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Both practical and theoretical interest:

 Time-delayed feedback processes are ubiquitous in 
biological regulatory networks and engineering. These 
systems are typically «autonomous» machines that operate 
in a nonequilibrium steady state (NESS) where work is 
permanently extracted from the environment.

 The non-Markovian character of the dynamics raises issues 
that go beyond the current framework of stochastic 
thermodynamics and that do not exist when dealing with a 
discrete (non-autonomous) feedback control. 

Main theme of the talk:  Because of the delay, the time-
reversal operation becomes highly non-trivial. However, one 
cannot understand the behavior of the system (in particular 
the fluctuations) without referring to  the unusual properties of 
the reverse process.
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A. SECOND LAW-LIKE INEQUALITIES: 
(bounds for the average extracted work)

B. FLUCTUATIONS (work, heat, 
 entropy production): large-deviation 
functions and fluctuation relations 

For more details, see PRL 112, 180601 (2014) and Phys. Rev. 
E 91, 042114 (2015).

For more details, see cond-mat. arXiv soon...

TALK  ROADMAP
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mv̇t = ��vt + F (xt) + Ffb(t) +
p

2�T ⇠(t)

Langevin equation:

Stochastic Delay Differential Equations (SDDEs) have a rich 
dynamical behavior (multistability, bifurcations, stochastic 
resonance , etc.). However, we will only focus on the steady-
state regime.

with

 Inertial effects play an important role in human motor control 
and in experimental setups involving mechanical or 
electromechanical systems. 

 Deterministic feedback control: no measurement errors

A.    SECOND-LAW-LIKE INEQUALITIES

Ffb(t) = Ffb(xt�⌧ + ⌘t�⌧ )
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Consequences of non-Markovianity
1) The full description of the time-evolving state of the system in 
terms of pdf’s requires the knowledge of the whole Kolmogorov 
hierarchy p(x, v, t), p(x1, v1, t1;x2, v2, t2), etc.

There is an infinite hierarchy of Fokker-Planck (FP) equations 
that has no close solution in general.

The definition of the Shannon entropy depends on the level of 
description. There is no unique entropy-balance equation from 
the FP formalism (nor unique second-law-like inequality), but 
a set of equations and inequalities.

2) The time-reversal operation is non-trivial and leads to 
another second-law-like inequality (in this sense, one looses 
the nice consistency of stochastic thermodynamics).
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3) Preparation effects are crucial due to the memory of the 
dynamics.

We will only focus on the steady-state regime and 
on the asymptotic behavior in the long-time limit 
(we will not consider transients).
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F̄fb(x, v, t)] :=
1

p(x, v, t)

Z 1

�1
dyFfb(y)p(x, v, t; y, t� ⌧)

Second-law-like inequalities obtained from 
the FP description

where

and

is an effective time-dependent force obtained by formally 
integrating out the dependence on the variable 

FP equation for the one-time pdf: 

yt := xt�⌧
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Q̇(t) =
�

m
(mhv2

t i � T )

 Corresponding Shannon entropy

   
d/dt +FP equation => Entropy balance equation:

Ṡ

xv

i

(t) =
m

2

�T

Z
dxdv

[Jv

irr

(x, v)]2

p(x, v, t)
� 0

Ṡ

xv

pump

(t) = � 1
m

h@
v

F̄

fb

(x, v, t)i

«Entropy pumping» rate  that describes the influence of the continuous feedback. 
The effective force contributes to the balance equation because it is velocity -
dependent (i.e., it contains a piece which is antisymmetric  under time-reversal).

where

and

d

dt
Sxv(t) = Ṡxv

i

(t)� Q̇(t)
T

� Sxv

pump

(t)

heat exchanged with the bath

non-negative «EP» rate

S

xv(t) =
Z

dx dv p(x, v, t) ln p(x, v, t)
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Ẇ
ext

T
 Ṡv

pump

 Ṡxv

pump

 In the steady state regime, one then obtains a second-
law-like inequality 

• one can extract work from the heat bath if 

•   (this depends on the delay, among other things) 

Ẇ
ext

T
 Ṡxv

pump

Ṡxv

pump

> 0

Similarly, by working in momentum space only, and defining the 
Shannon entropy as

(Ẇ
ext

= �Q̇)

S

v(t) =

Z
dx dv p(v, t) ln p(v, t)

one obtains another inequality
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İ

xv;y
flow,v

(t) :=
Z

dx dv dy @

v

J

v(x, v, t; y, t� ⌧) ln
p(x, v, t; y, t� ⌧)

p(x, v, t)p(y, t� ⌧)

The entropy pumping rates have no direct interpretation in 
terms of information-theoretic measures, but one can also 
consider information flows that reveal how the exchange of 
information between the system and the controller is affected 
by the time delay, e.g.

For more details, see Phys. Rev. E 91, 042114 (2015)
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mv̇t = ��vt + F (xt) + Ffb(xt+⌧ ) +
p

2�T ⇠(t)

Second-law-like inequality obtained from 
time reversal

In the case of non-autonomous feedback control with 
measurements and actions performed step by step at regular 
time intervals (e.g. Szilard engines), one can record the 
measurement outcomes and define a reverse process that 
does not involve any measurement nor feedback (see recent 
review in Nature Phys. 11, 131, 2015). This is not possible 
when the feedback is implemented continuously.

One must also reverse the feedback

The feedback force then depends on the future ! The 
«conjugate» dynamics is acausal.
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P[X|Y] probability to observe X = {xs}t0 given the previous path Y = {xs}0�⌧

S[X,Y] =
1

4�

Z t

0
ds

⇥
mẍs + �ẋs � F (xs)� Ffb(xs�⌧ )

⇤

P[X|Y] / J e��S[X,Y]

q[X,Y] =

Z t

0
ds [�vs �

p
2�T ⇠s] � vs

= �
Z t

0
ds [mv̇s � F (xs)� Ffb(xs�⌧ )] � vs

J path-independent Jacobian (contains the factor e
�

2m t
)

S[X,Y] = Onsager-Machlup action functional

The heat is odd under time reversal if ⌧ is changed into � ⌧

Generalized local detailed balance equation:

Fluctuating heat: 
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P[X|Y]

P̃[X†|x†
i ,Y

†]
=

J
J̃ [X]

e�Q[X,Y]

P̃[X†|x†
i ,Y

†] / J̃ [X]e��S̃[X†,Y†]

S̃[X,Y] =
1

4�

Z t

0
ds

⇥
mẍs + �ẋs � F (xs)� Ffb(xs+⌧ )

⇤

˜J [X] = non-trivial Jacobian due to the violation of causality

in general path dependent

with

Local detailed balance with continuous time-delayed feedback 
control:
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Ẇ
ext

T
 ṠJ

hRcg[X]i =
Z
DX P[X] ln

P[X]
P̃[X†]

heRcg[X]i = 1

ṠJ := lim
t!1

1

t
hln J

J̃ [X]
ist

In the steady state, this leads to another second-law-like 
inequality: 

where

which satisfies an integral fluctuation theorem

One can then define a generalized «entropy 
production»  (Kullback-Leibler divergence):

(this quantity can be computed exactly in a linear 
system but this requires a careful analysis of the 
«response function» associated to the acausal 
conjugate Langevin equation in Laplace space.)

20

A crucial feature of Eq. (152) is the use of the bilateral

Laplace transform which is due to the fact that  (t) is
neither causal nor anti-causal. Accordingly, the integra-
tion line Re(s) = c must belong to the region of conver-
gence (ROC) of  (s), that is the region of the complex
s-plane were the transform exists[121]. Since  (t) = 0
for t  �⌧ , the ROC is defined by � > �

+
0 , where �+

0 is
the real part of s

+
0 , i.e., �+

0 = �1/(2Q0) for Q0 � 1/2
and �+

0 = �1/(2Q0)[1� (1� 4Q

2
0)1/2] for Q0  1/2.

One can readily check that the expansion (149) is
recovered by computing each term of the series (152)
by contour integration, invoking Jordan’s lemma and
Cauchy’s residue theorem: one closes the so-called
Bromwich contour (the vertical line cutting the real axis
in c, with c in the ROC) with a large semicircle to the
left-hand side of the complex plane and sums the two
residues of  (s)n at s

+
0 and s

�
0 .

In general, however, the power series (152) does not
converge for arbitrary values of the gain g. Moreover, this
is not a convenient route for computing ṠJ numerically.
What is needed is a closed-form expression for the sum of
the series that can be used in the whole parameter space
(Q0, ⌧, g) or at least in the regions where a stationary
state exits. An obvious candidate for such a formula is
the integral representation

ṠJ = � 1
2⇡i

Z

c+i1

c�i1
ds ln[1�  (s)] (154)

obtained by interchanging the sum and the integral and
summing the series

P

n=1(1/n) (s)n. Of course, this
presupposes that the integration line Re(s) = c (with
c > �

+
0 ) is such that | (s)| < 1 all along the line. The

series then converges uniformly to the principal value of
ln[1�  (s)].

By analytic continuation, however, one can still use
Eq. (154) when | (s)| > 1 to compute ṠJ provided one
stays on the same branch of the function ln[1 �  (s)].
In other words, the Bromwich contour Re(s) = c must
not cross any of the cuts that define the branch in the
complex s-plane. Although this requires a careful (and
rather tedious) study of the branch points of ln[1� (s)]
as a function of the system’s parameters, the reward of
these e↵orts will be the derivation of a simple formula for
ṠJ : see Eq. (160).

For this study it is convenient to first rewrite Eq. (154)
as

ṠJ =
1

2⇡i

Z

c+i1

c�i1
ds ln

e�(s)
�

g=0(s)
(155)

where

�

g=0(s) := [(s� s

+
0 )(s� s

�
0 )]�1 = [s2 + s/Q0 + 1]�1

(156)

is the standard response function (in Laplace representa-
tion) of the harmonic oscillator (cf. Eq. (96) with ! = is

and k

0 = 0), and

e�(s) := [s2 +
s

Q0
+ 1� g

Q0
e

s⌧ ]�1 (157)
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•
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FIG. 4: (Color on line) Schematic distribution of the branch
points of ln[e�(s)/�

g=0(s)] in the complex s-plane. The black
dots are the two poles s

±
0 of �

g=0(s) and the stars are the poles
s̃

± of type 0 (blue) and of type 1 (red) of e�(s). Only the first
poles of type 1 are shown in the figure. The dashed (red)
lines represent the branch cuts (on the right-hand side of the
s-plane, they go to +1). The full black lines, including the
vertical line that represents the Bromwich contour Re(s) = c,
form the contour used for calculating ṠJ from Eq. (155).

is the “response function” corresponding to the acausal
Langevin equation (136). (This may be viewed as an
abuse of language, though, since the acausal dynamics
cannot be implemented physically.) As a result, the
branch points of the integrand in Eq. (155) are s

+
0 , s

�
0

on the one hand, and s = +1 and the poles of e�(s) on
the other hand[122]. The location of these poles in the
complex plane evolves in an intricate manner with the
system’s parameters. From a practical standpoint it is
convenient to fix the values of Q0 and ⌧ and take g as
the control variable, as in feedback-cooling experimen-
tal setups (see e.g. [114]). The results of this analysis
are summarized in Appendix D (to simplify the discus-
sion, we only consider the case of a positive feedback).
The study is numerical for the most part, since analytical
calculations can be performed only in the initial pertur-
bative regime g/Q0 ⌧ 1 or for Q0 � 1.

A schematic distribution of the branch points and of
the corresponding branch cuts is shown in Fig. 4. It is
clear in this example that there is only one possibility for
placing the Bromwich contour, i.e., in the interval be-
tween the two poles s̃

± of type 0 and the leftmost pole of
type 1 (this terminology for the poles of e�(s) is justified
in Appendix D). Although there can be more complicated
situations than this one (see the example in Fig. 1 of Ap-
pendix D), one can show that the choice for the location
of the integration line is always unambiguous and can be
stated as follows: there must be two and only two poles of

e�(s) on the left side of the line. This allows a straightfor-
ward calculation of the integral in Eq. (155) by contour
integration, which is similar to the calculation that leads
to the classical Bode’s integral formula[123]. In the ex-
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Example for a linear system: 

Solid black line: 
extracted work

red and blue lines: 
various bounds.
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FIG. 9: (Color on line) (a): Second-law-like inequalities (see
caption of Fig. 6) as a function of the delay for Q0 = 2 and
g/Q0 = 0.45. The information flow İxv;y

flow,v

is not represented

as it diverges for ⌧ = 0. Note that ṠJ (dashed-dotted blue
line) changes sign with ⌧ , in contrast with its behavior with
g/Q0 for ⌧ = 2.5 and ⌧ = 8. (b): “Entropy production” rate
Ṙ

cg

.

Q0 ! 1. As it must be, all second-law-like inequalities
are satisfied for all values of ⌧ . Again, we observe that
Ṡv

pump

is the tightest bound to Ẇ
ext

/T . Note that the

sign of ṠJ changes with ⌧ and that its first zero is close
but distinct from ⌧

⇤(g), the value for which T

v

= T and
Ẇ

ext

= 0. In all cases, provided ⌧ > 0, the rate Ṙ
cg

plotted in Fig. 9(b) is always strictly positive.

An interesting feature is that ṠJ ! 0 as ⌧ ! 1
whereas T

x

and T

v

(see Eqs. (C6)), and therefore Ẇ
ext

and the other rates, go to finite values. When ⌧ is very
large, the feedback is indeed completely ine�cient since
measuring the position at time t� ⌧ does not bring any
information about the state of the system at time t. The
feedback force then acts as a purely random force and
the system is heated (Ẇ

ext

< 0). It is remarkable that
ṠJ captures this e↵ect by going to zero. Accordingly,
one has Ṙ

cg

⇠ �Ẇ
ext

/T asymptotically. As will be dis-
cussed in a forthcoming paper[31], ṠJ has some relation,
at least in the case of linear systems, with the logarithm
of the so-called “e�cacy parameter” defined in [11, 17]
for nonautonomous Maxwell’s demons. The fact that the
e�cacy parameter converges to 1 as the delay between
the measurement and the control action becomes very
large has been observed experimentally[15].

The behavior for g/Q0 = 0.55 is shown in Fig. 10. The
main di↵erence with the preceding case is the occurrence
of Hopf bifurcations that result in the presence of three
stability lobes (see Fig. 16 in Appendix C; for clarity,
only two of them are shown in Fig. 11). The only new
piece of information is that ṠJ , as a well-defined math-
ematical quantity, remains finite in the instability zones

(blue dotted line in the figure). This of course has no
special physical meaning.
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FIG. 10: (Color on line) Same as Fig. 9 for Q0 = 2 and
g/Q0 = 0.55. The stability lobes are delimited by the dashed
vertical lines; the third stability lobe (for 15.02 < ⌧ < 15.97)
is not represented. The dotted blue line represents the con-
tinuation of ṠJ in the instability regions.

2. Q0 = 34.2

The above cases describe the behavior of oscillators
with a low quality factor, such as a torsion pendulum
in a viscous fluid (see e.g. [128]). We now consider a
resonator with a larger Q0 and take as an example the
AFMmicro-cantilever used in the experiments of [129] for
which Q0 ⇡ 34.2 (2⇡/!0 = 116µs and ⌧0 = 632µs). The
corresponding rates are plotted in Fig. 11 as a function
of ⌧ , for an arbitrarily value of the gain g = 0.25Q0.
Although there are only two stability lobes in this

case, the behavior starts to resemble the one observed
for Q0 ! 1 (see Figs. 3 (b) and 3(d)). In particu-
lar, the bounds Ṡv

pump

and İv;y
flow,v

+ Ṡv;y
pump

significantly
overestimate the extracted work rate. If one were to de-
fine the corresponding “feedback e�ciencies” as ✏1 =
Ẇ

ext

/(T Ṡv

pump

) and ✏2 = Ẇ
ext

/[T (İv;y
flow,v

+ Ṡv;y
pump

)],
they would be very small. The same is true for the
bound ṠJ , and therefore the main contribution to the
positive “entropy production” rate Ṙ

cg

= �Ẇ
ext

/T+ṠJ
in Fig. 11(b) comes from ṠJ . Note that the ranking
Ẇ

ext

/T  Ṡv

pump

 ṠJ  İv;y
flow,v

+ Ṡv;y
pump

in the first
stability lobe is the one predicted in the limit Q0 ! 1.
On the other hand, ṠJ � İv;y

flow,v

+ Ṡv;y
pump

in the second
lobe.
As discussed in Appendix D, a remarkable mathemat-

ical property of the rate ṠJ is that it is not an analytic
function of g (for fixed ⌧) or of ⌧ (for fixed g) because of a
crossing phenomenon in the poles of the acausal response
function �̃(s). This is the origin of the cusp observed in
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B.  FLUCTUATIONS

mv̇t = ��vt � kxt + k

0
xt�⌧ +

p
2�T ⇠(t)

To be concrete, we will consider a linear Langevin equation, i.e. 
a stochastic harmonic oscillator submitted to a linear feedback 

In reduced units: 3 parameters

v̇t = �xt �
1

Q0
vt +

g

Q0
xt�⌧ + ⇠t

Feedback Cooling of a Cantilever’s Fundamental Mode below 5 mK

M. Poggio,1,2 C. L. Degen,1 H. J. Mamin,1 and D. Rugar1

1IBM Research Division, Almaden Research Center, 650 Harry Rd., San Jose California 95120, USA
2Center for Probing the Nanoscale, Stanford University, 476 Lomita Hall, Stanford California 94305, USA

(Received 7 February 2007; published 2 July 2007)

We cool the fundamental mechanical mode of an ultrasoft silicon cantilever from a base temperature of
2.2 K down to 2:9! 0:3 mK using active optomechanical feedback. The lowest observed mode
temperature is consistent with limits determined by the properties of the cantilever and by the
measurement noise. For high feedback gain, the driven cantilever motion is found to suppress or ‘‘squash’’
the optical interferometer intensity noise below the shot noise level.

DOI: 10.1103/PhysRevLett.99.017201 PACS numbers: 85.85.+j, 42.50.Lc, 45.80.+r, 46.40."f

Feedback control of mechanical systems is a well-
established engineering discipline which finds applications
in diverse areas of physics, from the stabilization of large
cavity mirrors used in gravitational wave detectors [1] to
the control of tiny cantilevers in atomic force microscopy
[2–6]. Recently, the prospect of cooling a mechanical
resonator to its quantum ground state has spurred renewed
interest in the damping of oscillators through both active
feedback [7,8] and passive backaction effects [9–12].
Motivated by the ability to make ever smaller mechanical
devices and ever more sensitive detectors of motion, re-
searchers are pushing towards a regime in which collective
vibrational motion should be quantized [13]. In combina-
tion with conventional cryogenic techniques, the cooling of
a single mechanical mode using feedback may provide an
important step towards achieving the quantum limit in a
mechanical system. Here, we demonstrate the feedback
cooling of an ultrasoft silicon cantilever to below 5 mK
starting from a base temperature as high as 4.2 K. Starting
from this temperature, the vibrational mode of the oscil-
lator is cooled near the level of the measurement noise,
which sets a fundamental limit on the cooling capacity of
feedback damping [7,14]. In the future, minimizing such
noise may be key to achieving single-digit mode occupa-
tion numbers.

We study the fundamental mechanical mode of two
120# 3# 0:1-!m single-crystal Si cantilevers of the
type shown in Fig. 1(b). The ends of the levers are designed
with a 2# 15-!m mass which serves to suppress the
motion of flexural modes above the fundamental [15].
Cantilevers 1 and 2 have resonant frequencies of 3.9 and
2.6 kHz, respectively, due to the difference in mass of the
samples which have been glued to their ends. The sample
on cantilever 1 is a 0:1-!m3 particle of SmCo while the
sample on cantilever 2 is a 50-!m3 particle of CaF2
crystal. Both samples are not related to the work presented
here aside from the added mass which they contribute. The
oscillators’ spring constants are both determined to be k $
86 !N=m through measurements of their thermal noise
spectra at several different base temperatures. Each canti-
lever is mounted in a vacuum chamber (pressure <1#

10"6 torr) at the bottom of a dilution refrigerator which has
been isolated from environmental vibrations. The motion
of the lever is detected using laser light focused onto a
10-!m-wide paddle near the mass-loaded end and re-
flected back into an optical fiber interferometer [16]. One
hundred nW of light are incident on the lever from a
temperature-tuned 1550-nm distributed feedback laser di-
ode [17]. The interferometric cantilever position signal is
sent through a differentiator circuit and a variable elec-
tronic gain stage back to a piezoelectric element which is
mechanically coupled to the cantilever, as shown schemati-
cally in Fig. 1(a). The overall bandwidth of the feedback
was limited to 300 Hz–15 kHz by bandpass filters. For
negative gain, this feedback loop has the effect of produc-
ing a damping force on the cantilever proportional to the
velocity of its oscillatory motion.

For frequencies in the vicinity of the fundamental mode
resonance, the motion of a cantilever is well approximated
by

−
( )+Γ−
=

+

µ

FIG. 1. (a) Schematic diagram of the experimental setup
and (b) scanning electron micrograph of a representative Si
cantilever.

PRL 99, 017201 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
6 JULY 2007

0031-9007=07=99(1)=017201(4) 017201-1  2007 The American Physical Society

describes accurately the 
d y n a m i c s o f n a n o -
mechanical resonators 
(e.g. the cantilever of an 
AFM) used in feedback 
cooling setups.

Q0 = !0⌧0 (!0 =
p

k/m, ⌧0 = m/�)

g = (k0/k)Q0Gain: 

Quality factor:
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Work: �W[X,Y] =

2g

Q

2
0

Z t

0
ds xs�⌧vs

Heat: �Q[X,Y] = �W [X,Y]��U(xi,xf )

= �W [X,Y]� 1

Q0
(x2

f � x

2
i + v

2
f � v

2
i )

PA(A, t) = h�(A� �A[X,Y])ist

=

Z
dxf

Z
DY Pst[Y]

Z
xf

xi

DX �(A� �A[X,Y])P[X|Y]

ZA(�, t) = he���A[X,Y]ist =
Z +1

�1
dA e��APA(A, t)

“Pseudo EP” ⌃[X,Y] = �Q[X,Y] + ln

pst(xi)

pst(xf )

We study the fluctuations of 3 observables:

Quantities of interest: probability distribution functions

and the corresponding moment generating functions
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PA(A = at) ⇠ e�IA(a)t

where ⇠ denotes logarithmic equivalence and I(a) is the LDF

Similarly: ZA(�, t) ⇡ gA(�)e
µA(�)t

where µA(�) = lim
t!1

1

t
lnhe���A[X,Y]ist is the SCGF

(Scaled Cumulant Generating Function)

and the pre-exponential factor gA(�) typically arises from the

average over the initial and final states. Here the “initial” state isY

Expected long-time behavior of the pdfs:

The 3 observables only differ by «boundary» terms that are not 
extensive in time. However, since the potential V(x) is 
unbounded,  these terms may fluctuate to order t !

Pole singularities in the prefactors and exponential 
tails in the pdf’s (e.g. for the heat)
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Q0 = 34.2, g/Q0 = 0.25

8

in I, respectively. We recall that T
x

is the temperature commonly measured in experiments[93, 95, 155] whereas T
v

determines the heat flow (and thus the extracted work) in the stationary state (see Eq. (104) in I). Inserting Eq. (48)
into Eq. (5) yields

�⌃[X,Y] = �W[X,Y] +
1

Q
0



T � T
x

T
x

(x2

f

� x2

i

) +
T � T

v

T
v

(v2
f

� v2
i

)

�

. (49)

Since Eq. (44) is linear and the noise is Gaussian, all stationary probabilities, such as p
st

(x, v) or P
st

[Y], are
Gaussian distributions. Moreover, W[X,Y] is a quadratic functional, and therefore the calculation of the generating
functions Z

W

(�, t),Z
Q

(�, t), and Z
⌃

(�, t) boils down to computing Gaussian path integrals. For instance, the calcu-
lation of Z

W

(�, t) given by Eq. (29) could be performed in the following order: first compute the path integral over
X for Y and x

f

fixed, then the path integral over Y weighted by P
st

[Y], and finally the ordinary Gaussian integral
over x

f

. In principle, the path integrals can be evaluated by the saddle-point method, determining the most probable
trajectory and computing the corresponding optimal action together with the Gaussian fluctuations. Unfortunately,
we are unable to achieve this program at this moment for two reasons. Firstly, as shown in Appendix B, the Euler-
Lagrange equation for the optimal trajectory X⇤[Y,x

f

] is a forward-backward delay di↵erential equation that has
no closed-form solution in general (it can only be solved by in a perturbative way, e.g. by expanding in powers of
g). Secondly, we do not know the expression of P

st

[Y] (as explained in the Appendix A of I, this probability is only
known in the overdamped limit m = 0).

Things become simpler in the long-time limit, and the analytical expression of the SCGF µ
W

(�) can be calculated
under a reasonable assumption. The LDF I

W

(w) is then readily obtained. On the other hand, since we are unable to
compute the pre-exponential factors g

Q

(�) and g
⌃

(�) (and in particular to determine the position of all singularities),
we cannot derive the full expressions of I

Q

(q) and I
⌃

(�). However, some useful insights on this issue can be gained
by inspecting the small-⌧ limit of the Langevin equation. In this limit, which corresponds to the Markovian model
of [4, 5], a complete analytical description of the stochastic fluctuations is indeed possible, which is summarized in
Appendix A (a first, but incomplete, analysis was performed by two of us in [3]). This study, together with the
additional pieces of information gathered from a direct numerical study of the fluctuations, will eventually allow us
to propose a global scenario.

In order to give the reader a foretaste of the puzzle that has to be deciphered, we first show some typical numerical
data obtained by simulating Eq. (44). The theoretical interpretation is postponed to Sec. III B.

A. Numerical study
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Q
0

FIG. 1: (Color on line) Stability diagram of the feedback-controlled oscillator for Q0 = 34.2. The oscillator becomes unstable
inside the shaded regions. The acausal response function e�(s) has all its poles located in the r.h.s. of the complex s-plane
inside the regions delimited by the dashed red lines and two poles in the l.h.s. outside these regions.

Although we have studied the model described by Eq. (45) for various values of the parameters Q
0

and g, in this
section we only present the numerical results obtained for Q

0

= 34.2 and g/Q
0

= 0.25. This choice of the parameters

Numerical study: 

The quality factor corresponds to the cantilever of the AFM used 
in recent experiments  by Ciliberto et al (Eur. Phys. Lett. 89, 
60003 (2010))

T h e f e e d b a c k -
controled oscillator 
h a s a c o m p l e x 
dynamical behavior as 
a function of the delay 
o r t h e g a i n g : 
multistability regime

As an exemple, we will study the fluctuations in the second 
lobe where the system can reach a stationary state. 
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Fluctuations of the 3 observables for different noise realizations:
The length of the trajectory is t=100

Boundary terms are still non negligible. Fluctuations are 
correlated but the qualitative behavior depends on the delay !
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FIG. 1: (Color on line) Stability diagram of the feedback-
controlled oscillator for Q0 = 34.2. The oscillator becomes
unstable inside the shaded regions. The acausal response
function e�(s) has all its poles located in the r.h.s. of the
complex s-plane inside the regions delimited by the dashed
red lines and two poles in the l.h.s. outside these regions.

will reveal a remarkable connection with the dynamical
behavior of the acausal Langevin equation (18).

Noise realizations
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FIG. 2: (Color on line) Stochastic fluctuations of W[X,Y]
(solid black line), Q[X,Y] (dotted blue line), and ⌃[X,Y]
(dashed red line) for Q0 = 34.2 g/Q0 = 0.25, ⌧ = 7.6 (left
panel) and ⌧ = 8.4 (right panel). The figure shows the re-
sults obtained with a trajectory of duration t = 100 and 75
independent noise realizations. Lines are only a guide for the
eyes.

To start with, we show in Fig. 2 an example of the
sample-to-sample fluctuations of W, Q, and ⌃ in the
second stability lobe for t = 100 (a qualitatively simi-
lar behavior is observed in the first lobe). The Langevin
equation is solved by using Heun’s method[91] with a
time-step �t = 5.10�4.

As expected, the fluctuations of the three observables
are strongly correlated. However, despite the long du-
ration of the observed trajectory, the boundary terms
(which are non-extensive in time) are still not negligible.
The most striking feature is that they contribute di↵er-
ently to the observables depending on the value of ⌧ : for
⌧ = 7.6, the quantity that exhibits the largest fluctua-
tions is ⌃, whereas it is Q for ⌧ = 8.4. Note that the sys-
tem operates in the feedback cooling regime in both cases
(T

x

/T ⇡ 0.42, T
v

/T ⇡ 0.36, �Ẇ
ext

⌘ ��Ẇ ⇡ 0.019 for
⌧ = 7.6, and T

x

/T ⇡ 0.72, T
v

/T ⇡ 0.84, �Ẇ
ext

⇡ 0.005
for ⌧ = 8.4).
To get a more quantitative picture, the corresponding

probability distributions are shown in Figs. 3 and 4.
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FIG. 3: (Color on line) Probability distribution functions
P

W

(W = wt), P
Q

(Q = qt), and P⌃(⌃ = �t) for Q0 = 34.2,
g/Q0 = 0.25 and ⌧ = 7.6. The duration of the trajectory is
t = 100. Points represent numerical data obtained by solv-
ing the Langevin equation (45) for 2.106 realizations of the
noise: W (black circles), Q (blue stars), and ⌃ (red squares).
The solid black line is the theoretical curve e�I

W

(w)t obtained
from Eq. (66), and the dashed black line is the semi-empirical
large-deviation form given by Eq. (69). The dashed red lines
on the l.h.s. for � / �0.048 is the theoretical curve e

�I⌃(�)t

obtained from Eq. (72).

These figures clearly confirm the remarkable feature
suggested by Fig. 2: P⌃(⌃ = �t) for ⌧ = 7.6 and
P
Q

(Q = qt) for ⌧ = 8.4 di↵ers markedly from P
W

(w =
wt). Of course, these results must be taken with a grain
of salt since it is notoriously di�cult to grasp the stochas-
tic fluctuations in the long-time limit. However, as will
be discussed later, the picture emerging from Figs. 3
and 4 is consistent with the exact analytical analysis
performed in Appendix A in the small-⌧ limit. There-
fore, we may reasonably assume that it represents the ac-
tual asymptotic behavior of the probability distributions,
which will be rationalized in subsection B (including the
di↵erences with the leading large-deviation behavior de-
fined by e�I

W

(w)t)
The corresponding estimates of the generating func-

----- W

----- Q

----- S
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PW (W = wt) ⇠ e�I(w)t

Probability distribution functions:

The solid black line the theoretical curve

PQ(Q = qt) P⌃(⌃ = �t) ⌧
Main Puzzle: How can we explain the change of behavior of 

and with       ?             

and the dashed solid line takes into account finite-time corrections.
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controlled oscillator for Q0 = 34.2. The oscillator becomes
unstable inside the shaded regions. The acausal response
function e�(s) has all its poles located in the r.h.s. of the
complex s-plane inside the regions delimited by the dashed
red lines and two poles in the l.h.s. outside these regions.
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Noise realizations

-6

-4

-2

0

2

W
, Q

, Σ

Noise realizations

-8

-6

-4

-2

0

2

4
τ=7.6 τ=8.4

FIG. 2: (Color on line) Stochastic fluctuations of W[X,Y]
(solid black line), Q[X,Y] (dotted blue line), and ⌃[X,Y]
(dashed red line) for Q0 = 34.2 g/Q0 = 0.25, ⌧ = 7.6 (left
panel) and ⌧ = 8.4 (right panel). The figure shows the re-
sults obtained with a trajectory of duration t = 100 and 75
independent noise realizations. Lines are only a guide for the
eyes.

To start with, we show in Fig. 2 an example of the
sample-to-sample fluctuations of W, Q, and ⌃ in the
second stability lobe for t = 100 (a qualitatively simi-
lar behavior is observed in the first lobe). The Langevin
equation is solved by using Heun’s method[91] with a
time-step �t = 5.10�4.

As expected, the fluctuations of the three observables
are strongly correlated. However, despite the long du-
ration of the observed trajectory, the boundary terms
(which are non-extensive in time) are still not negligible.
The most striking feature is that they contribute di↵er-
ently to the observables depending on the value of ⌧ : for
⌧ = 7.6, the quantity that exhibits the largest fluctua-
tions is ⌃, whereas it is Q for ⌧ = 8.4. Note that the sys-
tem operates in the feedback cooling regime in both cases
(T

x

/T ⇡ 0.42, T
v

/T ⇡ 0.36, �Ẇ
ext

⌘ ��Ẇ ⇡ 0.019 for
⌧ = 7.6, and T

x

/T ⇡ 0.72, T
v

/T ⇡ 0.84, �Ẇ
ext

⇡ 0.005
for ⌧ = 8.4).
To get a more quantitative picture, the corresponding

probability distributions are shown in Figs. 3 and 4.
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FIG. 3: (Color on line) Probability distribution functions
P

W

(W = wt), P
Q

(Q = qt), and P⌃(⌃ = �t) for Q0 = 34.2,
g/Q0 = 0.25 and ⌧ = 7.6. The duration of the trajectory is
t = 100. Points represent numerical data obtained by solv-
ing the Langevin equation (45) for 2.106 realizations of the
noise: W (black circles), Q (blue stars), and ⌃ (red squares).
The solid black line is the theoretical curve e�I

W

(w)t obtained
from Eq. (66), and the dashed black line is the semi-empirical
large-deviation form given by Eq. (69). The dashed red lines
on the l.h.s. for � / �0.048 is the theoretical curve e

�I⌃(�)t

obtained from Eq. (72).

These figures clearly confirm the remarkable feature
suggested by Fig. 2: P⌃(⌃ = �t) for ⌧ = 7.6 and
P
Q

(Q = qt) for ⌧ = 8.4 di↵ers markedly from P
W

(w =
wt). Of course, these results must be taken with a grain
of salt since it is notoriously di�cult to grasp the stochas-
tic fluctuations in the long-time limit. However, as will
be discussed later, the picture emerging from Figs. 3
and 4 is consistent with the exact analytical analysis
performed in Appendix A in the small-⌧ limit. There-
fore, we may reasonably assume that it represents the ac-
tual asymptotic behavior of the probability distributions,
which will be rationalized in subsection B (including the
di↵erences with the leading large-deviation behavior de-
fined by e�I

W

(w)t)
The corresponding estimates of the generating func-
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FIG. 4: (Color on line) Same as Fig. 3 for ⌧ = 8.4. The
dashed blue line on the l.h.s. for q / �0.042 is the theoretical
curve e

�I

Q

(q)t obtained from Eq. (72).

tions (more precisely (1/t) lnZ
A

(�, t)) are shown in Fig.
5. Again we observe a striking di↵erence in the behavior
of these functions for ⌧ = 7.6 and ⌧ = 8.4. It is also ob-
vious that the pre-exponential factors play an essential
role.
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FIG. 5: (Color on line) Numerical estimates of the generating
functions Z

A

(�, t) ⇡ (1/N
S

)
P

N

S

e

��A[X,Y] for t = 100 and

N

S

= 2.106: W (black circles), Q (blue stars), and ⌃ (red
squares). The solid black line represents the theoretical SCGF
µ

W

(�) given by Eq. (59) in the interval [�
min

,�

max

] in which
this quantity is real.

Finally, we focus on the special value � = 1 and show in
Fig. 6 the numerical estimates of (1/t) lnZ

A

(1, t) in the
whole stability lobe. In other words, we investigate the
influence of the delay on the asymptotic integral fluctu-
ation relations lim

t!1(1/t) lnhe��Ai
st

. At the moment,
we just observe that the data for Q are in good agree-
ment with the theoretical value 1/Q0 (i.e �/m in real

units) predicted by Eq. (27). On the other hand, the be-
havior of the asymptotic IFT’s for W and ⌃ is non-trivial
and this evidently requires a theoretical justification.
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FIG. 6: (Color on line) Long-time behavior of (1/t) lnhe��Ai
st

(i.e. asymptotic integral fluctuation theorems) as a function
of ⌧ in the second stability lobe of Fig. 1. The numerical
estimates of the IFTs forW (black circles), Q (blue stars), and
⌃ (red squares) for t = 100 are compared to the theoretical
value of Ṡ

J

(solid blue line) obtained from Eq. (63). For
⌧ / 7.37 and ⌧ ' 8.32, µ

W

(1) given by Eq. (62) is equal to
Ṡ
J

, whereas it is equal to 1/Q0 (dashed red line) for 7.37 /
⌧ / 8.32. The black solid line is the extracted work rate
Ẇ

ext

/T . Note that 1/Q0 is a tighter bound to Ẇ
ext

/T than
ṠJ in the intermediate range of ⌧ .

B. Theoretical analysis

We now present a theoretical scenario that (tenta-
tively) explains the complicated behavior of the fluctua-
tions of the three observables described above. The main
challenge is to understand why W, Q, and ⌃, which only
di↵er by temporal boundary terms, behave in such a dis-
tinct manner as a function of the delay. We first fo-
cus on the work fluctuations and derive the expression of
µ
W

(�) and I
W

(w) by analyzing the long-time behavior
of Z

W

(�, t), given by Eq. (29). Our main assumption
is that the average over the initial and final conditions
(Y and x

f

) is irrelevant asymptotically. In other words,
we assume that i) one can use the Fourier transform to
compute the path integral over the trajectory X, and ii)
there are no singularities in the pre-exponential factor
g
W

(�). The study of the fluctuations of Q and ⌃ is more
delicate, and our analysis will be inspired by the exact re-
sults available of the small-⌧ limit reported in Appendix
A.
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Z⌃(1, t) ⌘ he��⌃[X,Y]ist ⇠ eṠJ t , t ! 1

(ṠJ := lim
t!1

1

t
ln

J
J̃
)
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/T . Note that 1/Q0 is a tighter bound to Ẇ
ext

/T than ṠJ in the intermediate range
of ⌧ .

B. Theoretical analysis

We now present a theoretical scenario that (tentatively) explains the complicated behavior of the fluctuations of
the three observables described above. The main challenge is to understand why W, Q, and ⌃, which only di↵er by
temporal boundary terms, behave in such a distinct manner as a function of the delay. We first focus on the work
fluctuations and derive the expression of µ

W

(�) and I
W

(w) by analyzing the long-time behavior of Z
W

(�, t), given
by Eq. (29). Our main assumption is that the average over the initial and final conditions (Y and x

f

) is irrelevant
asymptotically. In other words, we assume that i) one can use the Fourier transform to compute the path integral over
the trajectory X, and ii) there are no singularities in the pre-exponential factor g

W

(�). The study of the fluctuations
of Q and ⌃ is more delicate, and our analysis will be inspired by the exact results available of the small-⌧ limit
reported in Appendix A.

1. Calculation of µ
W

(�)

Since we neglect all the boundary terms in the integrals, we may impose the periodic boundary conditions x
i

= x

f

and expand x
s

in a discrete Fourier series

x
s

=
�!

2⇡

1
X

n=�1
e�i!

n

sx
n

(50)

where �! = 2⇡/t and !
n

= n�! (see e.g. [31] or [47, 49] for a similar procedure). In the limit t ! 1, the standard
Fourier transform is recovered

x
s

=

Z

+1

�1

d!

2⇡
e�i!sx

!

x
!

=

Z

+1

�1
dt ei!sx

s

. (51)

Two origins: 1) Existence of integral fluctuation theorems (IFT): 

ZQ(1, t) ⌘ he��Q[X,Y]ist = e�t/m (exact result for an underdamped 
Langevin dynamics)

(not yet fully proved; some 
similarity with Sagawa-Ueda 
relation involving the so-called  
«efficacy parameter»)
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µQ(� = 1) 6= lim
�!1

µQ(�)

Such IFT’s imply a peculiar behavior of the 
generating functions  in the long-time limit:

Pole in the prefactor at     

� = 1

� = 1 in the limit t ! 1

Boundary layer in the vicinity of            for t large 
but finite

But this also depends on the value of the delay !
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ZQ(�, t) ⇠ eṠJ t

Z
dxi

Z
DY e(1��)��U(xi,xf )Pst[Y

†]

Z
xf

xi

DX e�� eS�[X,Y]

eS�[X,Y]

2) The behavior of the pdf’s also depends on whether the 
conjugate, acausal dynamics reaches or does not reach a 
stationary state. 

Inserting the local detailed balance equation into the definition 
of the generating function, one finds (for instance for the heat)

where is the OM action associated with the conjugate 
Langevin equation

The boundary terms become irrelevant in the long-
time limit when the conjugate acausal dynamics 
reaches a stationary state: no dependence on the 
state of the system in the far past or the far future .
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FIG. 7: (Color on line) Acausal response function e�(t) for Q0 = 2, g/Q0 = 0.55 and ⌧ = 2.5. (In the final version, we will
rather present a figure for Q0 = 43.2.)

where the sums in e�
+

(t) and e��(t) are over the two poles in the l.h.s. of the complex plane and all the poles in the
r.h.s., respectively. ex(t) is thus given by an infinite but converging sum of exponentials,

ex(t) ⇡
X

s2l.h.s.

A(s)

Z

t

�1
dt0es(t�t

0
)⇠(t0) +

X

s2r.h.s.

B(s)

Z 1

t

dt0e�s(t

0�t)⇠(t0) , (81)

and it can be numerically computed for a given noise history (in practice of course, one can only include a finite number
of terms in the second sum and the quality of the approximation depends on the specific values of the parameters).
In this way, we can generate a representative ensemble of trajectories and obtain the statistics of the modified work

fW[X,Y] =
2g

Q2

0

Z

t

0

ds ex(s+ ⌧)ėx(s) . (82)

A numerical check of Eq. (75) is shown in Fig. 8.
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FIG. 8: (Color on line) Verification of the asymptotic Crooks fluctuation theorem, Eq. (75). The figure compares P

W

(W =

wt)e�wt (black circles) with e
P (W̃ = �wt)eṠJ t (red squares) for Q0 = 2, g/Q0 = 0.55 and ⌧ = 2.5. The original pdf

P

W

(W = wt) is represented by the solid black line. The observation time is t = 20.

This figure also shows that this whole calculation is not purely academic since it gives some information about the
rare events that dominate the integral

R

P
W

(W, t)e�W dW in the long-time limit. These rare trajectories are generated
by rare realizations of the stochastic noise, and they are the conjugate twins (adopting the terminology of [29]) of

Acausal response function in the 
case where the conjugate 
dynamics reaches a stationary 
state

This also depends on the delay and can be related to the 
position of the poles of the acausal response function in the 
complex-frequency plane. 
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FIG. 4: (Color on line) Same as Fig. 3 for ⌧ = 8.4. The
dashed blue line on the l.h.s. for q / �0.042 is the theoretical
curve e

�I

Q

(q)t obtained from Eq. (72).

tions (more precisely (1/t) lnZ
A

(�, t)) are shown in Fig.
5. Again we observe a striking di↵erence in the behavior
of these functions for ⌧ = 7.6 and ⌧ = 8.4. It is also ob-
vious that the pre-exponential factors play an essential
role.
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FIG. 5: (Color on line) Numerical estimates of the generating
functions Z

A

(�, t) ⇡ (1/N
S

)
P

N

S

e

��A[X,Y] for t = 100 and

N

S

= 2.106: W (black circles), Q (blue stars), and ⌃ (red
squares). The solid black line represents the theoretical SCGF
µ

W

(�) given by Eq. (59) in the interval [�
min

,�

max

] in which
this quantity is real.

Finally, we focus on the special value � = 1 and show in
Fig. 6 the numerical estimates of (1/t) lnZ

A

(1, t) in the
whole stability lobe. In other words, we investigate the
influence of the delay on the asymptotic integral fluctu-
ation relations lim

t!1(1/t) lnhe��Ai
st

. At the moment,
we just observe that the data for Q are in good agree-
ment with the theoretical value 1/Q0 (i.e �/m in real

units) predicted by Eq. (27). On the other hand, the be-
havior of the asymptotic IFT’s for W and ⌃ is non-trivial
and this evidently requires a theoretical justification.
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FIG. 6: (Color on line) Long-time behavior of (1/t) lnhe��Ai
st

(i.e. asymptotic integral fluctuation theorems) as a function
of ⌧ in the second stability lobe of Fig. 1. The numerical
estimates of the IFTs forW (black circles), Q (blue stars), and
⌃ (red squares) for t = 100 are compared to the theoretical
value of Ṡ

J

(solid blue line) obtained from Eq. (63). For
⌧ / 7.37 and ⌧ ' 8.32, µ

W

(1) given by Eq. (62) is equal to
Ṡ
J

, whereas it is equal to 1/Q0 (dashed red line) for 7.37 /
⌧ / 8.32. The black solid line is the extracted work rate
Ẇ

ext

/T . Note that 1/Q0 is a tighter bound to Ẇ
ext

/T than
ṠJ in the intermediate range of ⌧ .

B. Theoretical analysis

We now present a theoretical scenario that (tenta-
tively) explains the complicated behavior of the fluctua-
tions of the three observables described above. The main
challenge is to understand why W, Q, and ⌃, which only
di↵er by temporal boundary terms, behave in such a dis-
tinct manner as a function of the delay. We first fo-
cus on the work fluctuations and derive the expression of
µ
W

(�) and I
W

(w) by analyzing the long-time behavior
of Z

W

(�, t), given by Eq. (29). Our main assumption
is that the average over the initial and final conditions
(Y and x

f

) is irrelevant asymptotically. In other words,
we assume that i) one can use the Fourier transform to
compute the path integral over the trajectory X, and ii)
there are no singularities in the pre-exponential factor
g
W

(�). The study of the fluctuations of Q and ⌃ is more
delicate, and our analysis will be inspired by the exact re-
sults available of the small-⌧ limit reported in Appendix
A.
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FIG. 1: (Color on line) Stability diagram of the feedback-
controlled oscillator for Q0 = 34.2. The oscillator becomes
unstable inside the shaded regions. The acausal response
function e�(s) has all its poles located in the r.h.s. of the
complex s-plane inside the regions delimited by the dashed
red lines and two poles in the l.h.s. outside these regions.

will reveal a remarkable connection with the dynamical
behavior of the acausal Langevin equation (18).
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-6

-4

-2

0

2

W
, Q

, Σ

Noise realizations
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FIG. 2: (Color on line) Stochastic fluctuations of W[X,Y]
(solid black line), Q[X,Y] (dotted blue line), and ⌃[X,Y]
(dashed red line) for Q0 = 34.2 g/Q0 = 0.25, ⌧ = 7.6 (left
panel) and ⌧ = 8.4 (right panel). The figure shows the re-
sults obtained with a trajectory of duration t = 100 and 75
independent noise realizations. Lines are only a guide for the
eyes.

To start with, we show in Fig. 2 an example of the
sample-to-sample fluctuations of W, Q, and ⌃ in the
second stability lobe for t = 100 (a qualitatively simi-
lar behavior is observed in the first lobe). The Langevin
equation is solved by using Heun’s method[91] with a
time-step �t = 5.10�4.

As expected, the fluctuations of the three observables
are strongly correlated. However, despite the long du-
ration of the observed trajectory, the boundary terms
(which are non-extensive in time) are still not negligible.
The most striking feature is that they contribute di↵er-
ently to the observables depending on the value of ⌧ : for
⌧ = 7.6, the quantity that exhibits the largest fluctua-
tions is ⌃, whereas it is Q for ⌧ = 8.4. Note that the sys-
tem operates in the feedback cooling regime in both cases
(T

x

/T ⇡ 0.42, T
v

/T ⇡ 0.36, �Ẇ
ext

⌘ ��Ẇ ⇡ 0.019 for
⌧ = 7.6, and T

x

/T ⇡ 0.72, T
v

/T ⇡ 0.84, �Ẇ
ext

⇡ 0.005
for ⌧ = 8.4).
To get a more quantitative picture, the corresponding

probability distributions are shown in Figs. 3 and 4.
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FIG. 3: (Color on line) Probability distribution functions
P

W

(W = wt), P
Q

(Q = qt), and P⌃(⌃ = �t) for Q0 = 34.2,
g/Q0 = 0.25 and ⌧ = 7.6. The duration of the trajectory is
t = 100. Points represent numerical data obtained by solv-
ing the Langevin equation (45) for 2.106 realizations of the
noise: W (black circles), Q (blue stars), and ⌃ (red squares).
The solid black line is the theoretical curve e�I

W

(w)t obtained
from Eq. (66), and the dashed black line is the semi-empirical
large-deviation form given by Eq. (69). The dashed red lines
on the l.h.s. for � / �0.048 is the theoretical curve e

�I⌃(�)t

obtained from Eq. (72).

These figures clearly confirm the remarkable feature
suggested by Fig. 2: P⌃(⌃ = �t) for ⌧ = 7.6 and
P
Q

(Q = qt) for ⌧ = 8.4 di↵ers markedly from P
W

(w =
wt). Of course, these results must be taken with a grain
of salt since it is notoriously di�cult to grasp the stochas-
tic fluctuations in the long-time limit. However, as will
be discussed later, the picture emerging from Figs. 3
and 4 is consistent with the exact analytical analysis
performed in Appendix A in the small-⌧ limit. There-
fore, we may reasonably assume that it represents the ac-
tual asymptotic behavior of the probability distributions,
which will be rationalized in subsection B (including the
di↵erences with the leading large-deviation behavior de-
fined by e�I

W

(w)t)
The corresponding estimates of the generating func-
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FIG. 7: (Color on line) Acausal response function e�(t) for Q0 = 2, g/Q0 = 0.55 and ⌧ = 2.5. (In the final version, we will
rather present a figure for Q0 = 43.2.)

where the sums in e�
+

(t) and e��(t) are over the two poles in the l.h.s. of the complex plane and all the poles in the
r.h.s., respectively. ex(t) is thus given by an infinite but converging sum of exponentials,

ex(t) ⇡
X

s2l.h.s.

A(s)

Z

t

�1
dt0es(t�t

0
)⇠(t0) +

X

s2r.h.s.

B(s)

Z 1

t

dt0e�s(t

0�t)⇠(t0) , (81)

and it can be numerically computed for a given noise history (in practice of course, one can only include a finite number
of terms in the second sum and the quality of the approximation depends on the specific values of the parameters).
In this way, we can generate a representative ensemble of trajectories and obtain the statistics of the modified work

fW[X,Y] =
2g

Q2

0

Z

t

0

ds ex(s+ ⌧)ėx(s) . (82)

A numerical check of Eq. (75) is shown in Fig. 8.
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FIG. 8: (Color on line) Verification of the asymptotic Crooks fluctuation theorem, Eq. (75). The figure compares P

W

(W =

wt)e�wt (black circles) with e
P (W̃ = �wt)eṠJ t (red squares) for Q0 = 2, g/Q0 = 0.55 and ⌧ = 2.5. The original pdf

P

W

(W = wt) is represented by the solid black line. The observation time is t = 20.

This figure also shows that this whole calculation is not purely academic since it gives some information about the
rare events that dominate the integral

R

P
W

(W, t)e�W dW in the long-time limit. These rare trajectories are generated
by rare realizations of the stochastic noise, and they are the conjugate twins (adopting the terminology of [29]) of

Modified Crooks FT for the work: When the acausal dynamics 
reaches a stationary state, one can show that

In the long-time limit, the 
atypical trajectories that 
dominate                are the 
conjugate twins (Jarzynski 
2006) of typical realisations 
of the reverse (acausal) 
process  

he��W ist
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⇠atyp(!) =
e�(!)
�(!)

⇠(!) .

ex(t) ⇡
Z 1

�1
dt

0 e�(t� t

0)⇠(t0)

=

Z t

�1
dt

0e�+(t� t)⇠(t0) +

Z 1

t
dt

0e��(t� t

0)⇠(t0)

⌫(t) = 2�T


�(t) +

Z +1

�1

d!

2⇡
[| e�(!)
�(!)

|2 � 1]e�i!t

�
h⇠atyp(t)⇠atyp(t0)i = ⌫(t� t0)

ex(!) ⇡ e�(!)⇠(!)

Alternatively, one can determine the properties of the atypical 
noise that generates the rare events.
Since the conjugate dynamics converges, the solution of the 
acausal Langevin equation is 

or in the frequency domain:

The atypical 
noise is 
colored !

Inserting into the original Langevin equation yields:

Hence

with
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FIG. 7: (Color on line) Acausal response function e�(t) for Q0 = 2, g/Q0 = 0.55 and ⌧ = 2.5. (In the final version, we will
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where the sums in e�
+

(t) and e��(t) are over the two poles in the l.h.s. of the complex plane and all the poles in the
r.h.s., respectively. ex(t) is thus given by an infinite but converging sum of exponentials,

ex(t) ⇡
X

s2l.h.s.

A(s)

Z

t

�1
dt0es(t�t

0
)⇠(t0) +

X

s2r.h.s.

B(s)

Z 1

t

dt0e�s(t

0�t)⇠(t0) , (81)

and it can be numerically computed for a given noise history (in practice of course, one can only include a finite number
of terms in the second sum and the quality of the approximation depends on the specific values of the parameters).
In this way, we can generate a representative ensemble of trajectories and obtain the statistics of the modified work

fW[X,Y] =
2g

Q2

0

Z

t

0

ds ex(s+ ⌧)ėx(s) . (82)

A numerical check of Eq. (75) is shown in Fig. 8.
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FIG. 8: (Color on line) Verification of the asymptotic Crooks fluctuation theorem, Eq. (75). The figure compares P

W

(W =

wt)e�wt (black circles) with e
P (W̃ = �wt)eṠJ t (red squares) for Q0 = 2, g/Q0 = 0.55 and ⌧ = 2.5. The original pdf

P

W

(W = wt) is represented by the solid black line. The observation time is t = 20.

This figure also shows that this whole calculation is not purely academic since it gives some information about the
rare events that dominate the integral

R

P
W

(W, t)e�W dW in the long-time limit. These rare trajectories are generated
by rare realizations of the stochastic noise, and they are the conjugate twins (adopting the terminology of [29]) of
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FIG. 9: (Color on line) Variance of the atypical noise ⇠

atyp

(t) that generates the rare events shown in Fig. 8.

typical realizations of the reverse process. The remarkable feature here is that the dynamics of the reverse process is
acausal (this must not be confused with the “anticausal” trajectories discussed in [29? ] which are determined by the
final conditions of the forward process).

Alternatively, we may compute the properties of the atypical noise ⇠
atyp

(t) which produces such trajectories by
simply inserting the solution ex(!) = e�(!)⇠(!) into the original Langevin equation. This leads to

⇠
atyp

(!) =
e�(!)

�(!)
⇠(!) . (83)

The atypical noise is thus colored, with a variance h⇠
atyp

(t)⇠
atyp

(t0)i = ⌫(t� t0) given by

⌫(t) = 2�T



�(t) +

Z

+1

�1

d!

2⇡
[| e�(!)
�(!)

|2 � 1]e�i!t

�

= 2�T



�(t) +

Z

+1

�1

d!

2⇡
[
H(!, 1)

H(!, 0)
� 1]e�i!t

�

(84)

The variance of the noise corresponding to Fig. 8 is plotted in Fig. 9.

IV. SUMMARY AND OUTLOOK

Appendix A: The Markovian small-⌧ limit

In order to better understand the non-trivial behavior of the fluctuations of the various observables, it is useful to
consider once again (after [3]) the small-⌧ limit of the linear Langevin equation (44). By expanding the feedback force
F
fb

(t) = k0x(t� ⌧) to first order in ⌧ , we get

mv̇
t

= �k̄x
t

� (� + �0)v
t

+
p

2�T ⇠
t

, (A1)

where k̄ = k � k0 and �0 = k0⌧ respectively define a modified spring constant and an additional damping constant.
The dimensionless version of this equation is given by Eq. (70), but we prefer to work with Eq. (A1) in this Appendix
in order to make it easier the connection with previous studies[3–5].

The dynamics described by Eq. (A1) is Markovian, but the fact that the feedback force F
fb

(t) = ��0v
t

is velocity-
dependent induces some special features that are also encountered in the original non-Markovian time-delayed model.
For our present purpose, the main interest of the small-⌧ limit is that the various generating functions can be obtained
analytically, even for a finite observation time[3]. Note that Eq. (A1) also describes the dynamics of a Brownian
particle coupled to two thermostats at temperatures T and T 0 in the special case T 0 = 0. In this model, the quantity
of interest is the heat exchanged between the two baths, but the generating function Z

Q

(�, t) is only known in the
long-time limit when T 0 > 0[46] (see also [47–49]). The full analytical solution has only be computed for k̄ = 0, that
is for a free Brownian particle[37] (see also [35]).

Variance of the atypical noise
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Thank you for your attention ! 

One can extend the framework of stochastic thermodynamics 
to treat non-Markovian effects induced by a time-delayed 
feedback. This introduces a new and interest ing 
phenomenology .

Experimental tests ?

CONCLUSION
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