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Principle of Equal Weight: 
When all the microstates emerge in the same probability, 

the average value gives the equilibrium value.

How can we justify the principle of equal weight?

All the microstates that have energy E

Microscopic View

There are a huge 

number of states

Foundation of Statistical mechanics 



Explanation using the Typicality

Almost all the microstate at energy       are 

macroscopically indistinguishable!

The typicality seems to be more fundamental than 

the principle of equal weight.

But… does the typicality really hold?

All the microstates that have energy E



Setup (1) -System

System:

‧ Isolated quantum system with finite volume     .

‧ Energy spectrum is discrete.

‧ The dimension of the Hilbert space can be     .

‧ The ensemble formulation gives correct results,

which are consistent with thermodynamics in 

Hamiltonian

Energy Eigenstates

We don’t consider some exceptional models, e.g., 
system which have long range interactions.



Setup (2)  -Macroscopic Variables

Mechanical Variables

‧ Low-degree polynomials of local operators    
( i.e. their degree                    )

Ex) Magnetization, Spin-spin correlation function

‧ Assume every mechanical variable     is normalized

as To exclude foolish operators (ex.          ) 
: Constant independent of     and    .

The number of independent mechanical variables 
is             !! Much fewer than the degree of freedom  

In statistical mechanics, we have two types of macroscopic 

variables, mechanical variables and genuine thermodynamic 

variables.



In statistical mechanics, we have two types of macroscopic 

variables, mechanical variables and genuine thermodynamic 

variables.

‧ Cannot be represented as mechanical variables
‧ All genuine thermodynamic variables can be derived 
from entropy .

Genuine Thermodynamic Variables
Ex) Temperature      , Entropy

Setup (2)  -Macroscopic Variables



: a set of random complex numbers 
with                      .

As far as we look at the mechanical variables, all of their expectation 

values are very close to their microcanonical ensemble averages.

Take a random vector in the specified energy shell :

: an arbitrary orthonormal basis 
spanning enegy shell 

Typicality on Pure Quantum State
P. Bocchieri and A. Loinger (1959), 
A.Sugita (2007), P.Reiman (2007)

: The number of the independent mechanical variables. 

: Dimension of the Hilbert space of the energy shell                   .

For            , we can prove

: Maximum value of              . 



: some constant

We have Thus, we get

gives correct equilibrium values for 

all mechanical variables simultaneously.

That is, when               ,

: The number of the independent mechanical variables. 

: Dimension of the Hilbert space of the energy shell                   .

: Maximum value of              . 

Typicality on Pure Quantum State
P. Bocchieri and A. Loinger (1959), 
A.Sugita (2007), P.Reiman (2007)



Establish the formulation of statistical mechanics 

based on the thermal pure quantum state.

Direction of Our Work

Typical states represent an equilibrium state.

However …

How can we realize such          ?

Possible if we know all energy eigenstates             , 
but it’s as hard as the ensemble average…

We saw

Can we obtain the genuine thermodynamic variables from 

a single pure state? 

Can we obtain such pure states corresponding to 

(grand)canonical ensemble?

We will solve these points and

We call such states “thermal pure quantum (TPQ) states”.
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: an arbitrary orthonormal basis of the Hilbert space

: a set of random complex numbers 

Canonical Thermal Pure Quantum States

( and      obey normal distribution with mean = 0 and variance = 1)

s.t.

The canonical thermal pure quantum (TPQ) state at temperature         

is defined by

High energy cut-offRandom phase Arbitrary basis

(NOT a basis in the energy shell)

We don’t have any resevoir.

It’s not the “purification” of the Gibbs state                                  .

PRL 111, 010401 (2013)



Properties of Canonical TPQ State

Mechanical Variables

For 

We will show a single realization of           gives thermodynamic 

predictions correctly.

: Partition function

Moreover,        means 

they are exponentially close!

Genuine Thermodynamic Variables

Free energy                                             is obtained from 

the norm of           !



Error Estimate for Canonical TPQ State

Free energy

Mechanical Variables

:Variance of 

A single realization of the TPQ state gives 

equilibrium values of all macrocscopic quantities. 

For , 

For , 

: The number of the independent 

mechanical variables. 

: Free energy density: Partition function
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Different Representations of

the Same Equilibrium State

Conventional Formulation

TPQ States Formulation

These formulations give the same 

thermodynamic predictions



Time invariance

TPQ States Formulation

Rigorously time invariant

Conventional Formulation

P. Bocchieri and A. Loinger (1959), 
P.Reiman (2007)



Conventional Formulation

TPQ States Formulation

is another realization of   

Macroscopically time invariant

Time invariance P. Bocchieri and A. Loinger (1959), 
P.Reiman (2007)

Rigorously time invariant



Response Function

When we apply an external field              to system; 

the response of a mechanical variable      is obtained by Green-Kubo 

relations, 

Therefore, we need to evaluate                                    to know the 

response.

(                                )

: Density matrix of the system

Cf) P.Reiman (2007)
C.Bartsch and J.Gemmer (2009)
T Monnai, A Sugita (2014)

Using the TPQ state, this is evaluated by                                      .



Error of time correlation

Even when we replace the mechanical variable with the dynamical 

quantities e.g.                          , the error is still exponentially small,

because

We can evaluate                correctly at most time .

Error of                            using the canonical TPQ state is evaluated as

However, after waiting for exponentially long time, there can be a

small period when                                    .

Cf) P.Reiman (2007)
C.Bartsch and J.Gemmer (2009)
T Monnai, A Sugita (2014)



Fluctuation of Mixed state

In quantum statistical mechanics, fluctuation is the sum of

“quantum fluctuation” and “thermal fluctuation” …… ???

“Quantum fluctuation”

“Thermal fluctuation”

However, since the basis          is not unique for mixed states    , 

the decomposition of the fluctuation is not uniquely determined either.

We can’t distinguish quantum and thermal fluctuations.

For an arbitrary mixed state    , fluctuation may be decomposed into 

two parts.

Fluctuation



By contrast, since      is a pure quantum state in TPQ formulation, 

the representation of      is unique, i.e.,                   .

“Quantum fluctuation”

“Thermal fluctuation”

All fluctuation in ensemble formulation is squeezed 

into quantum fluctuation in TPQ formulation.

Fluctuation of TPQ state

“Quantum fluctuation”

“Thermal fluctuation”

Fluctuation

Therefore, in TPQ formulation, quantum and thermal fluctuations are 

well defined.

Cf) Energy Eigenstate Themalization Hypothesis
M.Rigol, V.Dunjko & M.Olshanii (2008)



N sites

q sites (N-q) sites are 
traced out 

Entanglement  -Purity

N=16

Minimum value

Average value of 

random vector in whole Hilbert space

TPQ states

energy high

low

( A.Sugita & A.Shimizu (2005) )

q

TPQ states are almost maximally entangled

arXiv:1312.5145



Entanglement  

-von Neumann’s Entropy

TPQ states are almost maximally entangled

q

Maximum value

TPQ states

N sites

q sites Trace out

“When             ,        is close to the Gibbs state.”

von Neumann’s entropy is close to the thermal entropy.

“Canonical Typicality”, 

S.Goldstein, J.Lebowitz, R.Tumulka, N.Zanghi (2006)

S.Popescu, A.Short and A.Winter (2006)

arXiv:1312.5145



Bipartite entanglement entropy

Conventional Formulation

TPQ States Formulation

Microscopically completely different states 

represent the same equilibrium state.

At high temperature, they have little entanglement.

TPQ states have almost maximum entanglement.



Table of Contents

1. Introduction

2. Canonical TPQ State

3. Equilibrium State and Entanglement

4. Numerics



S=1/2 kagome-lattice Heisenberg antiferromagnet

Second peak vanishesas as               ?

Application to Numerics (1) PRL 111, 010401 (2013)

We replace

It is advantageous in practical applications.



1D Hubbard Model

Application to Numerics (2) PRB 90, 121110(R) (2014)

Number Density Correlation Function

Agree with exact results Correlation function can also 

be calculated 

We use grandcanonical TPQ state :



Application to Numerics (2)

Specific Heat

Although equivalence of ensembles holds in                , 

grandcanonical ensemble is more accurate 

than canonical one in  finite .          

Canonical TPQ state

Grandcanonical TPQ state

v.s.

Hubbard Model

PRB 90, 121110(R) (2014)

Comparison



Canonical TPQ states are represented by superposition of 
equilibrium states     .

Numerical Procedure



Canonical TPQ states are represented by superposition of 
equilibrium states     .

Energy 
distribution     

Energy densityOther     ’s

Numerical Procedure



Moreover, we don’t need to construct         ’s for different 
temperatures one by one. 

Practical Formula

(Exponentially Small Error)

Equilibrium values are obtained 

only from              ’s and                     ’s



Advantages for Numerical Method

・ Finite temperature.

・ Less amount of calculation than a diagonalization of Hamiltonian.

・ Only 2 vectors (i.e. Computer Memory) are needed

・ Free from spatial dimension and structure of Hamiltonian.

Applicable to 2D Frustrated/Fermion Systems

Many Advantages :

(Kagome)      (Hubbard model)

・ Almost Self-validating formulation



Summary

Errors are exponentially small!

Genuine thermodynamic variables

Thermal equilibrium state

Mechanical variables

SS and A.Shimizu, PRL 111, 010401 (2013)

SS and A.Shimizu, PRL 108, 240401 (2012)

SS and A.Shimizu, arXiv:1312.5145

M.Hyuga, SS, K.Sakai,and A.Shimizu, PRB 90, 121110(R) (2014)

TPQ states reproduce many aspects of statistical mechanics

Advantageous to numerical applications

TPQ states have large entanglement

・TPQ states are time invariant.

・Time correlation can be caluculated

・All fluctuation is squeezed into quantum fluctuation


