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Both practical and theoretical interest:

» Time-delayed feedback processes are ubiquitous in
biological regulatory networks and engineering. These
systems are typically «autonomous» machines that operate
in a nonequilibrium steady state (NESS) where work is
permanently extracted from the environment.

» The non-Markovian character of the dynamics raises issues
that go beyond the current framework of stochastic
thermodynamics and that do not exist when dealing with a
discrete (non-autonomous) feedback control.

Main theme of the talk: Because of the delay, the time-
reversal operation becomes highly non-trivial. However, one
cannot understand the behavior of the system (in particular
the fluctuations) without referring to the unusual properties of
the reverse process.
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TALK ROADMAP

A. SECOND LAW-LIKE INEQUALITIES:
(bounds for the average extracted work)

For more details, see PRL 112, 180601 (2014) and Phys. Rev.
E 91, 042114 (2015).

B. FLUCTUATIONS (work, heat,

entropy production): large—deviation
functions and fluctuation relations

For more details, see cond-mat. arXiv soon...
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A. SECOND-LAW-LIKE INEQUALITIES

Langevin equation:

muy = —yur + F(xy) + Fep(t) + /29T E(F)

with Frp(t) = Frp (24— +><T)

» Inertial effects play an important role in human motor control
and in experimental setups involving mechanical or
electromechanical systems.

» Deterministic feedback control: no measurement errors

Stochastic Delay Differential Equations (SDDEs) have a rich
dynamical behavior (multistability, bifurcations, stochastic
resonance , etc.). However, we will only focus on the steady-
state regime.
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Consequences of non-Markovianity

1) The full description of the time-evolving state of the system in
terms of pdf's requires the knowledge of the whole Kolmogorov
hierarchy p(z,v,t),p(x1,v1,t1; T2, v2,12), etc.

There is an infinite hierarchy of Fokker-Planck (FP) equations
that has no close solution in general.

>

The definition of the Shannon entropy depends on the level of
description. There is no unique entropy-balance equation from
the FP formalism (nor unique second-law-like inequality), but
a set of equations and inequalities.

2) The time-reversal operation is non-trivial and leads to
another second-law-like inequality (in this sense, one looses
the nice consistency of stochastic thermodynamics).
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3) Preparation effects are crucial due to the memory of the
dynamics.

::> We will only focus on the steady-state regime and
on the asymptotic behavior in the long-time limit
(we will not consider transients).
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Second—law—like inequalities obtained from

the FP description

FP equation for the one-time pdf:

op(xz,v,t) = =0, J%(x,v) — 0J (x,v)
where
J¥(x,v,t) = vp(x,v,t)

1 _ T
J(x,v,t) = E[—’}/’U + F(z) + Fpp(x,v,t)|p(z,v,1t) — % wp(T, v, 1)

and

_ 1 00
F t)] = dy F by, t —
(0] =~ [y Fppla. vt =)

IS an effective time-dependent force obtained by formally
integrating out the dependence on the variable y: := x¢— -

mercredi 29 juillet 15




» Corresponding Shannon entropy

ST(t) = /dw dv p(xz,v,t) Inp(x,v,t)

d/dt +FP equation => Entropy balance equation:

d - Q)

S57 () = 87(6) — 1 = Syl

where Q(t) = %(m@f) —T) heat exchanged with the bath
YTV _ m’ [J’Z)rfl“(x? U)]2 :
STU(t) = T dxdv (2. 0.1) > (0 non-negative «EP» rate
LU 1 —

and Spump(t) — _E@vab(xaUat»

«Entropy pumping» rate that describes the influence of the continuous feedback.
The effective force contributes to the balance equation because it is velocity -
dependent (i.e., it contains a piece which is antisymmetric under time-reversal).
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» In the steady state regime, one then obtains a second-
law-like inequality

Wext S S.va

T pump

(We:ct — _Q)
 one can extract work from the heat bath if

STV 5 ()

pump

* (this depends on the delay, among other things)

Similarly, by working in momentum space only, and defining the
Shannon entropy as

SY(t) = /d:v dv p(v,t) Inp(v,t)

one obtains another inequality

Weact S SU < 8':1:’0
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The entropy pumping rates have no direct interpretation in
terms of information-theoretic measures, but one can also
consider information flows that reveal how the exchange of

information between the system and the controller is affected
by the time delay, e.q.

: tyy,t —T)
1579 (t ::/dacdvdy(%]” z,v,t;y,t —7)In p(@,v,ty,
flow,v( ) ( ) p(m,v,t)p(y,t — 7')

For more details, see Phys. Rev. E 91, 042114 (2015)
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Second-law—like inequality obtained from

time reversal

In the case of non-autonomous feedback control with
measurements and actions performed step by step at regular
time intervals (e.g. Szilard engines), one can record the
measurement outcomes and define a reverse process that
does not involve any measurement nor feedback (see recent
review in Nature Phys. 11, 131, 2015). This is not possible
when the feedback is implemented continuously.

::> One must also reverse the feedback

The feedback force then depends on the future ! The
«conjugate» dynamics is acausal.

moy = —yvr + F(2¢) + Fro(Te4-) + /29T &(2)
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Generalized local detailed balance equation:

P[X|Y] probability to observe X = {z,}} given the previous path Y = {z,}°
PIX|Y] x J e P5IXY]

S1X, Y] = Onsager-Machlup action functional

1

SIX, Y] = -

t
/ ds |mis +vts — F(xs) — Fro(z5—7)]
J path-independent Jacobian (contains the factor e%t)
t
Fluctuating heat:  ¢[X,Y] :/ ds [yvs — \/27T&s] 0 vy
0

= —/O ds (mvs — F(xs) — Fp(Ts—7)] 0 Vs

The heat is odd under time reversal if 7 is changed into — 7

mercredi 29 juillet 15



Local detailed balance with continuous time-delayed feedback
control:

ﬁ> PXY] _ J soxy
JX]

PIXf|x], Y]

PIXT|x!, Y1) o« F[X]e S Y]

. 1 [t
with  S[X,Y]| = 4—/ ds |mis +vis — F(xs) — Fro(2s4r)]
7 Jo
T | X] = non-trivial Jacobian due to the violation of causality

in general path dependent
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One can then define a generalized «entropy
production» (Kullback-Leibler divergence):

PX]
P[X1]

(Rey[X]) = / DX P[X]In

which satisfies an integral fluctuation theorem  (effes[X]) = 1

In the steady state, this leads to another second-law-like
inequality:

We:ct :
<S
T = J
; L] 1 j
where S := lim —(In ——)g .
t—oo t J[X] R
’Y+§/ m———.
(this quantity can be computed exactly in a linear “CL

system but this requires a careful analysis of the @y\e | )
«response function» associated to the acausal - T

conjugate Langevin equation in Laplace space.)
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Example for a linear system:

Solid black line
extracted work
red and blue lines:
various bounds

SSHN 2y} Ut sayey
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B. FLUCTUATIONS

To be concrete, we will consider a linear Langevin equation, i.e.
a stochastic harmonic oscillator submitted to a linear feedback

mi; = —yvy — kxy + K 2 + /29T £(1)

(a) fiber spectrum  describes accurately the

interferometer analyzer

x(1) + %, (1) dynamics of nano-
cantilever p.........t}..... .
i i l gD mechanical resonators

lens

piezo [ (e.g. the cantilever of an
drive cy )

. m—T di AFM) used in feedback
—f;FO(X(t)+xn(t)) S COOIlng SetUpS

Quality factor:
, ; QO = WoTo (wo = \/%, T0 = m/’}/)
Uy = —Tp — 0, + 055t t&  Gain: g=(K/k)Qo

In reduced units: 3 parameters
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We study the fluctuations of 3 observables:

29 t
Work: WX, Y] = —5 dS Ty_ Vg
0

Heat: BOIX,Y|=pW[X,Y]| - AU(x;,xf)

- 1
= BWIX,Y] — Q—(xi — i +v; — v
0

“Pseudo EP” Y[X,Y] = SO[X,Y] +In L ot(Xi)
DPst (Xf)

Quantities of interest: probability distribution functions
Pa(A,t) = (0(A — BAIX,Y])) s

:/dxf/DY Pst| Y] Y DX (A - BAIX,Y])PX]|Y]

and the corresponding moment geznerating functions

400
Za(\t) = (e MPAXY]Y | — / dA e M P4(A,t)

— 0

2

1

)
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Expected long-time behavior of the pdfs: Pa(A = at) ~ ¢ f4(®)!

where ~ denotes logarithmic equivalence and I(a) is the LDF

Similarly: Za(\,t) &~ ga(A\)ertaM?

1
where 4 ()\) = lim — In(e MAXY] s the SCGF

t—oo 1

Scaled Cumulant Generating Function)
and the pre-exponential factor ga(\) typically arises from the
average over the initial and final states. Here the “initial” state is'Y

The 3 observables only differ by «boundary» terms that are not
extensive in time. However, since the potential V(x) is
unbounded, these terms may fluctuate to order t !

ﬁ> Pole singularities in the prefactors and exponential
tails in the pdf’s (e.g. for the heat)
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Numerical study: Qo = 34.2,9/Qo = 0.25

The quality factor corresponds to the cantilever of the AFM used
in recent experiments by Ciliberto et al (Eur. Phys. Lett. 89,
60003 (2010))

o
sl | L .| The feedback-
l . | controled oscillator
b . 1 has a complex
sl .| dynamical behavior as
I 0L a function of the delay
02 1 /}< 1 or the gain g:
/| multistability regime
T T S R PR

As an exemple, we will study the fluctuations in the second
lobe where the system can reach a stationary state.
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Fluctuations of the 3 observables for different noise realizations:
The length of the trajectory is t=100

| t=8.4

Noise realizations Noise realizations

Boundary terms are still non negligible. Fluctuations are
correlated but the qualitative behavior depends on the delay !
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Probability distribution functions:

- 1276

Probability distributions

The solid black line the theoretical curve Py (W = wt) ~ e 1(w)!
and the dashed solid line takes into account finite-time corrections.

Main Puzzle: How can we explain the change of behavior of

Po(Q =qt) and Ps(X=ot) with T ?
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Two origins: 1) Existence of integral fluctuation theorems (IFT):

02 | T | T | T | T | T | T |
0.15 _
= 0.1
—
N
N<E
= 005
L |
- 11Q,
N—
=
— 0
-0.05 - _

_0.1 | 1 | 1 | 1 | 1 | 1 | 1 |

ZQ(l, t) = <e_5Q[X>Y]>St — Yt/m (exact result for an underdamped
Langevin dynamics)

_ —BY[X,Y St (not yet fully proved; some
ZE(lat) — <€ P2l ]>st ~e 7" T — 0 similarity with Sagawa-Ueda
relation involving the so-called

1. 7 «efficacy parameter»)
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::> Such IFT’s imply a peculiar behavior of the
generating functions in the long-time limit:

::> Pole in the prefactorat \ =1 in the limit ¢ — oo

Boundary layer in the vicinity of A =1 for t large
but finite

ﬁ> (A =1) # lim pg(A)

But this also depends on the value of the delay !
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2) The behavior of the pdf's also depends on whether the
conjugate, acausal dynamics reaches or does not reach a
stationary state.

Inserting the local detailed balance equation into the definition
of the generating function, one finds (for instance for the heat)

ZQ()\,t) ~ GSJt/dxi/DY 6(1—>\)5AU(X¢,xf)7DSt[YT]/ ! DX €—B§>\[X,Y]

where [S‘V,\ X,Y] isthe OM action associated with the conjugate
Langevin equation

The boundary terms become irrelevant in the long-
ﬁ> time limit when the conjugate acausal dynamics

reaches a stationary state: no dependence on the

state of the system in the far past or the far future .
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Acausal respeonse function

Acausal response function in the
case where the conjugate
dynamics reaches a stationary
state

This also depends on the delay and can be related to the
position of the poles of the acausal response function in the

complex-frequency plane.

10"

1=7.6

=) =)
0~ —_
T T

Probability distributions
‘U»

-4 I
10—0.15
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Modified Crooks FT for the work: When the acausal dynamics
reaches a stationary state, one can show that

Py (W = wt) ~ p(w+ST)t

~ I~

P(W = —wt)

05

Probability distributions

-20 -10 0

— Pw(W — wt)
o Py(W =wt)e ™
* Py (W = —wt)eS7?

, T — 00

>

In the long-time Ilimit, the
atypical trajectories that
dominate (e=""),, are the
conjugate twins (Jarzynski
2006) of fypical realisations
of the reverse (acausal)
process
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Alternatively, one can determine the properties of the atypical
noise that generates the rare events.

Since the conjugate dynamics converges, the solutlon of the
acausal Langevin equation is

(1) ~ / T R — )

:/ dt’y+(t—t)§(t’)+/t dt'x—(t —t")&(t)

— OO

or in the frequency domain: Z(w) = X(w)&(w)

Inserting into the original Langevin equation yields:

_ X(w) The atypical
Satyp(w) = x(w) (@) noise is
Hence  (Satyp(t)&atyp(t)) =v(t —1) colored |

T dw . x(w .
with v (t) = 24T [5(15) + /_ ;ZW | igwi ‘2 _ 1]6—zwt

mercredi 29 juillet 15




Variance of the atypical noise

04

v(H)-2 y T (1)

=
o

-0.4

1
0 10 20

30
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CONCLUSION

One can extend the framework of stochastic thermodynamics
to treat non-Markovian effects induced by a time-delayed
feedback. This introduces a new and interesting
phenomenology .

Experimental tests ?

Thank you for your attention !
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