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Outline of the talk

e Two different derivations of mean-field approximations
e Plefka expansion
e Cluster Variational Method

* How good these approximations are?

e How one can try to improve it in order to overcome the
limitations due fto:

e Loops

e Ergodicity breaking



Physics & Machine Learning

This is a Physics talk!
But useful for Machine Learning (I hope ;-)

Common problem: compute quickly and accurately
the free-energy

F(J,h)=logZ(J,h) logZexp (ZJZ]S 53+Zh SZ)

and the marginals

m; = (s;)  Cij = (8:85) — mym;



Simplifications for this talk

Ising variables s; = =1 ..can be extended to Potts
Pairwise interactions
— — Z Jz'jSiSj — Z hiSZ’

(47)
..can be extended to more general graphical models

The measure is

1
P(s) = 7T 0 exp 5(2:)%]3 iS5 —I—BZh S;
ij

Often 0 =1

No hidden variables




Inferring marginals is useful for machine learning

* Willing to maximize the log-likelihood
L(J,h) = hi(si)data + »  Jij(5i5;)data — log Z(J, h)
1 1]
with respect tfo J and h one gefts
<5i>data — ah@F(Ja h) — mz(']a h)
(siSj)data = Oy, F'(J, h) = Ci;(J, h) + mym;

e Most likely model parameters can be found matching
empirical marginals with model marginals



Boltzmann machine learning

Matching between empirical and model marginals is
achieved via a learning

oh; = 7] (<57j>data, — mz)

5<]ij =1 (<3i3j>data — (Cij - mzmj))
Marginals can be computed by:
e Monte Carlo -> exact but slow...

 Mean-field approximations
-> faster

-> no learning, if analytic expressions for
mi(J,h),C;;(J, h) can be inverted



Alternatively...

Directly maximize an easy-to-compute approximation to
L(J,h) (e.g. the pseudo-likelihood)
-> see next talk by Aurelien Decelle

If input data are not configurations but average values
for the marginals (8i)data, (5iSj)data Then:

 No pseudo-likelihood maximization
e Matching empirical and model marginals

e The maximum entropy probability distribution has only
fields and pairwise couplings



Free-energy mean-field expansions

How to generalize most common mean-field approx?

Plefka derives an expansion in the couplings intensity for
the Gibbs free-energy with given magnetizations

Cluster Variational Method (Kikuchi, Morita, An)
IS an expansion of the entropy in terms of correlations
up to a given distance (maximal region size)

Both expansions have the naive mean-field approximation
as the first-order approximation

Beyond naive MF and Bethe approximations the relation
among the 2 expansions in not trivial (Yasuda Tanaka)



Plefkas expansion

F plefka[ 5] nalveMF TAP
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NaiveMF and TAP approximations

\ 4
Onsager reaction term



Bethe approximation

e On a tree

F=(e+eo+te »+e& P+ &S+ - ‘ sum to Bethe approx
+ + + ---
= 4 ...

* Not easy to write the explicit expression for the Bethe
approximation

e Very hard to go beyond the Bethe approximation...



Cluster Variational Method (CVM)

F=—-InZ =min F(p) = mlnz p(s)Inp(s)] Zp(s) —

p

/' /
energy (easy)

entropy (hard) -> approximate by
truncating the expansion in cumulants

1
FCVM(b7 Ja h) — E(ba J7 h) N _S(b)

b
E(b,J h) ZJZJTISSJ i ZhTrsb
(ij) local
S(b) = — Z CT.Tr[b,,, log br] b, = br(Sr) beliefs
reR sp={ri:i€r}
el

sum over regions : .
J counting numbers (Moebius coeff.)



Cluster Variational Method (CVM)

Beliefs must be normalized and locally consistent

D be(sp) =1 > be(sy) = be(sy)
Sr S,,n\t
Local consistency is not global consistency!

Beliefs are approximations to true marginals

Beliefs can be parametrized by magnetizations and
connected correlations, e.g.

14+ my;s; 14+ m;s; + mM;S,; -+ (Cij -+ mimj)sisj

bi(si) = bij(8i,85) =

2 4



Cluster Variational Method (CVM)

ci=—5 c;=1 c=1 c¢;=—1

1‘]/ i
s AR AR
NN NN = 1IN
NMF Bethe Plaquette
/ Z c, =1 Vi
reR:tCr
~ H bi(s;)

(ij) (ij)

Exact on trees

bz’j Si,Sj
wa (8i585) Hb (si) 7 = H b'(S(-)b-(sj-) HbZ(Sz)



How to choose the regions

Original CVM: all maximal regions and all their

intersections (recursively until single site regions)

Region-based free energy approximation (Yedidia et al.):
choose regions at your will as long as each site (variable
node) and interaction (factor node) has coefficient c=1

More is better, but computationally ineffective
Try to include all relevant correlations diam(ryax) ~ €

Easy to derive Bethe and clear how to go beyond Bethe



How to find the beliefs

e Introduce Lagrange multipliers (called messages)
enforcing the consistency constraint for each pair of

reglons My_¢(S¢) Vryite€ R:tCr

These are generalized cavity probability distributions

e Solve equations for messages iteratively -> Belief
Propagation (BP), Generalized Belief Propagation (GBP)

U

iB mic
e e T
RV

‘D



How to find the beliefs

o After converging to the fixed point of the message
passing algorithm, compute beliefs from the messages

U

S N
L
T T AV

‘D

 N.B. several equivalent MPA and each may have several
equivalent fixed point (gauge invariance).



Plefkas expansion vs. CVM

e Plefkas expansion has N parameters (the magnetizations)
nMF, TAP, 3rd order, 4th order,...,Bethe.

e CVM may have much more parameters to optimize over
E.g. on the 2D square lattice:
- nMF -> N magnetizations
- Bethe -> N magnetizations + 2N nn correlations
- Plaquette -> N magnetizations + 2N nn correlations +
2N nnn correlations + 4N 3-spin corr. + N 4-spin corr.

e CVM much richer description, but hard to get analytical
expressions to estimate model parameters



Bethe approximation

« The two derivations are equivalent: correlations only
depends on magnetizations at the fixed point

OFBethe 0 — . — lln (((1 +my) (1 + mj) + Cij)((l —my)(1 — mj) + C,L-j)>
K (1 +mi) (1 —my) —cij) (T —m) (1 +my) — cij)

oC;, 4

1
cz-j(mz-, mj, tm) = ? (1 -+ t?] — \/(1 — t%j)Q — 4tzj(mz — tijmj)(mj — twmz)) — mimj

L]

1— 12— /(1 —12)2 — 4t(my — mat)(mz — m1t)
2t(m2 — mlt)

f(m17m27t) —

m; = tanh hz -+ Z atanh (tijf(mj, my, tij))
J

Small couplings expansion leads to nMF, TAP, ...



Computing correlations by linear response

e Connected correlations are always null in nMF, TAP
Even in Bethe between non-neighbours spins

e Non trivial (and better) correlations can be obtained via
linear response (Kappen Rodriguez, 1998)

(Xomp)is = ] fz‘?ng — Jij N Oh;
(Xiip)ij - |- _1m2 X Z Ja(1—mi)| 6 — (Ji5 + QJ%mimj)
i ik
1. 1 tig fo (g, i, tig) ) tij f1(mg, mg, ;)
(XBA)ii = 1-m? ; 1 —t2 f(mp,ma, ti)? | 71— 2 f(my,mi, t;)?

fi(my,mo,t) = 0f(mq, ma,t)/0my fa(my,mo,t) = 0f(my, ma,t)/0Oms



Estimating model parameters via MFA

e Assume y =(C !

e Estimate couplings from matching only off-diagonal
elements of y tand C ..

nMF __ —1 TAP _ V1 = 8mym;(C71);; — 1
Jij = —(C77)i; Jii dm;m,;
JBA——atanh[ \/1+4 1 —mi)(1—m )(C i — mamy
ij ( 1) [
2
\/ \/1 +4(1 — —m5)(C71)7F — Qmimj(c_l)ij) —4(C)3 ]

e Easier than computing marginals: no need to run MPA!



Estimating model parameters via MFA

e Independent Pair (IP) approximation
. ( (1 ma) (1 +my) + Cy ) (4= ma)(1 = my) + Cyy) )
’ (@ +ma) (1 —my) = Cyy) (1= m) (L +m;) = Cy)

4
e Sessak-Monasson (SK) small correlation expansion

Cy;
(1= m)(1 —mj) — (Cyy)?

J

T3t =—(C™ Yy + i -

 Fields estimates from self-consistency equation
E.g. for nMF

tanh(m;
J J




How good are MFA?

1
+ Estimating marginals  Ac = /<5 > (xi; — Cij*)’
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How good are MFA?

e Estimating model parameters

10 - 1 | | . |
2D ferromagnet N=7°=49
diluted (p=0.7) |
1 M=5000 samples A—]
Ay
0.1 ¢ _
: T IP——
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How good are MFA?

e Problems with strongly frustrated models in a field

10 r I I I I | I I I I ] 10 F
- SK model N=100 - SK model N=100
_ | with field h=0.1
1 ¢ 1
0.1 |\ 0.1 |\
0.01 ' ' ' ' i | | | . 0.01 | . . . | i | , .
O 02 04 06 08 1 12 14 16 18 2 0O 02 04 06 08 1 12 14 16 18 2
p B

e Due to negative discriminants in coupling estimates



How good are MFA?
1 C'i; ’ X11 Xij

Cl; 1 Xij XNN
The linear response correlation matrix (the only we can
compute in MFA) has "wrong” element on the diagonal.
It is different from the true correlation matrix.

In the Bethe approximation the 2 estimates of nearest
neighbor correlations (Xi; and C;;) are different.
And linear response estimate is generally better.

This is due to loops ignored in the MFA



Limitations of MFA

e Ergodicity breaking

e MFA assume that a single state exists, and that
correlations decay fast with distance

e If many states exist correlations no longer decay, and
MF estimates become poor

e Presence of loops

e Even in presence of a single state, the loops may
change a lot the correlations with respect to
Susceptibility Propagation estimate, obtained assuming
a loopless graph



MFA fail because of loops

E.g. Bethe approximation in the high temperature phase

Since m=0, at the CVM free-energy minimum

<O-ZO-]>CBA — C;ka — tanh(ﬁjzj) < <O-i0.j>ixact

Linear response (Susceptibility Propagation)

Xii = 1+ Z Ujyii 7 1
jE D1 *
—— g
So in general for a ferromagnet * f
in the high T phase holds —

C@'j < C;:;‘ue < Xij



Adding loops to Bethe ?

Several attempts
e Loop calculus (Chertkov Chernyak)

e BP + correlations between neighbors
(Montanari Rizzo, Mooij Kappen,
Rizzo Wammenhove Kappen, Ohzeki)

All require in some sense the convergence of BP, but
loops make BP stop converging...

None is able to make predictions in a frustrated model
with many loops at low enough temperatures



Make MFA & LR consistent

* Choose your preferred MFA free-energy
Fyviea ({mi}, {C5 4, - )

e Enforce consistency with linear response estimates

free energy
minimum
location



General framework for MFA + LR

F)x — FMFA({mz {ng}

A

ZA ms +Z>\@](JZ]

i<j 4

Your preferred MFA

can be set to zero to
recover known approx.
or used to satisfy

Xii =1 —m; xi; = Cj




Other proposals for fixing Xii

Kappen Rodriguez (1998)
MF + self-couplings J;;

Opper Winter (2001)
Adaptive TAP = TAP + A,

FRT (2012) ”
Bethe with normalized correlations ¥,; = —=
useful for the inverse pb. vV Xii X

Yasuda Tanaka (2013)
I-SuscP = Bethe + \;



Bethe + linear response

e Ising model on a 2D square lattice
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Elo; oj], nearest neighbor correlation

MFA + LR: estimating marginals
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MFA + LR: estimating model param.

. . 0.
o Inferring the couplings °'Psa
of a 2D triangular 001 |
diluted antiferromagnet |
from correlations |
(infinite statistics) 00T E Bethe (1=0) —o—
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MFA + LR: disordered models

e 2D spin glass in a random field
J,,;j S [—1, 1], h; € [—0.25,0.25]

Statistics on 20 models: square grid random bond, weak fields, N=16
10_ L I I I I I I I

a4 No constraints
10 : — On diagonal constraints

On and off diagonal con%tgaints ]
Median MAD Cij: max(IA* 1)

MAD for pair connected correlations
S

X

o Median MAD x: max(IA®)))
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MFA + LR: disordered models

e 2D spin glass in a random field
Jij S [—1, 1], h; € [—0.25,0.25]

Statistics on 20 models: square grid random bond, weak fields, N=49

No constraints .
- — On diagonal constraints ]
¢ On and off diagonal con?}yaints y
[ Median MAD Cij: max(IA* 1) ]

MAD for pair connected correlations

X

o Median MAD x: max(IA®))

10 4 | | | | | | /B
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1



Ergodicity breaking & MFA

* Estimate model parameters in a phase with many states

Pseudo-likelihood based methods are rather
insensitive to ergodicity breaking (see Aureliens talk)

However also MFA can be used if data are properly
clustered

Each cluster of data returns comparable estimates for
couplings and fields



Ergodicity breaking & MFA
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Ergodicity breaking & MFA

Hopfield model P=3 (6 minima)

10 ¢

0.1

1 clust + NMF ——
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6 clus (many IC) + nMF o
! PLM ---- *_ _
Dens. Clus. -+~ ,,xw’*"‘ "1?'@@%?
16.7
0.8 1.2 1.6 o
0.8 1 1.2 1.4 1.6 18




Ergodicity breaking & MFA

The problem of estimating marginals is much harder in
presence of ergodicity breaking

What happens when we use MFA in a disordered model
with many states? (relevant for multimodal models)

On random graphs: replica symmetry breaking (RSB) and
Survey Propagation with Parisi parameter m

a.k.a. SP(m) is ok to describe 1RSB solutions

With a little effort one can obtain 2RSB solutions...

On finite dimensional lattices our understanding is still
very limited :-(



CVM on finite dimensional spin glasses

e Edwards-Anderson (EA) model in d=2 with symmetric
couplings (J;; = 1) is the most difficult situation

e For d=2 the EA model has no phase transition (in the
thermodynamical limit!) but low temperature physics is
still dominated by many different local minima in the

free-energy L2
e Algorithms to optimize CVM free-energy: é él%g)
- BP 1
- plaquette GBP (parent-to-child), HAK (2-ways) : >a) : TR{}R
- Double loop T \@VT
- MPA on the dual lattice (m=0) o ' g

L<—P = L P R<—R
@ (€

|

D



MPA convergence on 2d spin glasses

e Double loop, HAK and MPA on the dual converge at any
temperature

e BP and GBP only for high enough temperatures

Prob convergence

1
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Tricks for
making GBP
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BP critical point on
RRG of degree 4 is

atanh(1/v/3) >~ 0.658



BP on the dual lattice

It is very fast and accurate
enough to find a very good
approximation to ground states
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Multiple minima of CVM free-energy
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Multiple minima of CVM free-energy

e Running GBP on samples of the 2d EA model
the general scenario is the following

m = | m;féOI non conv.

Strongly polarized clusters
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Multiple minima of CVM free-energy
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CVM vs Monte Carlo

e Do have the many CVM free-energy minima a physical

meaning and role?

e Comparison with Monte Carlo dynamics

e Time spent close to a CVM free-energy minimum is equal

to the CVM approximated weight of such a state

/

—BF,
T, xw, = exp(=fFo)

\ > =1 €Xp(—[Fu)
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CVM vs Monte Carlo

e Approximating the overlap distribution from CVM states
(free-energy minima) P(q) =) wawsPas(q)
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Summary & open problems

* General framework for making MFA consistent with
linear response

e Recover several previous approximation (apparently
unrelated): e.g. adaptive-TAP and SM approx.

e Improves inference, but has some limitations (to be
overcome...)

e GBP can converge to many non-trivial fixed point with
physical relevance

e Still missing a broad-purpose region-based algorithm
that can deal with the many free-energy minima...
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