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capture the statistics of anatomy in mammograms.  Furthermore, higher-order statistics, not captured in a power 
spectrum, are likely to aid visual tasks relative to a Gaussian assumption.  Burgess’ study [4] shows that contrast 
thresholds for mammographic backgrounds are significantly lower than a Gaussian distribution matched in power 
spectrum, and have a less steeply sloped CD diagram.  However, little is known about the statistical moments of breast 
images beyond second order.  The purpose of this work is to investigate higher-order statistical properties of breast 
images, specifically the kurtosis of linear filters applied at random locations in an image.   

The approach we take is based on methods from research in natural scene statistics, where investigators in the fields of 
visual neuroscience and computer vision are increasingly turning to higher order statistics of images to motivate models 
of the human visual system.  In the first study, we evaluate the kurtosis of octave-bandwidth Gabor filters, with response 
properties very similar to linear models of receptive fields in the early visual system.  We consider projection 
mammograms as well as coronal breast CT (bCT) images to give a sense of the differences in going from a 2D to a 3D 
imaging system.  We also derive filters from these medical images using an approach pioneered by Olshausen and Field 
[11-13], who found filter-banks resembling visual receptive fields emerged in basis sets that enforced sparse (i.e. high-
kurtosis) responses. The finding that receptive field responses have excess kurtosis suggests that these derived filters are 
more appropriate for describing the statistics of anatomy in projection mammography and bCT images [14]. 

Figure 1. Examples of breast image ROIs.  Four image ROIs taken from mammograms (A), coronal breast CT images 
(B), and segmentations of the CT images (C) are shown.  The patches are rendered approximately at their physical size.

A.  Projection Mammograms 

B.  Coronal Breast CT 

C.  Segmented Breast CT 
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Gaussians
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t = 0 t = T
2 t = T

q
�
x(0···T )

�

p
�
x(0···T )

�

Figure 1: The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from
the forward trajectory q

�
x(0···T )

�
. The data distribution (left) undergoes Gaussian di↵usion, which gradually

transforms it into an isotropic unit norm Gaussian (right). The bottom row shows the corresponding time slices
from the trained reverse trajectory p

�
x(0···T )

�
. An isotropic unit norm Gaussian (right) undergoes a Gaussian

di↵usion process with learned mean and covariance functions, and is gradually transformed back into the data
distribution (left).

Figure 2: Binary sequence inpainting: a heartbeat binary sequence consisting of a pulse every fifth time bin was
generated. The red bins in each sample were fixed, while the middle bins (in black) were unknown. The figures
show a trajectory through the reverse process given an initial distribution drawn from an independent binomial
at each time bin (left). After a just a few steps through the trajectory, the samples settle to the true sequence
(right).
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Samples from 
diffusion model

Model Log likelihood 
estimate*

Stacked CAE 121 ± 1.6 bits

DBN 138 ± 2 bits

Deep GSN 214 ± 1.1 bits

Diffusion 220 ± 1.9 bits

Adversarial net 225 ± 2 bits

* via Parzen window code from [Goodfellow et al, 2014]



DRAW: A Recurrent Neural Network For Image Generation

Table 3. Experimental Hyper-Parameters.
Task #glimpses LSTM #h #z Read Size Write Size
100 ⇥ 100 MNIST Classification 8 256 - 12 ⇥ 12 -
MNIST Model 64 256 100 2 ⇥ 2 5 ⇥ 5

SVHN Model 32 800 100 12 ⇥ 12 12 ⇥ 12

CIFAR Model 64 400 200 5 ⇥ 5 5 ⇥ 5

Figure 10. SVHN Generation Sequences. The red rectangle in-
dicates the attention patch. Notice how the network draws the dig-
its one at a time, and how it moves and scales the writing patch to
produce numbers with different slopes and sizes.
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Figure 11. Training and validation cost on SVHN. The valida-
tion cost is consistently lower because the validation set patches
were extracted from the image centre (rather than from random
locations, as in the training set). The network was never able to
overfit on the training data.

Figure 12. Generated CIFAR images. The rightmost column
shows the nearest training examples to the column beside it.

5. Conclusion
This paper introduced the Deep Recurrent Attentive Writer
(DRAW) neural network architecture, and demonstrated its
ability to generate highly realistic natural images such as
photographs of house numbers, as well as improving on the
best known results for binarized MNIST generation. We
also established that the two-dimensional differentiable at-
tention mechanism embedded in DRAW is beneficial not
only to image generation, but also to cluttered image clas-
sification.
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Model MNIST TFD
DBN [3] 138± 2 1909± 66

Stacked CAE [3] 121± 1.6 2110± 50

Deep GSN [6] 214± 1.1 1890± 29

Adversarial nets 225± 2 2057± 26

Table 1: Parzen window-based log-likelihood estimates. The reported numbers on MNIST are the mean log-
likelihood of samples on test set, with the standard error of the mean computed across examples. On TFD, we
computed the standard error across folds of the dataset, with a different � chosen using the validation set of
each fold. On TFD, � was cross validated on each fold and mean log-likelihood on each fold were computed.
For MNIST we compare against other models of the real-valued (rather than binary) version of dataset.

of the Gaussians was obtained by cross validation on the validation set. This procedure was intro-
duced in Breuleux et al. [8] and used for various generative models for which the exact likelihood
is not tractable [25, 3, 5]. Results are reported in Table 1. This method of estimating the likelihood
has somewhat high variance and does not perform well in high dimensional spaces but it is the best
method available to our knowledge. Advances in generative models that can sample but not estimate
likelihood directly motivate further research into how to evaluate such models.

In Figures 2 and 3 we show samples drawn from the generator net after training. While we make no
claim that these samples are better than samples generated by existing methods, we believe that these
samples are at least competitive with the better generative models in the literature and highlight the
potential of the adversarial framework.

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

6

Samples from 
Generative Adverserial 
[Goodfellow et al, 2014]

Training Data



DRAW: A Recurrent Neural Network For Image Generation

Table 3. Experimental Hyper-Parameters.
Task #glimpses LSTM #h #z Read Size Write Size
100 ⇥ 100 MNIST Classification 8 256 - 12 ⇥ 12 -
MNIST Model 64 256 100 2 ⇥ 2 5 ⇥ 5

SVHN Model 32 800 100 12 ⇥ 12 12 ⇥ 12

CIFAR Model 64 400 200 5 ⇥ 5 5 ⇥ 5

Figure 10. SVHN Generation Sequences. The red rectangle in-
dicates the attention patch. Notice how the network draws the dig-
its one at a time, and how it moves and scales the writing patch to
produce numbers with different slopes and sizes.

 5060
 5080
 5100
 5120
 5140
 5160
 5180
 5200
 5220

 0  50  100  150  200  250  300  350

co
st

 p
er

 e
xa

m
pl

e

minibatch number (thousands)

training
validation

Figure 11. Training and validation cost on SVHN. The valida-
tion cost is consistently lower because the validation set patches
were extracted from the image centre (rather than from random
locations, as in the training set). The network was never able to
overfit on the training data.

Figure 12. Generated CIFAR images. The rightmost column
shows the nearest training examples to the column beside it.

5. Conclusion
This paper introduced the Deep Recurrent Attentive Writer
(DRAW) neural network architecture, and demonstrated its
ability to generate highly realistic natural images such as
photographs of house numbers, as well as improving on the
best known results for binarized MNIST generation. We
also established that the two-dimensional differentiable at-
tention mechanism embedded in DRAW is beneficial not
only to image generation, but also to cluttered image clas-
sification.

Acknowledgments
Of the many who assisted in creating this paper, we are es-
pecially thankful to Koray Kavukcuoglu, Volodymyr Mnih,
Jimmy Ba, Yaroslav Bulatov, Greg Wayne, Andrei Rusu,
Danilo Jimenez Rezende and Shakir Mohamed.

Samples from 
DRAW 

[Gregor et al, 2015]

Diffusion Probabilistic Model 
Applied to CIFAR-10

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Model MNIST TFD
DBN [3] 138± 2 1909± 66

Stacked CAE [3] 121± 1.6 2110± 50

Deep GSN [6] 214± 1.1 1890± 29

Adversarial nets 225± 2 2057± 26

Table 1: Parzen window-based log-likelihood estimates. The reported numbers on MNIST are the mean log-
likelihood of samples on test set, with the standard error of the mean computed across examples. On TFD, we
computed the standard error across folds of the dataset, with a different � chosen using the validation set of
each fold. On TFD, � was cross validated on each fold and mean log-likelihood on each fold were computed.
For MNIST we compare against other models of the real-valued (rather than binary) version of dataset.

of the Gaussians was obtained by cross validation on the validation set. This procedure was intro-
duced in Breuleux et al. [8] and used for various generative models for which the exact likelihood
is not tractable [25, 3, 5]. Results are reported in Table 1. This method of estimating the likelihood
has somewhat high variance and does not perform well in high dimensional spaces but it is the best
method available to our knowledge. Advances in generative models that can sample but not estimate
likelihood directly motivate further research into how to evaluate such models.

In Figures 2 and 3 we show samples drawn from the generator net after training. While we make no
claim that these samples are better than samples generated by existing methods, we believe that these
samples are at least competitive with the better generative models in the literature and highlight the
potential of the adversarial framework.

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
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Image Inpainting by 
Sampling from Posterior
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• Training data [Lazebnik et al, 2005]
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Ongoing Work

• Binomial diffusion to neural spike trains

• Full resolution color natural images

• Continuous time formulation

• Perturbation around energy based model
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Toy Binary Sequence 
Learning
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Deep Unsupervised Learning using Nonequilibrium Thermodynamics

t = 0 t = T

2

t = T

p
�
x

(0···T )

�

Figure 2. Binary sequence learning via binomial diffusion. A binomial diffusion model was trained on binary ‘heartbeat’ data, where a
pulse occurs every 5th bin. Generated samples (left) are identical to the training data. The sampling procedure consists of initialization
at independent binomial noise (right), which is then transformed into the data distribution by a binomial diffusion process, with trained
bit flip probabilities. Each row contains an independent sample. For ease of visualization, all samples have been shifted so that a pulse
occurs in the first column. In the raw sequence data, the first pulse is uniformly distributed over the first five bins.

(a) (b)

(c) (d)

Figure 3. The proposed framework trained on the CIFAR-10 (Krizhevsky & Hinton, 2009) dataset. (a) Example holdout data (similar
to training data). (b) Holdout data corrupted with Gaussian noise of variance 1 (SNR = 1). (c) Denoised images, generated by sampling
from the posterior distribution over denoised images conditioned on the images in (b). (d) Samples generated by the diffusion model.

The forward trajectory, corresponding to starting at the data
distribution and performing T steps of diffusion, is thus

q
⇣
x

(0···T )

⌘
= q

⇣
x

(0)

⌘ TY

t=1

q
⇣
x

(t)|x(t�1)

⌘
(3)

For the experiments shown below, q
�
x

(t)|x(t�1)

�
corre-

sponds to either Gaussian diffusion into a Gaussian distri-
bution with identity-covariance, or binomial diffusion into
an independent binomial distribution. Table App.1 gives
the diffusion kernels for both Gaussian and binomial distri-
butions.
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Flexible and tractable method 
for deep unsupervised learning

• Flexible: Diffusion process for any (smooth) distribution

• Binary or continuous state space

• Tractable: Training, exact sampling, inference, evaluation

• Deep networks with thousands of layers (/ time steps)

• Easy to multiply distributions (e.g. for posterior)

• Bounds on entropy production

Jascha Sohl-Dickstein Diffusion Probabilistic Models



Jascha Sohl-Dickstein Diffusion Probabilistic Models

Thanks!
Collaborators Endless discussion

• The Ganguli 
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Niru 
Maheswaranathan 



Setting Diffusion Rate

• Erase constant fraction of stimulus variance each step 

• Can also train 
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�t =
1
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