
Deep Unsupervised
Learning using

Nonequilibrium Thermodynamics

Jascha Sohl-Dickstein1, Eric Weiss2,
Niru Maheswaranathan1, Surya Ganguli1

1 Stanford University, 2 University of California at Berkeley

Outline

• Motivation: The promise of deep unsupervised
learning

• Physical intuition: Diffusion processes and time
reversal

• Diffusion probabilistic model: Derivation and
experimental results

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Outline

• Motivation: The promise of deep unsupervised
learning

• Physical intuition: Diffusion processes and time
reversal

• Diffusion probabilistic model: Derivation and
experimental results

Jascha Sohl-Dickstein Diffusion Probabilistic Models

The Promise of Deep
Unsupervised Learning

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Unknown features/labels

The Promise of Deep
Unsupervised Learning

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Unknown features/labels

• Novel modalities

The Promise of Deep
Unsupervised Learning

Jascha Sohl-Dickstein Diffusion Probabilistic Models

[Trans Biomed Eng, 2015]

• Unknown features/labels

• Novel modalities

The Promise of Deep
Unsupervised Learning

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Unknown features/labels

• Novel modalities

The Promise of Deep
Unsupervised Learning

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Unknown features/labels

• Novel modalities

• Exploratory data
analysis

The Promise of Deep
Unsupervised Learning

Jascha Sohl-Dickstein Diffusion Probabilistic Models

!"#$%&'(()*

!"#$%&'(()*

���!���!"#$ �$ ��
A32 !"#$

CM32 !#%$
MR_CM32 !&'$
H32_21mm !&&$

MR_H32_21mm !()$
HC32_21mm !&&$

MR_HC32_21mm !()$
HP32_21mm !&&$

MR_HP32_21mm !()$
HZ32_21mm !&&$

Z32 !###
OA32 !(*#
OZ32 !+##

OCM32 !+%$

!"#$%&'()*+#,*)(+-%+#%*(./'0-,))*
��������������������������

�� �!#�%%�"%$ �������
Standard)#

Strengthened #$

11 µm

50 µm

50 µm

15 µm 23 µm

Minimum
 width:
33 µm

������
����
����	�������

Reference
site:

4,200 µm2

6 mm

1.55 mm

1000µm

������	�����""������������
������	�����""���������

������	�����""��������
�	

�� �

 !"#

&'()*(+*,!-,./01!-)2,/!345

������������� &6-78*,!#10+,/

11 $%&'($%)&*+,(-

Time / s

2

5 10

4
6

8
10

12
14

10 repeated trials of 32channel Multiunit response to 10s of natural movie (binned at 6.6ms)

7 exemplar multiunits responding to 40
repeated trials of natural video in cat V1

[PLoS Comp Bio 2014] [Neuron 2013]

• Unknown features/labels

• Novel modalities

• Exploratory data
analysis

The Promise of Deep
Unsupervised Learning

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Unknown features/labels

• Novel modalities

• Exploratory data
analysis

The Promise of Deep
Unsupervised Learning

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Unknown features/labels

• Novel modalities

• Exploratory data
analysis

• Expensive labels

The Promise of Deep
Unsupervised Learning

Jascha Sohl-Dickstein Diffusion Probabilistic Models

capture the statistics of anatomy in mammograms. Furthermore, higher-order statistics, not captured in a power
spectrum, are likely to aid visual tasks relative to a Gaussian assumption. Burgess’ study [4] shows that contrast
thresholds for mammographic backgrounds are significantly lower than a Gaussian distribution matched in power
spectrum, and have a less steeply sloped CD diagram. However, little is known about the statistical moments of breast
images beyond second order. The purpose of this work is to investigate higher-order statistical properties of breast
images, specifically the kurtosis of linear filters applied at random locations in an image.

The approach we take is based on methods from research in natural scene statistics, where investigators in the fields of
visual neuroscience and computer vision are increasingly turning to higher order statistics of images to motivate models
of the human visual system. In the first study, we evaluate the kurtosis of octave-bandwidth Gabor filters, with response
properties very similar to linear models of receptive fields in the early visual system. We consider projection
mammograms as well as coronal breast CT (bCT) images to give a sense of the differences in going from a 2D to a 3D
imaging system. We also derive filters from these medical images using an approach pioneered by Olshausen and Field
[11-13], who found filter-banks resembling visual receptive fields emerged in basis sets that enforced sparse (i.e. high-
kurtosis) responses. The finding that receptive field responses have excess kurtosis suggests that these derived filters are
more appropriate for describing the statistics of anatomy in projection mammography and bCT images [14].

Figure 1. Examples of breast image ROIs. Four image ROIs taken from mammograms (A), coronal breast CT images
(B), and segmentations of the CT images (C) are shown. The patches are rendered approximately at their physical size.

A. Projection Mammograms

B. Coronal Breast CT

C. Segmented Breast CT

Figure 1. Examples of breast image ROIs. Four image ROIs taken from mammograms (A), coronal breast CT images
(B), and segmentations of the CT images (C) are shown. The patches are rendered approximately at their physical size.

A. Projection Mammograms

B. Coronal Breast CT

C. Segmented Breast CT

Proc. of SPIE Vol. 7263 726317-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/23/2015 Terms of Use: http://spiedl.org/terms

[SPIE 2009] [Med Phys 2014]

Coronal breast CT

• Unknown features/labels

• Novel modalities

• Exploratory data
analysis

• Expensive labels

The Promise of Deep
Unsupervised Learning

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Unknown features/labels

• Novel modalities

• Exploratory data
analysis

• Expensive labels

The Promise of Deep
Unsupervised Learning

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Unknown features/labels

• Novel modalities

• Exploratory data
analysis

• Expensive labels

• Unpredictable tasks /  
one shot learning

The Promise of Deep
Unsupervised Learning

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Outline

• Motivation: The promise of deep unsupervised
learning

• Physical intuition: Diffusion processes and time
reversal

• Diffusion probabilistic model: Derivation and
experimental results

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Outline
• Motivation: The promise of deep unsupervised learning

• Physical intuition: Diffusion processes and time
reversal

• Destroy structure in data

• Carefully characterize the destruction

• Learn how to reverse time

• Diffusion probabilistic model: Derivation and
experimental results

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Observation 1: Diffusion
Destroys Structure

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Dye density represents probability
density

Observation 1: Diffusion
Destroys Structure

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Dye density represents probability
density

• Goal: Learn structure of probability
density

Observation 1: Diffusion
Destroys Structure

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Dye density represents probability
density

• Goal: Learn structure of probability
density

• Observation: Diffusion destroys
structure

Observation 1: Diffusion
Destroys Structure

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Dye density represents probability
density

• Goal: Learn structure of probability
density

• Observation: Diffusion destroys
structure

Observation 1: Diffusion
Destroys Structure

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Dye density represents probability
density

• Goal: Learn structure of probability
density

• Observation: Diffusion destroys
structure

Data distribution Uniform distribution

Core Idea: Recover
Structure by Reversing Time

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• What if we could reverse time?

Core Idea: Recover
Structure by Reversing Time

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• What if we could reverse time?

Core Idea: Recover
Structure by Reversing Time

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• What if we could reverse time?

Data distribution Uniform distribution

Core Idea: Recover
Structure by Reversing Time

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• What if we could reverse time?

• Recover data distribution by starting
from uniform distribution and
running dynamics backwards

Data distribution Uniform distribution

• What if we could reverse time?

• Recover data distribution by starting
from uniform distribution and
running dynamics backwards

Data distribution Uniform distribution

Core Idea: Recover
Structure by Reversing Time

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Core Idea: Recover
Structure by Reversing Time

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Core Idea: Recover
Structure by Reversing Time

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Observation 2: Microscopic
Diffusion is Time Reversible

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Microscopic view

• Brownian motion

© Rutger Saly

Observation 2: Microscopic
Diffusion is Time Reversible

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Microscopic view

• Brownian motion

© Rutger Saly

Observation 2: Microscopic
Diffusion is Time Reversible

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Microscopic view

• Brownian motion

© Rutger Saly

Observation 2: Microscopic
Diffusion is Time Reversible

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Microscopic view

• Brownian motion

© Rutger Saly

Observation 2: Microscopic
Diffusion is Time Reversible

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Microscopic view

• Brownian motion

© Rutger Saly

• Position updates are small
Gaussians

Observation 2: Microscopic
Diffusion is Time Reversible

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Microscopic view

• Brownian motion

© Rutger Saly

• Position updates are small
Gaussians

Observation 2: Microscopic
Diffusion is Time Reversible

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Microscopic view

• Brownian motion

© Rutger Saly

• Position updates are small
Gaussians

Observation 2: Microscopic
Diffusion is Time Reversible

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Microscopic view

• Brownian motion

© Rutger Saly

• Position updates are small
Gaussians

• Both forwards and backwards in
time

Overview of Diffusion-based
Probabilistic Models

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Overview of Diffusion-based
Probabilistic Models

• Destroy all structure in data distribution using diffusion
process

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Overview of Diffusion-based
Probabilistic Models

• Destroy all structure in data distribution using diffusion
process

• Learn reversal of diffusion process

• Estimate function for mean and covariance of each
step in the reverse diffusion process (binomial rate
for binary data)

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Overview of Diffusion-based
Probabilistic Models

• Destroy all structure in data distribution using diffusion
process

• Learn reversal of diffusion process

• Estimate function for mean and covariance of each
step in the reverse diffusion process (binomial rate
for binary data)

• Reverse diffusion process is the model of the data

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Outline
• Motivation: The promise of deep unsupervised learning

• Physical intuition: Diffusion processes and time reversal

• Diffusion probabilistic model: Derivation and
experimental results

• Algorithm

• Deep convolutional network: Universal function
approximator

• Multiplying distributions: Inputation, denoising,
computing posteriors

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Outline
• Motivation: The promise of deep unsupervised learning

• Physical intuition: Diffusion processes and time reversal

• Diffusion probabilistic model: Derivation and
experimental results

• Algorithm

• Deep convolutional network: Universal function
approximator

• Multiplying distributions: Inputation, denoising,
computing posteriors

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Destroy All Structure in Data
using Diffusion Process

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Data
distribution

q
⇣
x

(0)
⌘

Destroy All Structure in Data
using Diffusion Process

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Data
distribution

q
⇣
x

(0)
⌘

Forward
diffusion

q
⇣
x

(t)|x(t�1)
⌘
= N

⇣
x

(t);x(t�1)
p

1� �t, I�t

⌘

Destroy All Structure in Data
using Diffusion Process

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Data
distribution

q
⇣
x

(0)
⌘

Forward
diffusion

q
⇣
x

(t)|x(t�1)
⌘
= N

⇣
x

(t);x(t�1)
p

1� �t, I�t

⌘

Decay towards origin

Destroy All Structure in Data
using Diffusion Process

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Data
distribution

q
⇣
x

(0)
⌘

Forward
diffusion

q
⇣
x

(t)|x(t�1)
⌘
= N

⇣
x

(t);x(t�1)
p

1� �t, I�t

⌘

Decay towards origin Add small noise

Destroy All Structure in Data
using Diffusion Process

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Data
distribution

Noise
distribution

q
⇣
x

(T)
⌘
⇡ N

⇣
x

(T); 0, I
⌘

q
⇣
x

(0)
⌘

Forward
diffusion

q
⇣
x

(t)|x(t�1)
⌘
= N

⇣
x

(t);x(t�1)
p

1� �t, I�t

⌘

Decay towards origin Add small noise

Forward Diffusion Process
on Swiss Roll

• Start at data

• Run Gaussian diffusion until samples become Gaussian blob

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Forward Diffusion Process
on Swiss Roll

• Start at data

• Run Gaussian diffusion until samples become Gaussian blob

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Recover Structure in Data using
Reversal of Diffusion Process

Jascha Sohl-Dickstein Diffusion Probabilistic Models

p
⇣
x

(T)
⌘
= N

⇣
x

(T); 0, I
⌘

Noise
distribution

Recover Structure in Data using
Reversal of Diffusion Process

Jascha Sohl-Dickstein Diffusion Probabilistic Models

p
⇣
x

(T)
⌘
= N

⇣
x

(T); 0, I
⌘

Noise
distribution

Reverse
diffusion

p
⇣
x

(t�1)|x(t)
⌘
= N

⇣
x

(t�1); fµ
⇣
x

(t), t
⌘
, f⌃

⇣
x

(t), t
⌘⌘

Recover Structure in Data using
Reversal of Diffusion Process

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Learned drift and covariance functions

p
⇣
x

(T)
⌘
= N

⇣
x

(T); 0, I
⌘

Noise
distribution

Reverse
diffusion

p
⇣
x

(t�1)|x(t)
⌘
= N

⇣
x

(t�1); fµ
⇣
x

(t), t
⌘
, f⌃

⇣
x

(t), t
⌘⌘

Recover Structure in Data using
Reversal of Diffusion Process

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Learned drift and covariance functions

p
⇣
x

(0)
⌘
⇡ q

⇣
x

(0)
⌘

Data
distribution

p
⇣
x

(T)
⌘
= N

⇣
x

(T); 0, I
⌘

Noise
distribution

Reverse
diffusion

p
⇣
x

(t�1)|x(t)
⌘
= N

⇣
x

(t�1); fµ
⇣
x

(t), t
⌘
, f⌃

⇣
x

(t), t
⌘⌘

Learned Reverse Diffusion
Process on Swiss Roll

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Start at Gaussian blob

• Run Gaussian diffusion until samples become data distribution

Learned Reverse Diffusion
Process on Swiss Roll

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Start at Gaussian blob

• Run Gaussian diffusion until samples become data distribution

Summary of Forward and Reverse
Diffusion on Swiss Roll

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Manuscript under review by AISTATS 2014

t = 0 t = T
2 t = T

q
�
x(0···T)

�

p
�
x(0···T)

�

Figure 1: The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from
the forward trajectory q

�
x(0···T)

�
. The data distribution (left) undergoes Gaussian di↵usion, which gradually

transforms it into an isotropic unit norm Gaussian (right). The bottom row shows the corresponding time slices
from the trained reverse trajectory p

�
x(0···T)

�
. An isotropic unit norm Gaussian (right) undergoes a Gaussian

di↵usion process with learned mean and covariance functions, and is gradually transformed back into the data
distribution (left).

Figure 2: Binary sequence inpainting: a heartbeat binary sequence consisting of a pulse every fifth time bin was
generated. The red bins in each sample were fixed, while the middle bins (in black) were unknown. The figures
show a trajectory through the reverse process given an initial distribution drawn from an independent binomial
at each time bin (left). After a just a few steps through the trajectory, the samples settle to the true sequence
(right).

Summary of Forward and Reverse
Diffusion on Swiss Roll

Jascha Sohl-Dickstein Diffusion Probabilistic Models

t = 0 t = T
2 t = T

q
�
x(0···T)

�

p
�
x(0···T)

�

Summary of Forward and Reverse
Diffusion on Swiss Roll

Jascha Sohl-Dickstein Diffusion Probabilistic Models

t = 0 t = T
2 t = T

q
�
x(0···T)

�

p
�
x(0···T)

�

Diffusion

Diffusion with learned drift and
covariance functions

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Model probability

Annealed importance sampling / Jarzynski equality

Log Likelihood

p
⇣
x

(0)
⌘
=

Z
dx(1···T)p

⇣
x

(0···T)
⌘

p
⇣
x

(0)
⌘
=

Z
dx(1···T)q

⇣
x

(1···T)|x(0)
⌘ p

�
x

(0···T)
�

q
�
x

(1···T)|x(0)
�

L =

Z
dx(0)q

⇣
x

(0)
⌘
log

"Z
dx(1···T)q

⇣
x

(1···T)
⌘ p

�
x

(0···T)
�

q
�
x

(1···T)
�
#

Training the Reverse
Diffusion Process

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Model probability

Annealed importance sampling / Jarzynski equality

Log Likelihood

p
⇣
x

(0)
⌘
=

Z
dx(1···T)p

⇣
x

(0···T)
⌘

p
⇣
x

(0)
⌘
=

Z
dx(1···T)q

⇣
x

(1···T)|x(0)
⌘ p

�
x

(0···T)
�

q
�
x

(1···T)|x(0)
�

L =

Z
dx(0)q

⇣
x

(0)
⌘
log

"Z
dx(1···T)q

⇣
x

(1···T)
⌘ p

�
x

(0···T)
�

q
�
x

(1···T)
�
#

Training the Reverse
Diffusion Process

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Model probability

Annealed importance sampling / Jarzynski equality

Log Likelihood

p
⇣
x

(0)
⌘
=

Z
dx(1···T)p

⇣
x

(0···T)
⌘

p
⇣
x

(0)
⌘
=

Z
dx(1···T)q

⇣
x

(1···T)|x(0)
⌘ p

�
x

(0···T)
�

q
�
x

(1···T)|x(0)
�

L =

Z
dx(0)q

⇣
x

(0)
⌘
log

"Z
dx(1···T)q

⇣
x

(1···T)
⌘ p

�
x

(0···T)
�

q
�
x

(1···T)
�
#

Training the Reverse
Diffusion Process

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Model probability

Annealed importance sampling / Jarzynski equality

Log Likelihood

Jensen’s inequality

p
⇣
x

(0)
⌘
=

Z
dx(1···T)p

⇣
x

(0···T)
⌘

p
⇣
x

(0)
⌘
=

Z
dx(1···T)q

⇣
x

(1···T)|x(0)
⌘ p

�
x

(0···T)
�

q
�
x

(1···T)|x(0)
�

L =

Z
dx(0)q

⇣
x

(0)
⌘
log

"Z
dx(1···T)q

⇣
x

(1···T)
⌘ p

�
x

(0···T)
�

q
�
x

(1···T)
�
#

L �
Z

dx(0···T)q
⇣
x

(0···T)
⌘
log

"
p
�
x

(0···T)
�

q
�
x

(1···T)|x(0)
�
#

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Log Likelihood

Jensen’s inequality

… algebra …

p
⇣
x

(0)
⌘
=

Z
dx(1···T)q

⇣
x

(1···T)|x(0)
⌘ p

�
x

(0···T)
�

q
�
x

(1···T)|x(0)
�

L =

Z
dx(0)q

⇣
x

(0)
⌘
log

"Z
dx(1···T)q

⇣
x

(1···T)
⌘ p

�
x

(0···T)
�

q
�
x

(1···T)
�
#

L �
Z

dx(0···T)q
⇣
x

(0···T)
⌘
log

"
p
�
x

(0···T)
�

q
�
x

(1···T)|x(0)
�
#

L ��
TX

t=2

Z
dx(0)dx(t)q

⇣
x

(0),x(t)
⌘
DKL

⇣
q
⇣
x

(t�1)|x(t),x(0)
⌘���
���p

⇣
x

(t�1)|x(t)
⌘⌘

+ const

Jascha Sohl-Dickstein Diffusion Probabilistic Models

… algebra …

L ��
TX

t=2

Z
dx(0)dx(t)q

⇣
x

(0),x(t)
⌘
DKL

⇣
q
⇣
x

(t�1)|x(t),x(0)
⌘���
���p

⇣
x

(t�1)|x(t)
⌘⌘

+ const

Jascha Sohl-Dickstein Diffusion Probabilistic Models

… algebra …

L ��
TX

t=2

Z
dx(0)dx(t)q

⇣
x

(0),x(t)
⌘
DKL

⇣
q
⇣
x

(t�1)|x(t),x(0)
⌘���
���p

⇣
x

(t�1)|x(t)
⌘⌘

+ const

Gaussian

Jascha Sohl-Dickstein Diffusion Probabilistic Models

… algebra …

L ��
TX

t=2

Z
dx(0)dx(t)q

⇣
x

(0),x(t)
⌘
DKL

⇣
q
⇣
x

(t�1)|x(t),x(0)
⌘���
���p

⇣
x

(t�1)|x(t)
⌘⌘

+ const

Gaussian

Jascha Sohl-Dickstein Diffusion Probabilistic Models

… algebra …

L ��
TX

t=2

Z
dx(0)dx(t)q

⇣
x

(0),x(t)
⌘
DKL

⇣
q
⇣
x

(t�1)|x(t),x(0)
⌘���
���p

⇣
x

(t�1)|x(t)
⌘⌘

+ const

Gaussian

p
⇣
x

(t�1)|x(t)
⌘
= N

⇣
x

(t�1); fµ
⇣
x

(t), t
⌘
, f⌃

⇣
x

(t), t
⌘⌘

Jascha Sohl-Dickstein Diffusion Probabilistic Models

… algebra …

L ��
TX

t=2

Z
dx(0)dx(t)q

⇣
x

(0),x(t)
⌘
DKL

⇣
q
⇣
x

(t�1)|x(t),x(0)
⌘���
���p

⇣
x

(t�1)|x(t)
⌘⌘

+ const

Gaussian

p
⇣
x

(t�1)|x(t)
⌘
= N

⇣
x

(t�1); fµ
⇣
x

(t), t
⌘
, f⌃

⇣
x

(t), t
⌘⌘

Training

argmin
fµ(x(t),t),f⌃(x(t),t)

E
h
DKL

⇣
q
⇣
x

(t�1)|x(t),x(0)
⌘���
���p

⇣
x

(t�1)|x(t)
⌘⌘i

Jascha Sohl-Dickstein Diffusion Probabilistic Models

… algebra …

L ��
TX

t=2

Z
dx(0)dx(t)q

⇣
x

(0),x(t)
⌘
DKL

⇣
q
⇣
x

(t�1)|x(t),x(0)
⌘���
���p

⇣
x

(t�1)|x(t)
⌘⌘

+ const

Gaussian

p
⇣
x

(t�1)|x(t)
⌘
= N

⇣
x

(t�1); fµ
⇣
x

(t), t
⌘
, f⌃

⇣
x

(t), t
⌘⌘

Training

argmin
fµ(x(t),t),f⌃(x(t),t)

E
h
DKL

⇣
q
⇣
x

(t�1)|x(t),x(0)
⌘���
���p

⇣
x

(t�1)|x(t)
⌘⌘i

Unsupervised
learning Regression

Use Deep Network as Function
Approximator for Images

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Input

Dense Multi-scale
convolution

Convolution
1x1 kernel

Temporal
coefficients

Temporal
coefficients

Dense Multi-scale
convolution

Mean
image

Covariance
image

Convolution
1x1 kernel

Use Deep Network as Function
Approximator for Images

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Input

Dense Multi-scale
convolution

Convolution
1x1 kernel

Temporal
coefficients

Temporal
coefficients

Dense Multi-scale
convolution

Mean
image

Covariance
image

Convolution
1x1 kernel

x

(t)

Use Deep Network as Function
Approximator for Images

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Input

Dense Multi-scale
convolution

Convolution
1x1 kernel

Temporal
coefficients

Temporal
coefficients

Dense Multi-scale
convolution

Mean
image

Covariance
image

Convolution
1x1 kernel

fµ
⇣
x

(t), t
⌘

f⌃
⇣
x

(t), t
⌘

x

(t)

Use Deep Network as Function
Approximator for Images

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Input

Dense Multi-scale
convolution

Convolution
1x1 kernel

Temporal
coefficients

Temporal
coefficients

Dense Multi-scale
convolution

Mean
image

Covariance
image

Convolution
1x1 kernel

fµ
⇣
x

(t), t
⌘

f⌃
⇣
x

(t), t
⌘

x

(t)

Black
box

Diffusion Probabilistic Model
Applied to MNIST

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Samples from 
diffusion model

Model Log likelihood
estimate*

Stacked CAE 121 ± 1.6 bits

DBN 138 ± 2 bits

Deep GSN 214 ± 1.1 bits

Diffusion 220 ± 1.9 bits

Adversarial net 225 ± 2 bits

* via Parzen window code from [Goodfellow et al, 2014]

DRAW: A Recurrent Neural Network For Image Generation

Table 3. Experimental Hyper-Parameters.
Task #glimpses LSTM #h #z Read Size Write Size
100 ⇥ 100 MNIST Classification 8 256 - 12 ⇥ 12 -
MNIST Model 64 256 100 2 ⇥ 2 5 ⇥ 5

SVHN Model 32 800 100 12 ⇥ 12 12 ⇥ 12

CIFAR Model 64 400 200 5 ⇥ 5 5 ⇥ 5

Figure 10. SVHN Generation Sequences. The red rectangle in-
dicates the attention patch. Notice how the network draws the dig-
its one at a time, and how it moves and scales the writing patch to
produce numbers with different slopes and sizes.

 5060
 5080
 5100
 5120
 5140
 5160
 5180
 5200
 5220

 0 50 100 150 200 250 300 350

co
st

 p
er

 e
xa

m
pl

e

minibatch number (thousands)

training
validation

Figure 11. Training and validation cost on SVHN. The valida-
tion cost is consistently lower because the validation set patches
were extracted from the image centre (rather than from random
locations, as in the training set). The network was never able to
overfit on the training data.

Figure 12. Generated CIFAR images. The rightmost column
shows the nearest training examples to the column beside it.

5. Conclusion
This paper introduced the Deep Recurrent Attentive Writer
(DRAW) neural network architecture, and demonstrated its
ability to generate highly realistic natural images such as
photographs of house numbers, as well as improving on the
best known results for binarized MNIST generation. We
also established that the two-dimensional differentiable at-
tention mechanism embedded in DRAW is beneficial not
only to image generation, but also to cluttered image clas-
sification.

Acknowledgments
Of the many who assisted in creating this paper, we are es-
pecially thankful to Koray Kavukcuoglu, Volodymyr Mnih,
Jimmy Ba, Yaroslav Bulatov, Greg Wayne, Andrei Rusu,
Danilo Jimenez Rezende and Shakir Mohamed.

Samples from 
DRAW 

[Gregor et al, 2015]

Diffusion Probabilistic Model
Applied to CIFAR-10

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Training Data

DRAW: A Recurrent Neural Network For Image Generation

Table 3. Experimental Hyper-Parameters.
Task #glimpses LSTM #h #z Read Size Write Size
100 ⇥ 100 MNIST Classification 8 256 - 12 ⇥ 12 -
MNIST Model 64 256 100 2 ⇥ 2 5 ⇥ 5

SVHN Model 32 800 100 12 ⇥ 12 12 ⇥ 12

CIFAR Model 64 400 200 5 ⇥ 5 5 ⇥ 5

Figure 10. SVHN Generation Sequences. The red rectangle in-
dicates the attention patch. Notice how the network draws the dig-
its one at a time, and how it moves and scales the writing patch to
produce numbers with different slopes and sizes.

 5060
 5080
 5100
 5120
 5140
 5160
 5180
 5200
 5220

 0 50 100 150 200 250 300 350

co
st

 p
er

 e
xa

m
pl

e

minibatch number (thousands)

training
validation

Figure 11. Training and validation cost on SVHN. The valida-
tion cost is consistently lower because the validation set patches
were extracted from the image centre (rather than from random
locations, as in the training set). The network was never able to
overfit on the training data.

Figure 12. Generated CIFAR images. The rightmost column
shows the nearest training examples to the column beside it.

5. Conclusion
This paper introduced the Deep Recurrent Attentive Writer
(DRAW) neural network architecture, and demonstrated its
ability to generate highly realistic natural images such as
photographs of house numbers, as well as improving on the
best known results for binarized MNIST generation. We
also established that the two-dimensional differentiable at-
tention mechanism embedded in DRAW is beneficial not
only to image generation, but also to cluttered image clas-
sification.

Acknowledgments
Of the many who assisted in creating this paper, we are es-
pecially thankful to Koray Kavukcuoglu, Volodymyr Mnih,
Jimmy Ba, Yaroslav Bulatov, Greg Wayne, Andrei Rusu,
Danilo Jimenez Rezende and Shakir Mohamed.

Samples from 
DRAW 

[Gregor et al, 2015]

Diffusion Probabilistic Model
Applied to CIFAR-10

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Model MNIST TFD
DBN [3] 138± 2 1909± 66

Stacked CAE [3] 121± 1.6 2110± 50

Deep GSN [6] 214± 1.1 1890± 29

Adversarial nets 225± 2 2057± 26

Table 1: Parzen window-based log-likelihood estimates. The reported numbers on MNIST are the mean log-
likelihood of samples on test set, with the standard error of the mean computed across examples. On TFD, we
computed the standard error across folds of the dataset, with a different � chosen using the validation set of
each fold. On TFD, � was cross validated on each fold and mean log-likelihood on each fold were computed.
For MNIST we compare against other models of the real-valued (rather than binary) version of dataset.

of the Gaussians was obtained by cross validation on the validation set. This procedure was intro-
duced in Breuleux et al. [8] and used for various generative models for which the exact likelihood
is not tractable [25, 3, 5]. Results are reported in Table 1. This method of estimating the likelihood
has somewhat high variance and does not perform well in high dimensional spaces but it is the best
method available to our knowledge. Advances in generative models that can sample but not estimate
likelihood directly motivate further research into how to evaluate such models.

In Figures 2 and 3 we show samples drawn from the generator net after training. While we make no
claim that these samples are better than samples generated by existing methods, we believe that these
samples are at least competitive with the better generative models in the literature and highlight the
potential of the adversarial framework.

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

6

Samples from 
Generative Adverserial 
[Goodfellow et al, 2014]

Training Data

DRAW: A Recurrent Neural Network For Image Generation

Table 3. Experimental Hyper-Parameters.
Task #glimpses LSTM #h #z Read Size Write Size
100 ⇥ 100 MNIST Classification 8 256 - 12 ⇥ 12 -
MNIST Model 64 256 100 2 ⇥ 2 5 ⇥ 5

SVHN Model 32 800 100 12 ⇥ 12 12 ⇥ 12

CIFAR Model 64 400 200 5 ⇥ 5 5 ⇥ 5

Figure 10. SVHN Generation Sequences. The red rectangle in-
dicates the attention patch. Notice how the network draws the dig-
its one at a time, and how it moves and scales the writing patch to
produce numbers with different slopes and sizes.

 5060
 5080
 5100
 5120
 5140
 5160
 5180
 5200
 5220

 0 50 100 150 200 250 300 350

co
st

 p
er

 e
xa

m
pl

e

minibatch number (thousands)

training
validation

Figure 11. Training and validation cost on SVHN. The valida-
tion cost is consistently lower because the validation set patches
were extracted from the image centre (rather than from random
locations, as in the training set). The network was never able to
overfit on the training data.

Figure 12. Generated CIFAR images. The rightmost column
shows the nearest training examples to the column beside it.

5. Conclusion
This paper introduced the Deep Recurrent Attentive Writer
(DRAW) neural network architecture, and demonstrated its
ability to generate highly realistic natural images such as
photographs of house numbers, as well as improving on the
best known results for binarized MNIST generation. We
also established that the two-dimensional differentiable at-
tention mechanism embedded in DRAW is beneficial not
only to image generation, but also to cluttered image clas-
sification.

Acknowledgments
Of the many who assisted in creating this paper, we are es-
pecially thankful to Koray Kavukcuoglu, Volodymyr Mnih,
Jimmy Ba, Yaroslav Bulatov, Greg Wayne, Andrei Rusu,
Danilo Jimenez Rezende and Shakir Mohamed.

Samples from 
DRAW 

[Gregor et al, 2015]

Diffusion Probabilistic Model
Applied to CIFAR-10

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Model MNIST TFD
DBN [3] 138± 2 1909± 66

Stacked CAE [3] 121± 1.6 2110± 50

Deep GSN [6] 214± 1.1 1890± 29

Adversarial nets 225± 2 2057± 26

Table 1: Parzen window-based log-likelihood estimates. The reported numbers on MNIST are the mean log-
likelihood of samples on test set, with the standard error of the mean computed across examples. On TFD, we
computed the standard error across folds of the dataset, with a different � chosen using the validation set of
each fold. On TFD, � was cross validated on each fold and mean log-likelihood on each fold were computed.
For MNIST we compare against other models of the real-valued (rather than binary) version of dataset.

of the Gaussians was obtained by cross validation on the validation set. This procedure was intro-
duced in Breuleux et al. [8] and used for various generative models for which the exact likelihood
is not tractable [25, 3, 5]. Results are reported in Table 1. This method of estimating the likelihood
has somewhat high variance and does not perform well in high dimensional spaces but it is the best
method available to our knowledge. Advances in generative models that can sample but not estimate
likelihood directly motivate further research into how to evaluate such models.

In Figures 2 and 3 we show samples drawn from the generator net after training. While we make no
claim that these samples are better than samples generated by existing methods, we believe that these
samples are at least competitive with the better generative models in the literature and highlight the
potential of the adversarial framework.

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

6

Samples from 
Generative Adverserial 
[Goodfellow et al, 2014]

Samples from 
diffusion model

Training Data

DRAW: A Recurrent Neural Network For Image Generation

Table 3. Experimental Hyper-Parameters.
Task #glimpses LSTM #h #z Read Size Write Size
100 ⇥ 100 MNIST Classification 8 256 - 12 ⇥ 12 -
MNIST Model 64 256 100 2 ⇥ 2 5 ⇥ 5

SVHN Model 32 800 100 12 ⇥ 12 12 ⇥ 12

CIFAR Model 64 400 200 5 ⇥ 5 5 ⇥ 5

Figure 10. SVHN Generation Sequences. The red rectangle in-
dicates the attention patch. Notice how the network draws the dig-
its one at a time, and how it moves and scales the writing patch to
produce numbers with different slopes and sizes.

 5060
 5080
 5100
 5120
 5140
 5160
 5180
 5200
 5220

 0 50 100 150 200 250 300 350

co
st

 p
er

 e
xa

m
pl

e

minibatch number (thousands)

training
validation

Figure 11. Training and validation cost on SVHN. The valida-
tion cost is consistently lower because the validation set patches
were extracted from the image centre (rather than from random
locations, as in the training set). The network was never able to
overfit on the training data.

Figure 12. Generated CIFAR images. The rightmost column
shows the nearest training examples to the column beside it.

5. Conclusion
This paper introduced the Deep Recurrent Attentive Writer
(DRAW) neural network architecture, and demonstrated its
ability to generate highly realistic natural images such as
photographs of house numbers, as well as improving on the
best known results for binarized MNIST generation. We
also established that the two-dimensional differentiable at-
tention mechanism embedded in DRAW is beneficial not
only to image generation, but also to cluttered image clas-
sification.

Acknowledgments
Of the many who assisted in creating this paper, we are es-
pecially thankful to Koray Kavukcuoglu, Volodymyr Mnih,
Jimmy Ba, Yaroslav Bulatov, Greg Wayne, Andrei Rusu,
Danilo Jimenez Rezende and Shakir Mohamed.

Samples from 
DRAW 

[Gregor et al, 2015]

Diffusion Probabilistic Model
Applied to CIFAR-10

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Model MNIST TFD
DBN [3] 138± 2 1909± 66

Stacked CAE [3] 121± 1.6 2110± 50

Deep GSN [6] 214± 1.1 1890± 29

Adversarial nets 225± 2 2057± 26

Table 1: Parzen window-based log-likelihood estimates. The reported numbers on MNIST are the mean log-
likelihood of samples on test set, with the standard error of the mean computed across examples. On TFD, we
computed the standard error across folds of the dataset, with a different � chosen using the validation set of
each fold. On TFD, � was cross validated on each fold and mean log-likelihood on each fold were computed.
For MNIST we compare against other models of the real-valued (rather than binary) version of dataset.

of the Gaussians was obtained by cross validation on the validation set. This procedure was intro-
duced in Breuleux et al. [8] and used for various generative models for which the exact likelihood
is not tractable [25, 3, 5]. Results are reported in Table 1. This method of estimating the likelihood
has somewhat high variance and does not perform well in high dimensional spaces but it is the best
method available to our knowledge. Advances in generative models that can sample but not estimate
likelihood directly motivate further research into how to evaluate such models.

In Figures 2 and 3 we show samples drawn from the generator net after training. While we make no
claim that these samples are better than samples generated by existing methods, we believe that these
samples are at least competitive with the better generative models in the literature and highlight the
potential of the adversarial framework.

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

6

Samples from 
Generative Adverserial 
[Goodfellow et al, 2014]

Samples from 
diffusion model

Diffusion Probabilistic Model
Applied to Dead Leaves

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Training Data

Diffusion Probabilistic Model
Applied to Dead Leaves

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Training Data Sample from 
[Theis et al, 2012]

Diffusion Probabilistic Model
Applied to Dead Leaves

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Training Data Sample from 
[Theis et al, 2012]

Diffusion Probabilistic Model
Applied to Dead Leaves

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Training Data Sample from 
[Theis et al, 2012]

Sample from 
diffusion model

Diffusion Probabilistic Model
Applied to Dead Leaves

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Training Data Sample from 
[Theis et al, 2012]

Sample from 
diffusion model

Log likelihood
1.24 bits/pixel

Log likelihood
1.49 bits/pixel

Outline
• Motivation: The promise of deep unsupervised learning

• Physical intuition: Diffusion processes and time reversal

• Diffusion probabilistic model: Derivation and
experimental results

• Algorithm

• Deep convolutional network: Universal function
approximator

• Multiplying distributions: Inputation, denoising,
computing posteriors

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Deep Networks
• Extremely flexible, parametric,

function approximation

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Deep Networks
• Extremely flexible, parametric,

function approximation

• Single layer: linear transformation,
pointwise nonlinearity

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Deep Networks
• Extremely flexible, parametric,

function approximation

• Single layer: linear transformation,
pointwise nonlinearity

Jascha Sohl-Dickstein Diffusion Probabilistic Models

yl = �
�
Wlyl�1

�

Deep Networks
• Extremely flexible, parametric,

function approximation

• Single layer: linear transformation,
pointwise nonlinearity

Jascha Sohl-Dickstein Diffusion Probabilistic Models

yl = �
�
Wlyl�1

�
yl

yl�1

Wl

Deep Networks
• Extremely flexible, parametric,

function approximation

• Single layer: linear transformation,
pointwise nonlinearity

Jascha Sohl-Dickstein Diffusion Probabilistic Models

yl = �
�
Wlyl�1

�

=

⇢
u u � 0
0.05u u < 0

� (u) ⌘ leaky ReLU

yl

yl�1

Wl

Deep Networks
• Extremely flexible, parametric,

function approximation

• Single layer: linear transformation,
pointwise nonlinearity

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Deep Networks
• Extremely flexible, parametric,

function approximation

• Single layer: linear transformation,
pointwise nonlinearity

• Deep network: stack single layers

Jascha Sohl-Dickstein Diffusion Probabilistic Models

yl

yl�1

Wl

Wl+1

yl+1

Deep Networks
• Extremely flexible, parametric,

function approximation

• Single layer: linear transformation,
pointwise nonlinearity

• Deep network: stack single layers

Jascha Sohl-Dickstein Diffusion Probabilistic Models

yl

yl�1

Wl

Wl+1

yl+1

Deep Networks
• Extremely flexible, parametric,

function approximation

• Single layer: linear transformation,
pointwise nonlinearity

• Deep network: stack single layers

Jascha Sohl-Dickstein Diffusion Probabilistic Models

yL = �
�
WL�

�
WL�1 · · ·�

�
W1y0

���

Convolutional Neural
Network

• Single convolutional layer:

• Same linear transform for every pixel

• Pointwise nonlinearity

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Convolutional Neural
Network

• Single convolutional layer:

• Same linear transform for every pixel

• Pointwise nonlinearity

Jascha Sohl-Dickstein Diffusion Probabilistic Models

yl

yl�1

Wl

Multiscale Convolution

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Downsample

Convolve

Upsample

Sum
yl

yl�1

• Single multi-scale convolutional layer:

Wl,2Wl,1
Wl,0

Deep Network Architecture
for Diffusion

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Input

Dense Multi-scale
convolution

Convolution
1x1 kernel

Temporal
coefficients

Temporal
coefficients

Dense Multi-scale
convolution

Mean
image

Covariance
image

Convolution
1x1 kernel

fµ
⇣
x

(t), t
⌘

f⌃
⇣
x

(t), t
⌘

x

(t)

Black
box

Deep Network Architecture
for Diffusion

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Input

Dense Multi-scale
convolution

Convolution
1x1 kernel

Temporal
coefficients

Temporal
coefficients

Dense Multi-scale
convolution

Mean
image

Covariance
image

Convolution
1x1 kernel

fµ
⇣
x

(t), t
⌘

f⌃
⇣
x

(t), t
⌘

x

(t)

Input

Dense Multi-scale
convolution

Convolution
1x1 kernel

Temporal
coefficients

Temporal
coefficients

Dense Multi-scale
convolution

Mean
image

Covariance
image

Convolution
1x1 kernel

Time Dependence using
Temporal Basis

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Input

Dense Multi-scale
convolution

Convolution
1x1 kernel

Temporal
coefficients

Temporal
coefficients

Dense Multi-scale
convolution

Mean
image

Covariance
image

Convolution
1x1 kernel

Time Dependence using
Temporal Basis

Jascha Sohl-Dickstein Diffusion Probabilistic Models

1

0.5

-0.1

Input

Dense Multi-scale
convolution

Convolution
1x1 kernel

Temporal
coefficients

Temporal
coefficients

Dense Multi-scale
convolution

Mean
image

Covariance
image

Convolution
1x1 kernel

Time Dependence using
Temporal Basis

Jascha Sohl-Dickstein Diffusion Probabilistic Models

1

0.5

-0.1

Input

Dense Multi-scale
convolution

Convolution
1x1 kernel

Temporal
coefficients

Temporal
coefficients

Dense Multi-scale
convolution

Mean
image

Covariance
image

Convolution
1x1 kernel

Time Dependence using
Temporal Basis

Jascha Sohl-Dickstein Diffusion Probabilistic Models

1

0.5

-0.1

Input

Dense Multi-scale
convolution

Convolution
1x1 kernel

Temporal
coefficients

Temporal
coefficients

Dense Multi-scale
convolution

Mean
image

Covariance
image

Convolution
1x1 kernel

Time Dependence using
Temporal Basis

Jascha Sohl-Dickstein Diffusion Probabilistic Models

1

0.5

-0.1

t

Input

Dense Multi-scale
convolution

Convolution
1x1 kernel

Temporal
coefficients

Temporal
coefficients

Dense Multi-scale
convolution

Mean
image

Covariance
image

Convolution
1x1 kernel

Time Dependence using
Temporal Basis

Jascha Sohl-Dickstein Diffusion Probabilistic Models

1

0.5

-0.1

t

Outline
• Motivation: The promise of deep unsupervised learning

• Physical intuition: Diffusion processes and time reversal

• Diffusion probabilistic model: Derivation and
experimental results

• Algorithm

• Deep convolutional network: Universal function
approximator

• Multiplying distributions: Inputation, denoising,
computing posteriors

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Multiplying Distributions is
Straightforward

• Required to compute posterior distributions

• Missing data (inpainting)

• Corrupted data (denoising)

Jascha Sohl-Dickstein Diffusion Probabilistic Models

p̃
⇣
x

(0)
⌘
/ p

⇣
x

(0)
⌘
r
⇣
x

(0)
⌘

Interested in

Multiplying Distributions is
Straightforward

• Required to compute posterior distributions

• Missing data (inpainting)

• Corrupted data (denoising)

• Difficult and expensive using competing techniques

• e.g. variational autoencoders, GSNs, NADEs, most
graphical models

Jascha Sohl-Dickstein Diffusion Probabilistic Models

p̃
⇣
x

(0)
⌘
/ p

⇣
x

(0)
⌘
r
⇣
x

(0)
⌘

Interested in

Multiplying Distributions is
Straightforward

Jascha Sohl-Dickstein Diffusion Probabilistic Models

p̃
⇣
x

(0)
⌘
/ p

⇣
x

(0)
⌘
r
⇣
x

(0)
⌘

Interested in

Multiplying Distributions is
Straightforward

Jascha Sohl-Dickstein Diffusion Probabilistic Models

p̃
⇣
x

(0)
⌘
/ p

⇣
x

(0)
⌘
r
⇣
x

(0)
⌘

Interested in

Multiplying Distributions is
Straightforward

Jascha Sohl-Dickstein Diffusion Probabilistic Models

p̃
⇣
x

(0)
⌘
/ p

⇣
x

(0)
⌘
r
⇣
x

(0)
⌘

Acts as small perturbation to diffusion process

Interested in

Multiplying Distributions is
Straightforward

Jascha Sohl-Dickstein Diffusion Probabilistic Models

p̃
⇣
x

(0)
⌘
/ p

⇣
x

(0)
⌘
r
⇣
x

(0)
⌘

Acts as small perturbation to diffusion process

Interested in

p
⇣
x

(t�1)|x(t)
⌘
= N

⇣
x

(t�1)
; fµ

⇣
x

(t), t
⌘
, f⌃

⇣
x

(t), t
⌘⌘

p
⇣
x

(t�1)|x(t)
⌘
= N

0

@
x

(t�1)
; fµ

⇣
x

(t), t
⌘
+

f⌃
�
x

(t), t
�

2

! 1
2 @ log r

�
x

(t)
�

@x(t)
, f⌃

⇣
x

(t), t
⌘
1

A

p̃

⇣
x

(t�1) | x(t)
⌘
⇡ N

0

@
x

(t�1)
; fµ

⇣
x

(t)
, t

⌘
+ f⌃

⇣
x

(t)
, t

⌘
@ log r

⇣
x

(t�1)0
⌘

@x

(t�1)0

�����
x

(t�1)0=fµ(x(t),t
)

, f⌃

⇣
x

(t)
, t

⌘
1

A

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Image Denoising by
Sampling from Posterior

Holdout Data

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Image Denoising by
Sampling from Posterior

Corrupted 
(SNR = 1)

Holdout Data

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Image Denoising by
Sampling from Posterior

DenoisedCorrupted 
(SNR = 1)

Holdout Data

Image Inpainting by
Sampling from Posterior

Jascha Sohl-Dickstein Diffusion Probabilistic Models

• Training data [Lazebnik et al, 2005]

Image Inpainting by
Sampling from Posterior

Jascha Sohl-Dickstein Diffusion Probabilistic Models

True imageInpainted image

Image Inpainting by
Sampling from Posterior

Jascha Sohl-Dickstein Diffusion Probabilistic Models

True imageInpainted image

Ongoing Work

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Ongoing Work

• Binomial diffusion to neural spike trains

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Ongoing Work

• Binomial diffusion to neural spike trains

• Full resolution color natural images

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Ongoing Work

• Binomial diffusion to neural spike trains

• Full resolution color natural images

• Continuous time formulation

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Ongoing Work

• Binomial diffusion to neural spike trains

• Full resolution color natural images

• Continuous time formulation

• Perturbation around energy based model

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Toy Binary Sequence
Learning

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

t = 0 t = T

2

t = T

p
�
x

(0···T)

�

Figure 2. Binary sequence learning via binomial diffusion. A binomial diffusion model was trained on binary ‘heartbeat’ data, where a
pulse occurs every 5th bin. Generated samples (left) are identical to the training data. The sampling procedure consists of initialization
at independent binomial noise (right), which is then transformed into the data distribution by a binomial diffusion process, with trained
bit flip probabilities. Each row contains an independent sample. For ease of visualization, all samples have been shifted so that a pulse
occurs in the first column. In the raw sequence data, the first pulse is uniformly distributed over the first five bins.

(a) (b)

(c) (d)

Figure 3. The proposed framework trained on the CIFAR-10 (Krizhevsky & Hinton, 2009) dataset. (a) Example holdout data (similar
to training data). (b) Holdout data corrupted with Gaussian noise of variance 1 (SNR = 1). (c) Denoised images, generated by sampling
from the posterior distribution over denoised images conditioned on the images in (b). (d) Samples generated by the diffusion model.

The forward trajectory, corresponding to starting at the data
distribution and performing T steps of diffusion, is thus

q
⇣
x

(0···T)

⌘
= q

⇣
x

(0)

⌘ TY

t=1

q
⇣
x

(t)|x(t�1)

⌘
(3)

For the experiments shown below, q
�
x

(t)|x(t�1)

�
corre-

sponds to either Gaussian diffusion into a Gaussian distri-
bution with identity-covariance, or binomial diffusion into
an independent binomial distribution. Table App.1 gives
the diffusion kernels for both Gaussian and binomial distri-
butions.

Flexible and tractable method
for deep unsupervised learning

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Flexible and tractable method
for deep unsupervised learning

• Flexible: Diffusion process for any (smooth) distribution

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Flexible and tractable method
for deep unsupervised learning

• Flexible: Diffusion process for any (smooth) distribution

• Binary or continuous state space

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Flexible and tractable method
for deep unsupervised learning

• Flexible: Diffusion process for any (smooth) distribution

• Binary or continuous state space

• Tractable: Training, exact sampling, inference, evaluation

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Flexible and tractable method
for deep unsupervised learning

• Flexible: Diffusion process for any (smooth) distribution

• Binary or continuous state space

• Tractable: Training, exact sampling, inference, evaluation

• Deep networks with thousands of layers (/ time steps)

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Flexible and tractable method
for deep unsupervised learning

• Flexible: Diffusion process for any (smooth) distribution

• Binary or continuous state space

• Tractable: Training, exact sampling, inference, evaluation

• Deep networks with thousands of layers (/ time steps)

• Easy to multiply distributions (e.g. for posterior)

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Flexible and tractable method
for deep unsupervised learning

• Flexible: Diffusion process for any (smooth) distribution

• Binary or continuous state space

• Tractable: Training, exact sampling, inference, evaluation

• Deep networks with thousands of layers (/ time steps)

• Easy to multiply distributions (e.g. for posterior)

• Bounds on entropy production

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Thanks!
Collaborators Endless discussion

• The Ganguli
Gang

• The Redwood
Center for
Theoretical
Neuroscience

Surya
Ganguli

Eric
Weiss

Niru
Maheswaranathan

Setting Diffusion Rate

• Erase constant fraction of stimulus variance each step

• Can also train

Jascha Sohl-Dickstein Diffusion Probabilistic Models

�t =
1

T � t+ 1

�t

