:
this warning was already reported in Refs. [7,8,22]. Indeed a
different method for extremizing the constrained free energy
named the double-loop algorithm [6,7] was developed to
overcome such difficulties. As mentioned earlier, the double
loop guarantees convergence of the beliefs, on any topology,
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with or without short loops. Given the convergence problems
in GBP, researchers typically resort to double-loop algorithms
to extremize region graph approximations to the free energy,
below the Bethe critical temperature.

In order to make a fair comparison with our dual algorithm,
we have used an optimized code for GBP and double-loop al-
gorithms: the open source LIBDAI library written in C++ [23].

The first interesting result of our work is that our dual
algorithm converges at all temperatures, just as the double-loop
algorithm does. The reason why it converges is that there are
no u messages, so the Bethe instability does not affect our
message-passing iteration.

The second relevant result of our dual algorithm is the
fact that it finds the same solution found by the double-
loop algorithm at all temperatures. In other words, the
direct extremization of the region graph approximation to
the free energy Eq. (4) via a double-loop algorithm finds a
paramagnetic solution characterized by the beliefs bi(si) = 0.5
and bL(si,sj ) = 1

z
e−βJ̃ij si sj ; and the effective interactions J̃ij

found by the double-loop algorithm are exactly equal to those
found with our dual algorithm, J̃ij = Jij + UP→L + UL→L.
This means that beliefs and correlations found by the two
algorithms are identical: ⟨sisj ⟩double loop = ⟨sisj ⟩dual.

The third result is that the running times of our dual
algorithm are nearly four orders of magnitude smaller than
those required by the double-loop implementation in LIBDAI,
at least in a wide range of temperatures (see Fig. 5). More
precisely, the convergence time of the dual algorithm grows
exponentially with β = 1/T , but still, in the relevant range of
temperatures where the region graph approximation is a good
approximation (not too low temperatures), the running time is
always roughly a factor of 104 smaller than that for the double
loop.
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FIG. 5. Running times of the double-loop algorithm [7,23]
(LIBDAI) and the dual algorithm averaged over ten realizations of
a 2D 8 × 8 EA model with Gaussian interactions. Generally the
double-loop algorithm requires a time four orders of magnitude
larger than that used by the dual algorithm. Three different precision
goals were used for the dual algorithm, 10−5,10−10,10−15, while the
precision of the double-loop algorithm is 10−9. The inset shows the
behavior of the running times for both algorithms versus the system
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√
N . The growth is linear in N , as expected.
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A. Dual approximation vs Monte Carlo simulations

The fact that our dual algorithm provides the same results
(and much faster) than the double-loop algorithm is good
news. Essentially it is telling us that we are not losing
anything by restricting the space of possible messages, as far
as the region graph approximation is concerned. However, the
ultimate comparison for the approximation has to be done
with the exact marginals and correlations. In Fig. 6 we show
a comparison between the exact correlations Cij,PT = ⟨sisj ⟩PT
of neighboring spins obtained with a parallel tempering (PT)
Monte Carlo simulation, and the dual approximation estimate
for the same two-spin correlations Cij,dual = ⟨sisj ⟩dual. The
agreement between Cij,PT and Cij,dual is essentially perfect at
high temperatures, and it becomes weaker as the temperature
is decreased. The reason for the discrepancies is obviously the
fact that we are using an approximation in which the collective
behavior of spins is accounted for exactly only until the pla-
quette level; more distant correlations are approximated, and
these correlations become more important at low temperatures.
In particular, the correlation length of the 2D EA at β = 2.0
is already above 10 [15], and therefore the local inference
method performs poorly.

However, the average mean error between the correlations
inferred from the dual algorithm and those obtained by Monte
Carlo (PT) simulation decreases with increasing system size at
any fixed temperature. In Fig. 7 the two-point and four-point
correlation errors, defined as

#2 =
√∑

⟨i,j⟩(Cij,PT − Cij,dual)2

∑
⟨i,j⟩ C

2
ij,PT

,

(18)

#4 =
√∑

⟨i,j,k,l⟩(Cijkl,PT − Cijkl,dual)2

∑
⟨i,j,k,l⟩ C

2
ijkl,PT

,
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with or without short loops. Given the convergence problems
in GBP, researchers typically resort to double-loop algorithms
to extremize region graph approximations to the free energy,
below the Bethe critical temperature.

In order to make a fair comparison with our dual algorithm,
we have used an optimized code for GBP and double-loop al-
gorithms: the open source LIBDAI library written in C++ [23].

The first interesting result of our work is that our dual
algorithm converges at all temperatures, just as the double-loop
algorithm does. The reason why it converges is that there are
no u messages, so the Bethe instability does not affect our
message-passing iteration.

The second relevant result of our dual algorithm is the
fact that it finds the same solution found by the double-
loop algorithm at all temperatures. In other words, the
direct extremization of the region graph approximation to
the free energy Eq. (4) via a double-loop algorithm finds a
paramagnetic solution characterized by the beliefs bi(si) = 0.5
and bL(si,sj ) = 1

z
e−βJ̃ij si sj ; and the effective interactions J̃ij

found by the double-loop algorithm are exactly equal to those
found with our dual algorithm, J̃ij = Jij + UP→L + UL→L.
This means that beliefs and correlations found by the two
algorithms are identical: ⟨sisj ⟩double loop = ⟨sisj ⟩dual.

The third result is that the running times of our dual
algorithm are nearly four orders of magnitude smaller than
those required by the double-loop implementation in LIBDAI,
at least in a wide range of temperatures (see Fig. 5). More
precisely, the convergence time of the dual algorithm grows
exponentially with β = 1/T , but still, in the relevant range of
temperatures where the region graph approximation is a good
approximation (not too low temperatures), the running time is
always roughly a factor of 104 smaller than that for the double
loop.
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FIG. 5. Running times of the double-loop algorithm [7,23]
(LIBDAI) and the dual algorithm averaged over ten realizations of
a 2D 8 × 8 EA model with Gaussian interactions. Generally the
double-loop algorithm requires a time four orders of magnitude
larger than that used by the dual algorithm. Three different precision
goals were used for the dual algorithm, 10−5,10−10,10−15, while the
precision of the double-loop algorithm is 10−9. The inset shows the
behavior of the running times for both algorithms versus the system
size L =

√
N . The growth is linear in N , as expected.
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FIG. 6. Comparison between the correlations ⟨sisj ⟩dual obtained
by the dual algorithm and the nearly exact correlations obtained
by a parallel tempering simulation. We used a 64 × 64 EA model
with Gaussian interactions. In the left lower plot the trivial inference
⟨sisj ⟩BP = tanh(βJi,j ) is also plotted for comparison purposes. Notice
that this is the correlation resulting from BP, when it converges to the
paramagnetic u = 0 solution. At each temperature the data correlation
coefficient ρ is reported.

A. Dual approximation vs Monte Carlo simulations

The fact that our dual algorithm provides the same results
(and much faster) than the double-loop algorithm is good
news. Essentially it is telling us that we are not losing
anything by restricting the space of possible messages, as far
as the region graph approximation is concerned. However, the
ultimate comparison for the approximation has to be done
with the exact marginals and correlations. In Fig. 6 we show
a comparison between the exact correlations Cij,PT = ⟨sisj ⟩PT
of neighboring spins obtained with a parallel tempering (PT)
Monte Carlo simulation, and the dual approximation estimate
for the same two-spin correlations Cij,dual = ⟨sisj ⟩dual. The
agreement between Cij,PT and Cij,dual is essentially perfect at
high temperatures, and it becomes weaker as the temperature
is decreased. The reason for the discrepancies is obviously the
fact that we are using an approximation in which the collective
behavior of spins is accounted for exactly only until the pla-
quette level; more distant correlations are approximated, and
these correlations become more important at low temperatures.
In particular, the correlation length of the 2D EA at β = 2.0
is already above 10 [15], and therefore the local inference
method performs poorly.

However, the average mean error between the correlations
inferred from the dual algorithm and those obtained by Monte
Carlo (PT) simulation decreases with increasing system size at
any fixed temperature. In Fig. 7 the two-point and four-point
correlation errors, defined as

#2 =
√∑

⟨i,j⟩(Cij,PT − Cij,dual)2

∑
⟨i,j⟩ C

2
ij,PT

,

(18)

#4 =
√∑

⟨i,j,k,l⟩(Cijkl,PT − Cijkl,dual)2

∑
⟨i,j,k,l⟩ C

2
ijkl,PT

,
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FIG. 7. Average errors !2 and !4 between the nearly exact two-
point and four-point correlations (obtained by MC calculation) and
their dual estimates. The average has been taken over ten Edwards-
Anderson samples of three different sizes and bimodal interactions.
The quality of the inference becomes worst as the temperature goes
down (higher β), but it improves for larger systems.

are shown as functions of the inverse temperature. The sum
goes over the pairs of first neighbors in the case of !2
and over the groups of four spins in a square plaquette for
!4. Four-point correlations appear to be slightly worse than
two-point correlations. For clarity in the plot, only the data
for the four-point correlation in a 162 system are plotted, but
the behavior is similar to that of the two-point correlations.
The inferred correlations worsen at lower temperatures but the
errors diminish with increasing system size.

Given the good correspondence between the correlations
under the dual approximation and the true correlations, we
expect a good estimate for the energy too. In Fig. 8 we show
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FIG. 8. Energy as a function of the inverse temperature β for
a 64 × 64 2D EA model, with both types of interaction, Gaussian
and bimodal. Full lines represent the exact thermodynamic energy
as obtained by a Monte Carlo simulation, points are the energies
obtained under the dual approximation, and dashed lines are the
average case energies.
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FIG. 9. Error !2 made by a Monte Carlo simulation (with parallel
tempering) for the estimation of first-neighbor correlations in a 2D EA
model of size 642. The Monte Carlo simulation is run for a time that is
1, 10, and 100 times the convergence time of the dual algorithm. The
error made by the dual approximation is also reported and is lower
in the whole range of temperatures analyzed, suggesting that the dual
approximation is a better choice when only an approximated result is
required in a short time for large systems.

with points the energy under the dual approximation and with
full lines the Monte Carlo exact energy: the data are indeed
very close. The dashed lines show the average case energy
for the dual approximation, Eq. (17). In spite of the fact that
the average case does not take into account the local structure
of the lattice, the average case energy is quite close to the
single-instance one.

Concluding this section on the comparison between the dual
algorithm and the Monte Carlo method (which is the standard
general purpose inference method), we emphasize that the
dual algorithm is not able to provide the exact answer, because
of the underlying approximation, even if run for a very long
time. However it is able to provide a very good approximate
result in a very short time. To quantify this statement, we
show in Fig. 9 the error !2 achieved by the Monte Carlo
method (using the parallel tempering algorithm) when run for
the same time required by the dual algorithm to converge:
the error achieved by the Monte Carlo simulation is at least
twice that obtained by the dual algorithm for any temperature
in the range considered, 0.5 ! T ! 1.4. Moreover, improving
the error !2 by running a longer Monte Carlo simulation is
not easy, since an increase of running times by a factor of 100
is required to obtain equivalent performances at least for high
temperatures (T " 1). So in all those cases where an approx-
imate inference is required in a very short time, the present
dual algorithm greatly outperforms the standard Monte Carlo
methods.

B. Ground state configuration in 2D

The good agreement between the correlations found by the
dual algorithm and those found in a Monte Carlo simulation,
for the 2D EA model, suggests that we should check whether
the inferred correlations can be used down to T = 0. More
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FIG. 11. Correlation between the ground state energy per spin obtained by the dual + freezing algorithm and by an exact method for
N = 16 × 16 (left) and N = 64 × 64 (right) systems. In each plot the top left points correspond to 100 bimodal systems Jij = ±1, while the
right bottom points correspond to 100 systems with Gaussian interactions. In both cases the dual + freezing algorithm finds a state close in
energy to the ground state. For bimodal interactions, the degeneracy of the ground state reduces the expected link overlap with the exact ground
state solution Prob(sdual

i sdual
j = sexact

i sexact
j ) = 86%. For Gaussian interactions, the ground state is not degenerate and therefore the average link

overlap is very high (94%). The line f (x) = x is shown to guide the eye. Kindly note that two set of axes are being used.

systems with bimodal interactions have degenerate ground
states; therefore solutions nearby in energy need not be too
close in the configuration space.

Even if the dual algorithm converges quite fast, the
decimation procedure used in this section requires running the
algorithm after every freezing of the dual variables, making
the dual + freezing algorithm quite slow compared to the
exact algorithms for the ground state. The performance of this
algorithm in more interesting cases, like the 3D EA model, is
left for future work.

V. GENERALIZATION TO OTHER DIMENSIONS

Let us now consider the region-graph-based approximation
to the free energy for a generic D-dimensional (hyper)cubic
lattice, using the same hierarchy of regions: square plaquettes,
links, and spins. After computation of the counting numbers
for a general D-dimensional lattice, see Eq. (3), the free energy
approximation becomes

βF =
∑

P

∑

σP

bP (σP ) ln
bP (σP )

exp[−βEP (σP )]
(plaquettes)

− (2D − 3)
∑

L

∑

σL

bL(σL) ln
bL(σL)

exp[−βEL(σL)]
(links)

+ (2D2 − 4D + 1)
∑

i

∑

si

bi(si)

× ln
bi(si)

exp[−βEi(si)]
(spins). (20)

Plaquettes are still the biggest regions considered and so
have counting number 1, but now each link is contained
in 2(D − 1) plaquettes, and each spin is in 2D links and

2D(D − 1) plaquettes. The message-passing equations for the
dual algorithm in D dimensions are then

UP→L = 1
β

arctanh

[

tanh β

(2(D−1)−1∑

i

UUi→U + JU

)

× tanh β

(2(D−1)−1∑

i

URi→R + JR

)

× tanh β

(2(D−1)−1∑

i

UDi→D + JD

) ]

, (21)

where Ui (Ri and Di) are the 2(D − 1) − 1 plaquettes
containing the link U (R and D) excluding plaquette P .

In the high-temperature phase, this dual approximation
with all u = 0 should still be a valid approach for any
dimensionality D. At low temperatures, however, the EA
model in more than two dimensions has a spin glass phase
transition and, therefore, we expect the dual approximation to
become poorer, as it cannot account for a very long correlation
length and a nontrivial order parameter.

By running the dual algorithm for the 3D EA model we have
found a divergence of U fields around β ≃ 0.39 for bimodal
couplings and around β ≃ 0.41 for Gaussian couplings. This
divergence is due to the fact the U fields get too strongly
self-reinforced under iteration. This divergence does not come
as a surprise, given that it happens also when one studies
the simpler pure ferromagnetic Ising model. However, in
the ferromagnetic model the temperature at which U fields
diverge is always below the critical temperature and so the
dual algorithm still provides a very good description of the
entire paramagnetic phase.

Unfortunately, in the 3D EA model the divergence of U
fields takes place well above the critical temperature (which is
Tc ≃ 1.12 for bimodal coupling and Tc ≃ 0.95 for Gaussian
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Figure 12. The free energy of the solutions found by the double loop algorithm,
the HAK and the GBP PTC algorithm relative to the free energy of the
paramagnetic solution (dual approximation), in a typical system in which GBP
PTC finds a spin glass solution. At high temperatures all three algorithms find the
same paramagnetic solution. Interestingly, there is a small range of temperatures
where the spin glass solution found by GBP is actually the one that minimizes
the free energy. However, at even lower temperatures the paramagnetic solution
becomes again the correct one. While double loop and HAK switch back to the
paramagnetic solution (even if at the wrong T ), the GBP PTC gets stuck in the
spin glass solution (and for this reason, it eventually stops converging).

be used as a warning that something wrong is happening with the CVM approximation,
something that it is impossible to understand by looking at the behavior of provably
convergent algorithms.

In figure 13 we compare the running times of double loop (LibDai [36]), HAK and
GBP PTC (our implementation) for the two systems of figure 12. As expected, double
loop is much slower than the message passing heuristics of HAK and GBP (please notice
the log scale in the time axis). The peaks in the running times correspond to the transition
points from the paramagnetic to the spin glass solution. Double loop and HAK have two
peaks, the second corresponding to the transition back to the paramagnetic solution, while
the GBP PTC has only the first peak.

7. Summary and conclusions

We studied the properties of the generalized belief propagation algorithm derived from
a cluster variational method approximation to the free energy of the Edwards–Anderson
model in 2D at the level of plaquettes. We compared the results obtained by parent-to-
child GBP with the ones obtained by the dual (paramagnetic) algorithm [26] and by the
HAK two-way algorithm [19] and the double loop provably convergent algorithm [19].
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Figure 13. Convergence time in seconds for the double loop algorithm
(full points) and standard message passing algorithms (empty points) for the
plaquette-GBP approximation in two different realizations of a 162 Edwards–
Anderson system. Message passing algorithms are typically faster, but not always
convergent. The first cusp is related to the appearance of the spin glass solution,
while the second cusp in the double loop algorithm is related to the switching
back to the paramagnetic solution (see figure 12).

We found that the plaquette-CVM approximation (using parent-to-child GBP) is far
richer than the Bethe (BP) approximation in the 2D EA model. BP converges only
at high temperatures (above TBethe = 1/βBethe = 1.51), and in such a case it treats
the system as a set of independent pairs of linked spins. GBP, on the other hand,
makes a better prediction of the paramagnetic behavior of the model at high T , since
it implements a message passing of correlation fields flowing from plaquettes to links in
the graph. Furthermore with GBP the paramagnetic phase is extended to temperatures
below TBethe = 1.51 until TSG = 1/βSG ≃ 1.27, where spin glass solutions appear in the
single instance implementation of the message passing algorithm. In contrast to the Bethe
approximation, GBP is able to find spin glass solutions, and the standard message passing
stops converging near Tconv ≃ 1.

The average case calculation of the stability of the paramagnetic solution in the CVM
approximation predicted that nonparamagnetic (spin glass) solutions should appear at
lower temperatures TCVM = 1/βCVM ≃ 0.82. This average case result does not coincide
with the single instance behavior of the standard GBP since it fails to mark both the
point where GBP starts finding spin glass solutions, TSG, and the point where GBP stops
converging, Tconv.

However, the nonconvergence of GBP is not a feature of the CVM approximation,
and is susceptible to changes from one implementation of the message passing to another.
We showed that by fixing a hidden gauge invariance in the message passing equation, a
simultaneous update of all cavity fields pointing to a single spin in the lattice improves the
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Fig. 1: (Colour on-line) For a 128 × 128 EA 2D system, the pattern of unfrustrated plaquettes (left panel, blue squares) gives
neither an obvious hint for the appearance of strongly magnetized regions (middle panel) nor the distinction of clusters (right
panel). In the clusters where the magnetization appears, there is a slightly higher concentration of non-frustrated plaquettes
(53% vs. 49% in the whole system).

Cluster variational method in Edwards-
Anderson 2D. – The celebrated Edwards-Anderson
model in statistical mechanics [15] is defined by a set
σ = {s1 . . . sN} of N Ising spins si = ±1 placed at the
nodes of a square lattice (in our case in two dimensions),
and random interactions Ji,j = ±1 at the edges, with a
Hamiltonian

H(σ) = −
∑

⟨i,j⟩

Ji,jsisj (1)

where ⟨i, j⟩ runs over all couples of neighboring spins.
The direct computation of the partition function Z,

or any marginal probability distribution like p(si, sj) =∑
σ\si,sj

P (σ), is unattainable in general, and therefore
approximations are required. Among all of them, we will
explore the CVM, a technique that includes mean-field
and Bethe approximations [16] as particular cases, and
was first derived by Kikuchi [17] for the homogeneous sys-
tem, and later extended to disordered models. In its mod-
ern presentation [6,12], it consists in replacing the exact
(Boltzmann-Gibbs) distribution P (σ), by a reduced set of
its (approximated) marginals {bR(σR)} over certain de-
grees of freedom grouped in regions. With this reduction,
the approximated free energy can be minimized in a nu-
merically treatable manner. The consistency between the
probability distributions of regions that share one or more
degrees of freedom, is forced by Lagrange multipliers [6].
The latter are connected by self-consistent relations, that
are solved by an iterative procedure, the so-called Gener-
alized Belief Propagation (GBP). In what follows we use
this approximation with the square plaquettes of the 2D
lattice as the largest set of marginals considered. We skip
the details and point the reader to [9] where the precise
form of these equations for the plaquette-CVM in EA 2D
can be found. Other approaches, similar in spirit, have
been followed in references [10,18–20].

Solutions of GBP. – When running GBP for the
plaquette-CVM approximation in EA 2D we find a para-
magnetic solution at high temperature, as expected. How-
ever, above βc ≃ 0.79 (below Tc ≃ 1.26) GBP finds,
not one, but many fixed points with non-zero local

magnetizations. Suggesting then, a transition from a para-
magnetic to a spin glass phase [10,21]. On the other hand
the use of a provably convergent method called Double
Loop [22] showed that [11], while having the same set of
fixed-point solutions as GBP, at low temperatures, in or-
der to keep converging the algorithm is set back to the
paramagnetic solution. Moreover, at still lower tempera-
tures (above βconv ≃ 1.2) [9], GBP stops converging. It
is this region of intermediate temperatures, where GBP
finds many non-trivial solutions that will concentrate our
attention on here.

Already in references [21] and [10] it was noted that the
non-paramagnetic solutions have inhomogeneous magneti-
zations, not only in their sign as expected in a disordered
system, but also in their spatial distribution: connected
clusters of magnetized spins are surrounded by a sea of
unmagnetized ones (see fig. 1).

Relation to Monte Carlo. – Though GBP solutions
are not thermodynamic states, we will show that Monte
Carlo dynamics remain most of the time near the GBP
solutions in the range of temperatures (βc − βconv), as
schematized in fig. 2.

One of the many possible systematic approaches (al-
though heuristic and non-exhaustive) to locate all GBP
solutions is divided in two steps: i) to identify the clusters
of connected and strongly magnetized spins, then ii) to
explore all possible combinations of orientations for those
clusters. Locating the clusters starts from a given non-
paramagnetic solution of GBP equations (the reference
GBP state) at the desired temperature. Then it iterates
the following procedure, starting from c = 1:

1) Leader spin: Take the most magnetized spin that does
not belong to a cluster already defined, call its mag-
netization mc.

2) Grow cluster : Starting with the neighbors of the
leader spin, add to cluster c all nearby spins that have
a magnetization with modulus greater than θ|mc|,
then iterate over the neighbors of the newly added
spins, and so on. Stop when the neighborhood of
the cluster has magnetizations smaller than θ|mc|.

57011-p2

�
�c ' 0.79 �

conv

' 1.2

m = 0 m 6= 0 non conv.
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Message passing and MC algorithms: Connecting fixed points with metastable states

GBP1 GBP2

GBP4GBP3

Fig. 2: (Colour on-line) Schematic representation of the Monte
Carlo dynamics in the configurational space. Most of the time
MC dynamics is in the vicinity of one GBP solution.

The parameter θ is an arbitrary threshold. We used
here θ = 0.8, but other values (higher) produced
equivalent results.

3) If cluster c is not in touch with any previously defined
cluster, then go to 1 with c = c + 1, else stop.

The result of the procedure for a particular instance is
depicted in the rightmost panel of fig. 1. Cluster 5 is in
touch with clusters 1 and 2, and therefore is the last cluster
to be considered. We studied more than a dozen of single
instances and all provided results consistent with the data
shown in this work.

Once the clusters are identified, we use the message
passing program starting from the given solution, and seek
convergence after reverting the sign of all messages point-
ing to the spins in a given cluster. This is tantamount
to reverting all magnetizations in the given cluster, while
keeping the others in their original state. If we have found
n clusters, and all of them can flip independently, we can
try convergence to 2n solutions. Our final set of GBP
states will be created out of all different GBP solutions
found by this procedure. In fig. 3 we show three different
solutions obtained in this way.

One case example. Take, for instance, the sample of
fig. 1. From the possible 25 = 32 different GBP initial
conditions (including the trivial symmetry of the system),
we found only 24 solutions at T = 0.75. To illustrate the
connection between these states and Monte Carlo dynam-
ics, we run a MC simulation with Metropolis updating
rule, of the N = 128 × 128 system and averaged the local
magnetization in a time window of 1000MC steps:

mMC
i (K = ⌊t/1000⌋) = 1/1000

1000(K+1)∑

t=1+1000K

si(t), (2)

where K is a mesoscopic Monte Carlo time. Then we
project this quantity over the GBP local magnetization of
each state α, defining the quantity

qα,MC(K) =
1
N

∑

i

mα
i mMC

i (K). (3)

In fig. 4 we show this projection as a function of MC
mesoscopic time K. It can be seen how the projection
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Fig. 3: (Colour on-line) Different GBP solutions obtained for
the same N = 64 × 64 EA 2D system. The first 3 panels show
the magnetization of each spin at positions (x, y) in the lattice.
To help the eye in recognizing the three different clusters of
spins, the first GBP state is used as a reference. The z-axis is
the projection of each site magnetization onto the direction of
the first solution found mβ,1(x, y) = mβ(x, y)Sign(m1(x, y)).
Three different mostly independent clusters can be seen in the
contour surfaces of the top-left plot, and 3D plots show how
they can switch directions from one GBP solution to the other.
In the bottom-right we plot m1

i vs. m2
i for each spin in the

system in two different GBP solutions.

over the GBP states is non-trivial, growing in absolute
value and in time persistence as temperature goes down,
and how the system switches from one state to the other,
remaining most of the time near one of these states.

Furthermore, if GBP states are the metastable states,
then the time Tα that the system is near any GBP solution
α, should be proportional to the exponential of its free
energy Fα that we can estimate by GBP,

Tα ∝ wα =
exp(−βFα)∑n

α′=1 exp(−βFα′)
. (4)

In fig. 5 this is shown to be the case for a system of N =
64 × 64 spins, at three different temperatures. We define
the system to be near state α at time t if its overlap is the
highest:

∀γ qγ,MC(t) ≤ qα,MC(t). (5)

An experimental frequency of each state is computed as
the amount of Monte Carlo time Tα the system stays in
the vicinity of GBP state α, divided by the total Monte
Carlo time of the experiment. This frequency is very well
predicted by wα.

Monte Carlo replicas overlap. – So far we have
shown that GBP locates metastable states in the Monte
Carlo dynamics of the EA in 2D. Therefore, the
Boltzmann measure can be approximated as the linear
combination of each GBP state measure

P (s) =
∑

α

wαPα(s)I(s ∈ α). (6)

Next we use this fact to predict some non-trivial MC quan-
tities using only GBP fixed points.
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Carlo dynamics in the configurational space. Most of the time
MC dynamics is in the vicinity of one GBP solution.

The parameter θ is an arbitrary threshold. We used
here θ = 0.8, but other values (higher) produced
equivalent results.

3) If cluster c is not in touch with any previously defined
cluster, then go to 1 with c = c + 1, else stop.

The result of the procedure for a particular instance is
depicted in the rightmost panel of fig. 1. Cluster 5 is in
touch with clusters 1 and 2, and therefore is the last cluster
to be considered. We studied more than a dozen of single
instances and all provided results consistent with the data
shown in this work.

Once the clusters are identified, we use the message
passing program starting from the given solution, and seek
convergence after reverting the sign of all messages point-
ing to the spins in a given cluster. This is tantamount
to reverting all magnetizations in the given cluster, while
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states will be created out of all different GBP solutions
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we found only 24 solutions at T = 0.75. To illustrate the
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mMC
i (K = ⌊t/1000⌋) = 1/1000

1000(K+1)∑

t=1+1000K

si(t), (2)

where K is a mesoscopic Monte Carlo time. Then we
project this quantity over the GBP local magnetization of
each state α, defining the quantity

qα,MC(K) =
1
N

∑

i

mα
i mMC

i (K). (3)

In fig. 4 we show this projection as a function of MC
mesoscopic time K. It can be seen how the projection
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spins, the first GBP state is used as a reference. The z-axis is
the projection of each site magnetization onto the direction of
the first solution found mβ,1(x, y) = mβ(x, y)Sign(m1(x, y)).
Three different mostly independent clusters can be seen in the
contour surfaces of the top-left plot, and 3D plots show how
they can switch directions from one GBP solution to the other.
In the bottom-right we plot m1

i vs. m2
i for each spin in the

system in two different GBP solutions.

over the GBP states is non-trivial, growing in absolute
value and in time persistence as temperature goes down,
and how the system switches from one state to the other,
remaining most of the time near one of these states.

Furthermore, if GBP states are the metastable states,
then the time Tα that the system is near any GBP solution
α, should be proportional to the exponential of its free
energy Fα that we can estimate by GBP,

Tα ∝ wα =
exp(−βFα)∑n

α′=1 exp(−βFα′)
. (4)

In fig. 5 this is shown to be the case for a system of N =
64 × 64 spins, at three different temperatures. We define
the system to be near state α at time t if its overlap is the
highest:

∀γ qγ,MC(t) ≤ qα,MC(t). (5)

An experimental frequency of each state is computed as
the amount of Monte Carlo time Tα the system stays in
the vicinity of GBP state α, divided by the total Monte
Carlo time of the experiment. This frequency is very well
predicted by wα.

Monte Carlo replicas overlap. – So far we have
shown that GBP locates metastable states in the Monte
Carlo dynamics of the EA in 2D. Therefore, the
Boltzmann measure can be approximated as the linear
combination of each GBP state measure

P (s) =
∑

α

wαPα(s)I(s ∈ α). (6)

Next we use this fact to predict some non-trivial MC quan-
tities using only GBP fixed points.
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to average out high-frequency Monte Carlo noise.

Fig. 5: (Colour on-line) At temperatures T = 0.95, 0.9,
0.85 GBP finds two, two and three independent clusters, and
therefore there are 2 × 21, 2 × 21 and 2 × 22 GBP solutions,
respectively. The first factor 2 corresponds to the natural sym-
metry si → −si. Since symmetric solutions are equivalent in
all senses, they will be taken as one solution. The observed
time fraction during which the Monte Carlo dynamics stays in
the vicinity of each GBP solution is plotted against its pre-
dicted value from the GBP free energy in this particular 2D
EA instance (see eq. (4)).

One key parameter in disordered systems is the overlap
between two different replicas of the system:

q =
1
N

N∑

i

s1
i s

2
i . (7)

The probability distribution of the overlap P (q) provides
information on the structure of states.

If each replica of the system stays close to one of
the GBP states (for a time that can be estimated from
the GBP free energy), we should be able to reproduce the
statistics of the overlap q from GBP data alone. We will
consider that the random variable q is given by a two-
steps stochastic process: the first one is the choice of the
GBP states where the replicas are (see scheme in fig. 2),
the second considers the stochastic fluctuation in the given

states. Therefore, the distribution of q is a weighted sum
of the probabilities of the random variables qαβ , where α
and β are states indices,

P (q) =
∑

α,β

wαwβPαβ(q), (8)

where

Pαβ(q) =
∑

s1s2

Pα(s1)Pβ(s2)δ

(
q − 1

N

∑

i

s1
i s

2
i

)
(9)

is the distribution of the overlap between two replicas
when they are in states α and β, and wαwβ is the proba-
bility of such a situation.

The expected value of qαβ is readily given in terms of
averages in the GBP states

qαβ =

〈
1
N

∑

i

sα
i sβ

i

〉
=

1
N

∑

i

mα
i mβ

i . (10)

On the other hand, the computation of the variance is
harder and requires the estimation of the correlations as
we will show in the following.

Estimating the variance. The variance of the overlap
between states α and β is given by

σ2
αβ =

〈(
1
N

∑

i

sα
i sβ

i − qαβ

)2〉
=

〈(
1
N

∑

i

sα
i sβ

i

)2〉
− q2

αβ . (11)

The first term on the second line can be written in terms
of connected correlations in a state, Cα

ij = ⟨sα
i sα

j ⟩−mα
i mα

j ,
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Fig. 5: (Colour on-line) At temperatures T = 0.95, 0.9,
0.85 GBP finds two, two and three independent clusters, and
therefore there are 2 × 21, 2 × 21 and 2 × 22 GBP solutions,
respectively. The first factor 2 corresponds to the natural sym-
metry si → −si. Since symmetric solutions are equivalent in
all senses, they will be taken as one solution. The observed
time fraction during which the Monte Carlo dynamics stays in
the vicinity of each GBP solution is plotted against its pre-
dicted value from the GBP free energy in this particular 2D
EA instance (see eq. (4)).

One key parameter in disordered systems is the overlap
between two different replicas of the system:

q =
1
N

N∑
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s1
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2
i . (7)

The probability distribution of the overlap P (q) provides
information on the structure of states.

If each replica of the system stays close to one of
the GBP states (for a time that can be estimated from
the GBP free energy), we should be able to reproduce the
statistics of the overlap q from GBP data alone. We will
consider that the random variable q is given by a two-
steps stochastic process: the first one is the choice of the
GBP states where the replicas are (see scheme in fig. 2),
the second considers the stochastic fluctuation in the given

states. Therefore, the distribution of q is a weighted sum
of the probabilities of the random variables qαβ , where α
and β are states indices,

P (q) =
∑

α,β

wαwβPαβ(q), (8)

where
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is the distribution of the overlap between two replicas
when they are in states α and β, and wαwβ is the proba-
bility of such a situation.

The expected value of qαβ is readily given in terms of
averages in the GBP states
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=
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On the other hand, the computation of the variance is
harder and requires the estimation of the correlations as
we will show in the following.

Estimating the variance. The variance of the overlap
between states α and β is given by
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therefore there are 2 × 21, 2 × 21 and 2 × 22 GBP solutions,
respectively. The first factor 2 corresponds to the natural sym-
metry si → −si. Since symmetric solutions are equivalent in
all senses, they will be taken as one solution. The observed
time fraction during which the Monte Carlo dynamics stays in
the vicinity of each GBP solution is plotted against its pre-
dicted value from the GBP free energy in this particular 2D
EA instance (see eq. (4)).

One key parameter in disordered systems is the overlap
between two different replicas of the system:

q =
1
N

N∑
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s1
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2
i . (7)

The probability distribution of the overlap P (q) provides
information on the structure of states.

If each replica of the system stays close to one of
the GBP states (for a time that can be estimated from
the GBP free energy), we should be able to reproduce the
statistics of the overlap q from GBP data alone. We will
consider that the random variable q is given by a two-
steps stochastic process: the first one is the choice of the
GBP states where the replicas are (see scheme in fig. 2),
the second considers the stochastic fluctuation in the given

states. Therefore, the distribution of q is a weighted sum
of the probabilities of the random variables qαβ , where α
and β are states indices,

P (q) =
∑

α,β

wαwβPαβ(q), (8)

where

Pαβ(q) =
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Pα(s1)Pβ(s2)δ
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is the distribution of the overlap between two replicas
when they are in states α and β, and wαwβ is the proba-
bility of such a situation.

The expected value of qαβ is readily given in terms of
averages in the GBP states

qαβ =
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=
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On the other hand, the computation of the variance is
harder and requires the estimation of the correlations as
we will show in the following.

Estimating the variance. The variance of the overlap
between states α and β is given by

σ2
αβ =
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=
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The first term on the second line can be written in terms
of connected correlations in a state, Cα
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Fig. 6: (Colour on-line) Symbols: distribution of the overlap
q12 between two independent Monte Carlo simulations of a 2D
EA system (N = 64 × 64) at temperature T = 0.65. Solid
line: distribution (8) obtained from GBP states at the same
temperature.
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ij

(Cα
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j )(Cβ

ij + mβ
i mβ
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1
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∑

ij
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ijC
β
ij + mα

i mα
j Cβ
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i mβ

j Cα
ij

)
+ q2
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From this we finally get

σ2
αβ =

1
N2

∑

ij

(
Cα

ijC
β
ij + mα

i mα
j Cβ

ij + mβ
i mβ

j Cα
ij

)
. (13)

Connected correlations between spins Cα
ij can be ap-

proximated in two ways: with a generalized susceptibility
propagation algorithm, or using fluctuation-dissipation re-
lations within GBP approximation. The generalized sus-
ceptibility algorithm, though somehow intuitive, to the
best of our knowledge has not been developed so far. In-
stead, we can obtain the connected correlations Cα

ij in an
experimental way from GBP, by introducing a small ex-
ternal field over the spins (one at a time) and using the
fluctuation dissipation relation Cα

ij = ∂mα
i

∂hj
.

This procedure is a little bit more cumbersome. We
need to run GBP, and within every solution found, com-
pute Cα

ij for every pair of spins in the system. This cal-
culation requires the introduction of a small field δhi over
spin i, then running GBP some more steps until conver-
gence, and then computing Cα

ij ≃ δmα
j /δhi. Note that

every time we put the probe field δhi we get, after con-
vergence, an estimate for N correlations. Fortunately, for
estimating σ2

αβ the correlations are averaged over all site
pairs, and thus it is enough to sample a random, and large
enough, subset of the correlations. Therefore, we have se-
lected 50 random spins in the system, and run GBP with

the external field on each of them to get 50×N estimates
of Cα

ij .
Given qαβ and σ2

αβ , we would like to approximate
Pαβ(q) by a suitable function with average qαβ and vari-
ance σ2

αβ . Unfortunately, a simple Gaussian ansatz is
deemed to fail because q is bounded in [−1, 1]. We al-
leviate this problem by assuming normal fluctuations for
the unbounded variable h ≡ arctanh(q), which has been
proved effective in previous works [23].

In fig. 6 we show the results of our analysis. The figure
compares Monte Carlo measurements for P (q) in a system
of N = 64×64 spins at T = 0.65 with function (8) showing
a remarkable coincidence between the two.

Conclusions. – We have used the plaquette-CVM
approximation to the free energy, and the correspond-
ing Generalized Belief Propagation algorithm to study
the intermediate temperature regime of the 2D Edwards-
Anderson model. We have shown that the spin glass solu-
tions obtained in the temperature range β ∈ [0.79, 1.2] give
very useful information about the dynamics of the actual
finite-size system. Indeed, the Monte Carlo dynamic stays
near the GBP solutions a fraction of time proportional to
the statistical weigth predicted by the plaquette-CVM ap-
proximation. Moreover, the overlap distribution P (q) can
be well approximated from the GBP fixed-point solutions.

In our opinion this is a very promising result which may
pave the way towards a better use of CVM approximations
to improve the numerical study of complex and disordered
systems. For example, one can think of speeding up a
Monte Carlo simulation by proposing a cluster flipping
move, using the clusters found by the GBP algorithm.

Furthermore, it could be interesting to study whether
some specific features of the aging dynamics, as, e.g., the
strong timescale sepration in the flipping times at low tem-
peratures [24,25], can be extracted from the GBP fixed-
point solutions.
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Summary & open problems

• General framework for making MFA consistent with 
linear response



• Recover several previous approximation (apparently 
unrelated): e.g. adaptive-TAP and SM approx.



• Improves inference, but has some limitations (to be 
overcome…)



• GBP can converge to many non-trivial fixed point with 
physical relevance



• Still missing a broad-purpose region-based algorithm 
that can deal with the many free-energy minima…
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