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Foundations of quantum statistical mechanics

Quantum ergodicity: John von Neumann ‘29
(Proof of the ergodic theorem and the
H-theorem in quantum mechanics)

Recent works:
Tasaki ‘98
(From Quantum Dynamics to the Canonical Distribution. . . )
Goldstein, Lebowitz, Tumulka, and Zanghi ‘06
(Canonical Typicality)
Popescu, Short, and A. Winter ‘06
(Entanglement and the foundation of statistical mechanics)
Goldstein, Lebowitz, Mastrodonato, Tumulka, and Zanghi ‘10
(Normal typicality and von Neumann’s quantum ergodic theorem)
MR and Srednicki ‘12
(Alternatives to Eigenstate Thermalization)
P. Reimann ‘15
(Generalization of von Neumann’s Approach to Thermalization)
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Absence of thermalization in 1D

T. Kinoshita, T. Wenger, and D. S. Weiss,
Nature 440, 900 (2006).

γ =
mg1D
~2ρ

g1D: Interaction strength
ρ: One-dimensional density

If γ � 1 the system is in the
strongly correlated

Tonks-Girardeau regime

If γ � 1 the system is in the
weakly interacting regime

Gring et al., Science 337, 1318 (2012).

Marcos Rigol (Penn State) NLCEs for the diagonal ensemble August 4, 2015 5 / 34



Coherence after quenches in Bose-Fermi mixtures
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S. Will, D. Iyer, and MR
Nat. Commun. 6, 6009 (2015).
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Dynamics and thermalization in quantum systems
If the initial state is not an eigenstate of Ĥ

|ψ0〉 6= |α〉 where Ĥ|α〉 = Eα|α〉 and E0 = 〈ψ0|Ĥ|ψ0〉,

then a few-body observable O will evolve following

O(τ) ≡ 〈ψ(τ)|Ô|ψ(τ)〉 where |ψ(τ)〉 = e−iĤτ/~|ψ0〉.

What is it that we call thermalization?

O(τ) = O(E0) = O(T ) = O(T, µ).

One can rewrite

O(τ) =
∑
α′,α

C?α′Cαe
i(Eα′−Eα )τ/~Oα′α where |ψ0〉 =

∑
α

Cα|α〉.

Taking the infinite time average (diagonal ensemble ρ̂DE ≡
∑
α |Cα|2|α〉〈α|)

O(τ) = lim
τ→∞

1

τ

∫ τ

0

dτ ′〈Ψ(τ ′)|Ô|Ψ(τ ′)〉 =
∑
α

|Cα|2Oαα ≡ 〈Ô〉DE,

which depends on the initial conditions through Cα = 〈α|ψ0〉.
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Width of the energy density after a sudden quench
Initial state |ψ0〉 =

∑
α Cα|α〉 is an eigenstate of Ĥ0. At τ = 0

Ĥ0 → Ĥ = Ĥ0 + Ŵ with Ŵ =
∑
j

ŵ(j) and Ĥ|α〉 = Eα|α〉.

The width of the weighted energy density ∆E =

√
〈ψ0|Ĥ2|ψ0〉 − 〈ψ0|Ĥ|ψ0〉2 is

∆E =

√∑
α

E2
α|Cα|2 − (

∑
α

Eα|Cα|2)2 =

√
〈ψ0|Ŵ 2|ψ0〉 − 〈ψ0|Ŵ |ψ0〉2,

or

∆E =

√ ∑
j1,j2∈σ

[〈ψ0|ŵ(j1)ŵ(j2)|ψ0〉 − 〈ψ0|ŵ(j1)|ψ0〉〈ψ0|ŵ(j2)|ψ0〉]
N→∞∝

√
N,

where N is the total number of lattice sites.
Since the width W of the full energy spectrum is ∝ N

∆ε =
∆E

W

N→∞∝ 1√
N
,

so, as in any thermal ensemble, ∆ε vanishes in the thermodynamic limit.

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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〈ψ0|Ŵ 2|ψ0〉 − 〈ψ0|Ŵ |ψ0〉2,
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Description after relaxation (lattice models)

Hard-core boson (spinless fermion) Hamiltonian

Ĥ =

L∑
i=1

−t
(
b̂†i b̂i+1 + H.c.

)
+ V n̂in̂i+1 − t′

(
b̂†i b̂i+2 + H.c.

)
+ V ′n̂in̂i+2

Dynamics vs statistical ensembles

Nonintegrable: t′ = V ′ 6= 0
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n
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)

initial state

time average

thermal

MR, PRL 103, 100403 (2009),
PRA 80, 053607 (2009), . . .

Integrable: V = t′ = V ′ = 0

-π -π/2 0 π/2 π
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0
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0.5

n
(k

) time average
thermal
GGE

MR, Dunjko, Yurovsky, and
Olshanii, PRL 98, 050405 (2007), . . .
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Eigenstate thermalization
Eigenstate thermalization hypothesis
[Deutsch, PRA 43 2046 (1991); Srednicki, PRE 50, 888 (1994).]

The expectation value 〈α|Ô|α〉 of a few-body observable Ô in an
eigenstate of the Hamiltonian |α〉, with energy Eα, of a many-body
system is equal to the thermal average of Ô at the mean energy Eα:

〈α|Ô|α〉 = 〈Ô〉ME(Eα).
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MR, Dunjko, and Olshanii, Nature 452, 854 (2008).
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Time fluctuations and their scaling with system size
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∑
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Bounds
(G) P. Reimann, PRL 101, 190403 (2008).
(G) Linden et al., PRE 79, 061103 (2009).
(N) Cramer et al., PRL 100, 030602 (2008).
(N) Venuti&Zanardi, PRE 87, 012106 (2013).
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Time fluctuations
Are they small because of dephasing?

〈Ô(t)〉 − 〈Ô(t)〉 =
∑
α′,α
α′ 6=α

C?α′Cαe
i(Eα′−Eα )tOα′α ∼

∑
α′,α
α′ 6=α

ei(Eα′−Eα )t

Nstates
Oα′α

∼
√
N2

states

Nstates
Otypical
α′α ∼ Otypical

α′α

Time average of 〈Ô〉

〈Ô〉 =
∑
α

|Cα|2Oαα

∼
∑
α

1

Nstates
Oαα ∼ Otypical

αα

One needs: Otypical
α′α � Otypical

αα

MR, PRA 80, 053607 (2009)
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Finite temperature properties of lattice models

Computational techniques for arbitrary dimensions
Quantum Monte Carlo simulations
Polynomial time⇒ Large systems⇒ Finite size scaling
Sign problem⇒ Limited classes of models

Exact diagonalization
Exponential problem⇒ Small systems⇒ Finite size effects
No systematic extrapolation to larger system sizes
Can be used for any model!

High temperature expansions
Exponential problem⇒ High temperatures
Thermodynamic limit⇒ Extrapolations to low T
Can be used for any model!
Can fail (at low T ) even when correlations are short ranged!

DMFT, DCA, DMRG, . . .
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Linked-Cluster Expansions
Extensive observables Ô per lattice site (O) in the thermodynamic limit

O =
∑
c

L(c)×WO(c)

where L(c) is the number of embeddings of cluster c

and WO(c) is the weight
of observable O in cluster c

WO(c) = O(c)−
∑
s⊂c

WO(s).

O(c) is the result for O in cluster c

O(c) = Tr
{
Ô ρ̂GC

c

}
,

ρ̂GC
c =

1

ZGC
c

exp−(Ĥc−µN̂c)/kBT

ZGC
c = Tr

{
exp−(Ĥc−µN̂c)/kBT

}
and the s sum runs over all subclusters of c.
In numerical linked cluster expansions (NLCEs) an exact diagonalization of
the cluster is used to calculate O(c) at any temperature.
MR, T. Bryant, and R. R. P. Singh, PRL 97, 187202 (2006).
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Extensive observables Ô per lattice site (O) in the thermodynamic limit

O =
∑
c

L(c)×WO(c)

where L(c) is the number of embeddings of cluster c and WO(c) is the weight
of observable O in cluster c

WO(c) = O(c)−
∑
s⊂c

WO(s).

O(c) is the result for O in cluster c

O(c) = Tr
{
Ô ρ̂GC

c

}
,

ρ̂GC
c =

1

ZGC
c
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exp−(Ĥc−µN̂c)/kBT

ZGC
c = Tr

{
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Numerical linked cluster expansions (square lattice)

i) Find all clusters that can be
embedded on the lattice

ii) Group the ones with the
same Hamiltonian (Topo-
logical cluster)

iii) Find all subclusters of a
given topological cluster

iv) Diagonalize the topological
clusters and compute the
observables

v) Compute the weight of each
cluster and compute the di-
rect sum of the weights

Bond clusters

c

2

L(c)

2

3 2

4 4

5 4

6 2

7 4

11

8 4

9 8

Marcos Rigol (Penn State) NLCEs for the diagonal ensemble August 4, 2015 17 / 34



Numerical linked cluster expansions (square lattice)

i) Find all clusters that can be
embedded on the lattice

ii) Group the ones with the
same Hamiltonian (Topo-
logical cluster)

iii) Find all subclusters of a
given topological cluster

iv) Diagonalize the topological
clusters and compute the
observables

v) Compute the weight of each
cluster and compute the di-
rect sum of the weights

No. of bonds topological clusters
0 1
1 1
2 1
3 2
4 4
5 6
6 14
7 28
8 68
9 156

10 399
11 1012
12 2732
13 7385
14 20665

Marcos Rigol (Penn State) NLCEs for the diagonal ensemble August 4, 2015 17 / 34



Numerical linked cluster expansions (square lattice)

i) Find all clusters that can be
embedded on the lattice

ii) Group the ones with the
same Hamiltonian (Topo-
logical cluster)

iii) Find all subclusters of a
given topological cluster

iv) Diagonalize the topological
clusters and compute the
observables

v) Compute the weight of each
cluster and compute the di-
rect sum of the weights

No. of bonds topological clusters
0 1
1 1
2 1
3 2
4 4
5 6
6 14
7 28
8 68
9 156

10 399
11 1012
12 2732
13 7385
14 20665

Marcos Rigol (Penn State) NLCEs for the diagonal ensemble August 4, 2015 17 / 34



Numerical linked cluster expansions (square lattice)

i) Find all clusters that can be
embedded on the lattice

ii) Group the ones with the
same Hamiltonian (Topo-
logical cluster)

iii) Find all subclusters of a
given topological cluster

iv) Diagonalize the topological
clusters and compute the
observables

v) Compute the weight of each
cluster and compute the di-
rect sum of the weights

No. of bonds topological clusters
0 1
1 1
2 1
3 2
4 4
5 6
6 14
7 28
8 68
9 156

10 399
11 1012
12 2732
13 7385
14 20665

Marcos Rigol (Penn State) NLCEs for the diagonal ensemble August 4, 2015 17 / 34



Numerical linked cluster expansions (square lattice)

i) Find all clusters that can be
embedded on the lattice

ii) Group the ones with the
same Hamiltonian (Topo-
logical cluster)

iii) Find all subclusters of a
given topological cluster

iv) Diagonalize the topological
clusters and compute the
observables

v) Compute the weight of each
cluster and compute the di-
rect sum of the weights

Heisenberg Model in 2D

0.1 1 10

T

-0.8

-0.6

-0.4

-0.2

0

E

QMC 100×100

12 bonds
13 bonds

MR et al., PRE 75, 061118 (2007).
B. Tang et al., CPC 184, 557 (2013).
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Resummation algorithms

We can define partial sums

On =

n∑
i=1

Si, with Si =
∑
ci

L(ci)×WO(ci)

where all clusters ci share a given characteristic (no. of bonds, sites, etc).
Goal: Estimate O = limn→∞On from a sequence {On}, with n = 1, . . . , N .

Wynn’s algorithm:

ε(−1)n = 0, ε(0)n = On, ε(k)n = ε
(k−2)
n+1 +

1

∆ε
(k−1)
n

where ∆ε
(k−1)
n = ε

(k−1)
n+1 − ε

(k−1)
n .

Brezinski’s algorithm [θ(−1)n = 0, θ
(0)
n = On]:

θ(2k+1)
n = θ(2k−1)n +

1

∆θ
(2k)
n

, θ(2k+2)
n = θ

(2k)
n+1 +

∆θ
(2k)
n+1∆θ

(2k+1)
n+1

∆2θ
(2k+1)
n

where ∆2θ
(k)
n = θ

(k)
n+2 − 2θ

(k)
n+1 + θ

(k)
n .
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Resummation results (Heisenberg model)

Specific heat in the square lattice
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MR, T. Bryant, and R. R. P. Singh, PRE 75, 061118 (2007).
B. Tang, E. Khatami, and MR, Comput. Phys. Commun. 184, 557 (2013).
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Finite size effects

In unordered phases, not all ensemble calculations of finite systems
approach the thermodynamic limit the same way
There is a preferred ensemble (the grand canonical ensemble) and preferred boundary
conditions (periodic boundary conditions, so that the system is translationally invariant) for
which finite-size effects are exponentially small in the system size. All others exhibit
power-law convergence with system size.

NLCEs convergence is also exponential, but a faster one!

Kinetic energy in the t-V model

2 4 6 8 10 12 14 16

l

10
-7

10
-5

10
-3

10
-1

|K
l-K

E
|/

K
E

CE-O

CE-P

GE-O

GE-P

NLCE

T=1.0

D. Iyer, M. Srednicki, and MR, Phys. Rev. E 91, 062142 (2015).
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Diagonal ensemble and NLCEs
The initial state is in thermal equilibrium in contact with a reservoir

ρ̂Ic =

∑
a e
−(Eca−µIN

c
a)/TI |ac〉〈ac|

ZIc
, where ZIc =

∑
a

e−(E
c
a−µ

INca)/TI ,

|ac〉 (Eca) are the eigenstates (eigenvalues) of the initial Hamiltonian ĤI
c in c.

At the time of the quench ĤI
c → Ĥc , the system is detached from the

reservoir. Writing the eigenstates of ĤI
c in terms of the eigenstates of Ĥc

ρ̂DE
c ≡ limτ ′→∞

1

τ ′

∫ τ ′

0

dτ ρ̂(τ) =
∑
α

W c
α |αc〉〈αc|

where
W c
α =

∑
a e
−(Eca−µIN

c
a)/TI |〈αc|ac〉|2

ZIc
,

|αc〉 (εcα) are the eigenstates (eigenvalues) of the final Hamiltonian Ĥc in c.

Using ρ̂DE
c in the calculation of O(c), NLCEs allow one to compute

observables in the DE in the thermodynamic limit.

MR, PRL 112, 170601 (2014); PRE 90, 031301(R) (2014).
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Models and quenches

Hard-core bosons in 1D lattices at half filling (µI = 0)

Ĥ =

L∑
i=1

−t
(
b̂†i b̂i+1 + H.c.

)
+ V n̂in̂i+1 − t′

(
b̂†i b̂i+2 + H.c.

)
+ V ′n̂in̂i+2

Quench: TI , tI = 0.5, VI = 1.5, t′I = V ′
I = 0→ t = V = 1.0, t′ = V ′

NLCE with maximally
connected clusters

(l = 18 sites)

Energy: EDE = Tr[Ĥρ̂DE]

Convergence:

∆(ODE)l =
|ODE

l −ODE
18 |

|ODE
18 |

Convergence of EDE with l

2 7 12 17
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Few-body experimental observables in the DE

Momentum distribution

m̂k =
1

L

∑
jj′

eik(j−j
′)ρ̂jj′
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NLCEs for disordered systems

Hamiltonian with diagonal disorder

Ĥ =
∑
i

[
−t(b̂†i b̂i+1 + H.c.) + V

(
n̂i −

1

2

)(
n̂i+1 −

1

2

)
+ hi

(
n̂i −

1

2

)]
binary disorder (equal probabilities for hi = ±h).

Disorder average restores translational invariance (exactly!)

O(c) =
〈

Tr[Ôρ̂c]
〉
dis
,

where 〈·〉dis represents the disorder average.

Initial state: tI = 0.5, VI = 2.5, hj = 0, and TI (no disorder)
Final Hamiltonian: t = 1, V = 2.0, and different values of h 6= 0

B. Tang, D. Iyer, and MR, PRB 91, 161109(R) (2015).
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Ĥ =
∑
i

[
−t(b̂†i b̂i+1 + H.c.) + V

(
n̂i −

1

2

)(
n̂i+1 −

1

2

)
+ hi

(
n̂i −

1

2

)]
binary disorder (equal probabilities for hi = ±h).

Disorder average restores translational invariance (exactly!)

O(c) =
〈

Tr[Ôρ̂c]
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Disordered systems and many-body localization

Ratio of consecutive energy gaps
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Ratio of the smaller and the larger of two consecutive energy gaps

rn = min[δEn−1, δ
E
n ]/max[δEn−1, δ

E
n ], where δEn ≡ En+1 − En

we compute r = 〈〈rdisn 〉n〉dis.
Continuous disorder: hc ≈ 7 [A. Pal and D. A. Huse, PRB 82, 174411 (2010).]
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Scaling of the differences and errors
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Conclusions

NLCEs provide a general framework to study the diagonal en-
semble in lattice systems after a quantum quench in the thermo-
dynamic limit.

The grand canonical ensemble in translationally invariant sys-
tems is special (exponentially small finite size effects vs power
law for other cases). NLCEs also converge exponentially, but
even faster!

NLCE results indicate that few-body observables thermalize in
nonintegrable systems while they do not thermalize in integrable
systems. Time scale for thermalization as one approaches the
integrable point.

Quantum quenches within NLCEs can be used to study the tran-
sition between ergodicity and many-body localization (arbitrary
dimensions). In one dimension, the NLCE results support the
existence of many-body localization in the thermodynamics limit.
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Dispersion of the energy in the DE

Dispersion of the energy
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The dispersion of the energy (and of the particle number) in the DE depends
on the initial state independently of whether the system is integrable or not.
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Few-body experimental observables in the DE

nn kinetic energy
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