NQS 2014

Topological defects in a spin-nematic phase on the triangular lattice

Hiroaki T. Ueda Yutaka Akagi Nic Shannon Okinawa Institute of Science and Technology

Triangular lattice

Related compounds:

NiGa $_2$ S $_4$, Ba $_3$ NiSb $_2$ O $_9$ Nakatsuji, et. al.

Cheng, et. al.

Topological defect (π_1), soliton (π_2)

Example of π_1 defect: vortex in XY model

Example of π_2 soliton: Skyrmion in Heisenberg ferromagnet

Table of topological defects

		• •	-		
	BBQ in the triangular	MFT Ground state	GS order parameter space	π_1 (point defect)	π_2 (soliton)
	$J_1/J_2 < 1 \ (J_{1,2} > 0)$	AF Quadrupolar	$\mathrm{SU}(2)/\mathbb{Q}$	Quartanion	identity
	$J_1 = J_2 > 0$	SU(3) AF	$\mathrm{SU}(3)/(U(1) \times U(1))$	identity	$\mathbb{Z} imes \mathbb{Z}$
	$1 < J_1/J_2 < -0.5 \ (J_1 > 0)$	120° AF	$SO(3)=SU(2)/\mathbb{Z}_2$	\mathbb{Z}_2	identity
	$-0.5 < J_1/J_2 < 1 \ (J_2 < 0)$	FM Quadrupolar	$SO(3)/D_{\infty} = RP_2$	\mathbb{Z}_2	$\mathbb{Z} \geq 0$
	$J_1 = J_2 < 0$	Ferro SU(3)	$\mathrm{SU}(3)/(SU(2) \times U(1)) = CP_2$	identity	\mathbb{Z}
1 <	$J_1/J_2 \ (J_{1,2} < 0)$ and $J_1 < 0, J_2 > 0$	FM	SO(3)/SO(2)=SU(2)/U(1)	identity	\mathbb{Z}

TABLE I: Topological defects in the BBQ model

Q=(1,-1,0) case: Two of three sublattices = orthogonal CP_2 solitons

