HADRON INTERACTIONS FROM LATTICE QCD

Sinya AOKI
Yukawa Institute for Theoretical Physics Kyoto University

1. INTRODUCTION CURRENT STATUS OF LATTICE QCD

Calculations of basic quantities are almost completed.

Hadron spectra

BMW collaboration
Sciences 322(2008)1224

$$
a \rightarrow 0 \quad m_{\pi} L \geq 4
$$

$$
m_{\pi}^{\min .}=190 \mathrm{MeV}
$$

Agreement between lattice QCD and experiment is excellent !

Hadron spectra near physical point

PACS-CS Collaboration Phys. Rev. D79 (2009) 034503

$$
m_{\pi}^{\min .}=156 \mathrm{MeV} \quad m_{\pi} L=2.3
$$

Chiral extrapolation

$$
a=0.09 \mathrm{fm} \quad L=2.9 \mathrm{fm}
$$

We are almost on the "physical point".

Reweighting to physical point

Simulation at $m_{\pi} \simeq 140 \mathrm{MeV}$ by reweighting

$$
\begin{aligned}
\langle O[U]\rangle_{m} & =\frac{\int \mathcal{D} U O(U) \operatorname{det} D_{m}(U) e^{-S_{G}(U)}}{\int \mathcal{D} U \operatorname{det} D_{m}(U) e^{-S_{G}(U)}}=\frac{\int \mathcal{D} U O(U) \frac{\operatorname{det} D_{m}(U)}{\operatorname{det} D_{m *}(U)} \operatorname{det} D_{m *}(U) e^{-S_{G}(U)}}{\int \mathcal{D} U \frac{\operatorname{det} D_{m}(U)}{\operatorname{det} D_{m *}(U)} \operatorname{det} D_{m *}(U) e^{-S_{G}(U)}} \\
& =\frac{\left\langle R_{m / m *}(U) O(U)\right\rangle_{m *}}{\left\langle R_{m / m *}(U)\right\rangle_{m *}} \quad R_{m / m *}(U)=\frac{\operatorname{det} D_{m}(U)}{\operatorname{det} D_{m *}(U)}
\end{aligned}
$$

1+1+1 flavor QCD+QED

Reweighting for u-d quark mass difference and QED

Future directions of lattice QCD/gauge theories

- Heavy quark physics (charm, bottom)
- CKM matrix, BSM physics
- Hadron structure
- form factor, PDF of nucleon
- Finite temperature and density
- phase transitions, EoS, heavy-ion collisions, neutron stars
- dynamical models for BSM
- technicolor, extra-dimension
- Hadron interaction (This talk)
- nuclear physics from QCD
- Hyper-nuclei, J-PARC

Plan of my talk

1. Introduction
2. Strategy
3. Nuclear potentials
4. Repulsive core: Hyperon Interactions
5. Extensions
6. Conclusion

2. STRATEGY

How can we extract hadronic interaction from lattice QCD ?

Phenomenological NN potential
Ex. (~ 40 parameters to fit 5000 phase shift data)

I One-pion exchange

II Multi-pions

Taketani et al.(1951)

III Repulsive core

Nuclear force is a basis for understanding ...

- Structure of ordinary and hyper nuclei
- Ignition of Type II SuperNova

- Structure of neutron star

Can we extract a nuclear force in (lattice) QCD ?

3 strategies to nuclear structure from lattice QCD

1. Extreme: calculate nuclear structure directly from lattice QCD

Ab-Initio but (almost) impossible,
difficult to extract "physics" from results

${ }^{3} \mathrm{H}\left(={ }^{3} \mathrm{He}\right)$

difficult to apply results to other systems

$$
\simeq e^{-m_{A} t}+\cdots
$$

3A quark lines
A: atomic number
large number of contractions/very noisy
some reduction (Doi-Endres, CPC 184(2013)117) ${ }^{4} \mathrm{He}$

2. Standard: calculate NN phase shift from lattice QCD

Ab-Initio for phase shift
results can not be directly used to calculate nuclear structure

Lüsher's finite volume method for the phase shift

two particles in the finite $\operatorname{box}\left(V=L^{3}\right)$
$E=2 \sqrt{\mathbf{k}^{2}+m^{2}}$

phase shift $\delta_{l}\left(k_{n}\right)$
Ex. $k \cot \delta_{0}(k)=\frac{2}{\sqrt{\pi} L} \underline{Z_{00}\left(1 ; q^{2}\right)}$

$$
\begin{array}{lc}
k=|\mathbf{k}| & \text { generalize zeta-function } \\
q=\frac{k L}{2 \pi} & Z_{00}\left(s ; q^{2}\right)=\frac{1}{\sqrt{4 \pi}} \sum_{\mathbf{n} \in \mathbf{Z}^{3}}\left(\mathbf{n}^{2}-q^{2}\right)^{-s}
\end{array}
$$

ETMC: Feng-Jansen-Renner, PLB684(2010)

Ab-Initio for potential "Physics" is clear
nuclear potential

nuclear structure

Difficulties for NN potentials

A. Interactions (2-body problem) are much more difficult than masses(1-body problem).

more complicated diagrams, larger volume, more Monte-Carlo sampling, etc.
B. Definition of potential in quantum theories?
classical $V(x)$ no classical NN potentials \quad QCD $\quad V_{N N}(x) ? \quad$ output from QCD

Potentials in QCD ?

What are "potentials" in quantum field theories such as QCD ?
"Potentials" themselves can NOT be directly measured. analogy: running coupling in QCD scheme dependent, Unitary transformation
experimental data of scattering phase shifts

"Potentials" are useful tools to extract observables such as scattering phase shift.
potentials, but not unique

useful to "understand" physics
analogy: asymptotic freedom

Our strategy in lattice QCD

Full details: Aoki, Hatsuda \& Ishii, PTP123(2010)89.
Consider "elastic scattering"
$N N \rightarrow N N \quad N N \rightarrow N N+$ others $(\overline{N N \rightarrow N N+\pi, N N+\bar{N} N, \cdots) . .}$
energy $\quad W_{k}=2 \sqrt{\mathbf{k}^{2}+m_{N}^{2}}<W_{\text {th }}=2 m_{N}+m_{\pi} \quad$ Elastic threshold

Quantum Field Theoretical consideration

- S-matrix below inelastic threshold. Unitarity gives $\quad S=e^{2 i \delta}$

Step 1 define (Equal-time) Nambu-Bethe-Salpeter (NBS) Wave function
Spin model: Balog et al., 1999/2001

$$
\varphi_{\mathbf{k}}(\mathbf{r})=\langle 0| N(\mathbf{x}+\mathbf{r}, 0) N(\mathbf{x}, 0)\left|N N, W_{k}\right\rangle
$$

$N(x)=\varepsilon_{a b c} q^{a}(x) q^{b}(x) q^{c}(x):$ local operator

QCD eigen-state

$$
r=|\mathbf{r}| \rightarrow \infty
$$

$$
\varphi_{\mathbf{k}}^{l} \rightarrow A_{l} \frac{\sin \left(k r-l \pi / 2+\delta_{l}(k)\right)}{k r}
$$

scattering phase shift (phase of the S-matrix by unitarity) in QCD !

NBS wave function

scattering wave function in quantum mechanics

Step 2 define non-local but energy-independent "potential" as

$$
\begin{gathered}
{\left[\epsilon_{k}-H_{0}\right] \varphi_{\mathbf{k}}(\mathbf{x})=\int d^{3} y \underline{U(\mathbf{x}, \mathbf{y})} \varphi_{\mathbf{k}}(\mathbf{y})} \\
\epsilon_{k}=\frac{\mathbf{k}^{2}}{2 \mu} \quad H_{0}=\frac{-\nabla^{2}}{2 \mu}
\end{gathered}
$$

(Trivial) proof of "existence"

We can construct a non-local but energy-independent potential easily as

$$
U(\mathbf{x}, \mathbf{y})=\sum_{\mathbf{k}, \mathbf{k}^{\prime}}^{W_{k}, W_{k^{\prime}} \leq W_{\mathrm{th}}}\left[\epsilon_{k}-H_{0}\right] \varphi_{\mathbf{k}}(\mathbf{x}) \eta_{\mathbf{k}, \mathbf{k}^{\prime}}^{-1} \varphi_{\mathbf{k}^{\prime}}^{\dagger}(\mathbf{y}) \quad \eta_{\mathbf{k}, \mathbf{k}^{\prime}}^{-1} \text { : inverse of } \eta_{\mathbf{k}, \mathbf{k}^{\prime}}=\left(\varphi_{\mathbf{k}}, \varphi_{\mathbf{k}^{\prime}}\right)
$$

For ${ }^{\forall} W_{\mathbf{p}}<W_{\text {th }}$

$$
\int d^{3} y U(\mathbf{x}, \mathbf{y}) \phi_{\mathbf{p}}(\mathbf{y})=\sum_{\mathbf{k}, \mathbf{k}^{\prime}}\left[\epsilon_{k}-H_{0}\right] \varphi_{\mathbf{k}}(x) \eta_{\mathbf{k}, \mathbf{k}^{\prime}}^{-1} \eta_{\mathbf{k}^{\prime}, \mathbf{p}}=\left[\epsilon_{p}-H_{0}\right] \varphi_{\mathbf{p}}(x)
$$

Remark

Non-relativistic approximation is NOT used. We just take the specific (equal-time) frame.

Step 3 expand the non-local potential in terms of derivative as

$$
\begin{gathered}
U(\mathbf{x}, \mathbf{y})=V(\mathbf{x}, \nabla) \delta^{3}(\mathbf{x}-\mathbf{y}) \\
V(\mathbf{x}, \nabla)=V_{0}(r)+V_{\sigma}(r)\left(\sigma_{\mathbf{1}} \cdot \sigma_{\mathbf{2}}\right)+V_{T}(r) S_{12}+V_{\mathrm{LS}}(r) \mathbf{L} \cdot \mathbf{S}+O\left(\nabla^{2}\right) \\
\text { Lo NLO } \\
\text { tensor operator } \\
\text { LOLO } \\
S_{12}=\frac{3}{r^{2}}\left(\sigma_{\mathbf{1}} \cdot \mathbf{x}\right)\left(\sigma_{\mathbf{2}} \cdot \mathbf{x}\right)-\left(\sigma_{\mathbf{1}} \cdot \sigma_{\mathbf{2}}\right)
\end{gathered}
$$

This expansion is a part of our "scheme" for potentials.

Step 4 extract the local potential at LO as

$$
V_{\mathrm{LO}}(\mathbf{x})=\frac{\left[\epsilon_{k}-H_{0}\right] \varphi_{\mathbf{k}}(\mathbf{x})}{\varphi_{\mathbf{k}}(\mathbf{x})}
$$

Step 5 solve the Schroedinger Eq. in the infinite volume with this potential.
phase shifts and binding energy below inelastic threshold

We can check a size of errors of the LO in the expansion. (See later).

3. NUCLEAR POTENTIALS

Extraction of NBS wave function

NBS wave function

Potential

$\varphi_{\mathbf{k}}(\mathbf{r})=\langle 0| N(\mathbf{x}+\mathbf{r}, 0) N(\mathbf{x}, 0)\left|N N, W_{k}\right\rangle\left[\epsilon_{k}-H_{0}\right] \varphi_{\mathbf{k}}(\mathbf{x})=\int d^{3} y U(\mathbf{x}, \mathbf{y}) \varphi_{\mathbf{k}}(\mathbf{y})$

4-pt Correlation function
source for NN

$$
F\left(\mathbf{r}, t-t_{0}\right)=\langle 0| T\{N(\mathbf{x}+\mathbf{r}, t) N(\mathbf{x}, t)\} \overline{\mathcal{J}}\left(t_{0}\right)|0\rangle
$$

complete set for NN

$$
\begin{aligned}
& F\left(\mathbf{r}, t-t_{0}\right)=\langle 0| T\{N(\mathbf{x}+\mathbf{r}, t) N(\mathbf{x}, t)\} \sum_{n, s_{1}, s_{2}} \frac{\left|2 N, W_{n}, s_{1}, s_{2}\right\rangle\left\langle 2 N, W_{n}, s_{1}, s_{2}\right| \overline{\mathcal{J}}\left(t_{0}\right)|0\rangle+\cdots}{} \\
&=\sum_{n, s_{1}, s_{2}} A_{n, s_{1}, s_{2}} \varphi^{W_{n}}(\mathbf{r}) e^{-W_{n}\left(t-t_{0}\right)}, \quad A_{n, s_{1}, s_{2}}=\left\langle 2 N, W_{n}, s_{1}, s_{2}\right| \overline{\mathcal{J}}(0)|0\rangle .
\end{aligned}
$$

ground state saturation at large t

$$
\lim _{\left(t-t_{0}\right) \rightarrow \infty} F\left(\mathbf{r}, t-t_{0}\right)=A_{0} \varphi^{W_{0}}(\mathbf{r}) e^{-W_{0}\left(t-t_{0}\right)}+O\left(e^{-W_{n \neq 0}\left(t-t_{0}\right)}\right)
$$

NBS wave function

This is a standard method in lattice QCD and was employed for our first calculation.

Improved method

normalized 4-pt function

$$
R(\mathbf{r}, t) \equiv F(\mathbf{r}, t) /\left(e^{-m_{N} t}\right)^{2}=\sum_{n} A_{n} \varphi^{W_{n}}(\mathbf{r}) e^{-\Delta W_{n} t}
$$

$$
\begin{gathered}
\Delta W_{n}=W_{n}-2 m_{N}=\frac{\mathbf{k}_{n}^{2}}{m_{N}}-\frac{\left(\Delta W_{n}\right)^{2}}{4 m_{N}} \\
-\frac{\partial}{\partial t} R(\mathbf{r}, t)=\left\{H_{0}+U-\frac{\downarrow_{1}}{4 m_{N}} \frac{\partial^{2}}{\partial t^{2}}\right\} R(\mathbf{r}, t)
\end{gathered}
$$

potential
Leading Order

$$
\left\{-H_{0}-\frac{\partial}{\partial t}+\frac{1}{4 m_{N}} \frac{\partial^{2}}{\partial t^{2}}\right\} R(\mathbf{r}, t)=\int d^{3} r^{\prime} U\left(\mathbf{r}, \mathbf{r}^{\prime}\right) R\left(\mathbf{r}^{\prime}, t\right)=V_{C}(\mathbf{r}) R(\mathbf{r}, t)+\cdots
$$

1st

3rd total

3rd term(relativistic correction) is negligible.

Ground state saturation is no more required! (advantage over finite volume method.)

Qualitative features of NN potential are reproduced!
(1)attractions at medium and long distances
(2)repulsion at short distance(repulsive core)

1st paper(quenched QCD): Ishii-Aoki-Hatsuda, PRL90(2007)0022001
This paper has been selected as one of 21 papers in Nature Research Highlights 2007. (One from Physics, Two from Japan, the other is on "iPS" by Sinya Yamanaka et al.)

NN potential

It has a reasonable shape. The strength is weaker due to the heavier quark mass.
Need calculations at physical quark mass.

Convergence of velocity expansion

If the higher order terms are large, LO potentials determined from NBS wave functions at different energy become different.(cf. LOC of ChPT).

| Numerical check in quenched QCD |
| :--- | :--- | | $m_{\pi} \simeq 0.53 \mathrm{GeV}$ |
| :--- |
| $\mathrm{a}=0.137 \mathrm{fm}, \mathrm{L}=4.0 \mathrm{fm}$ |\quad| K. Murano, N. Ishii, S. Aoki, T. Hatsuda |
| ---: |
| PTP $125(2011) 1225$. |

Higher order terms turn out to be very small at low energy in our scheme.

Need to be checked at lighter pion mass in 2+1 flavor QCD.

Note: convergence of the velocity expansion can be checked within this method.
(in contrast to convergence of ChPT, convergence of perturbative QCD)

4. REPULSIVE CORE HYPERON INTERACTIONS

Origin of the repulsive core?

quarks are "fermion"

two can not occupy the same position. ("Pauli principle") they have 3 colors(red,blue,green), $2 \operatorname{spin}(\uparrow \downarrow$), 2 flavors(up,down)

6 quark can occupy the same position

but allowed color combinations are limited + interaction among quarks

What happen if strange quarks are added?

$$
\Lambda(u d s)-\Lambda(u d s) \text { interaction }
$$

all color combinations are allowed

no repulsive core?

Our lattice QCD result

Inoue et al. (HAL QCD Coll.), Progress of Theoretical Physics 124(2010)591
 flavor $\operatorname{SU}(3)$ limit

$$
m_{u}=m_{d}=m_{s}
$$

Indeed, attractive instead of repulsive core appears.

This suggests that "Pauli principle" is important for the repulsive core.

Force is attractive at all distances. Bound state?

H-dibaryon:
 a possible six quark state(uuddss)
 predicted by the model but not observed yet.

This potential

An H-dibaryon exists in the flavor $\mathrm{SU}(3)$ limit. Binding energy $=25-50 \mathrm{MeV}$ at this range of quark mass. A mild quark mass dependence.

5. EXTENSION

1. Only for two particle scattering $\quad N N \rightarrow N N$
2. Only for elastic scattering

$$
W<W_{\mathrm{th}}
$$

In order to remove these limitations and extend the HAL QCD method to inelastic and/or multi-particle scatterings, we have to show

Key Property 1

Asymptotic behaviors of NBS wave functions for more than 2 particles

Key Property 2

Existence of energy independent potentials above inelastic thresholds

NBS wave functions for multi-particles

For simplicity,
(1) we consider scalar particles with "flavors"
(2) we assume no bound state exists.

Sinya Aoki, et al., arXiv. 1303.2210 [hep-lat], to appear in PRD.

Unitarity constraint $\quad T^{\dagger}-T=i T^{\dagger} T$.

parametrization ${ }_{0}\left\langle\left[\boldsymbol{p}^{A}\right]_{n}\right| T\left|\left[\boldsymbol{p}^{B}\right]_{n}\right\rangle_{0} \equiv \delta\left(E^{A}-E^{B}\right) \delta^{(3)}\left(\boldsymbol{P}^{A}-\boldsymbol{P}^{B}\right) T\left(\left[\boldsymbol{q}^{A}\right]_{n},\left[\boldsymbol{q}^{B}\right]_{n}\right)$

$T\left(\left[\boldsymbol{q}^{A}\right]_{n},\left[\boldsymbol{q}^{B}\right]_{n}\right) \equiv T\left(\boldsymbol{Q}_{A}, \boldsymbol{Q}_{B}\right)$

$$
\boldsymbol{Q}_{X}=\left(\boldsymbol{q}_{1}^{X}, \boldsymbol{q}^{X}{ }_{2}, \cdots, \boldsymbol{q}^{X}{ }_{n-1}\right)
$$

momentum in $\mathrm{D}=3(\mathrm{n}-1)$ dim.

$$
=\sum_{[L],[K]} T_{[L][K]}\left(Q_{A}, Q_{B}\right) \underline{Y_{[L]}\left(\Omega_{\boldsymbol{Q}_{A}}\right) \overline{Y_{[K]}\left(\Omega_{\boldsymbol{Q}_{B}}\right)}}
$$

$$
\text { hyper-spherical harmonic function } \hat{L}^{2} Y_{[L]}\left(\Omega_{s}\right)=L(L+D-2) Y_{[L]}\left(\Omega_{s}\right)
$$

solution to the unitarity constraint with non-relativistic approximation

$$
\begin{aligned}
T_{[L][K]}(Q, Q)= & \sum_{[N]} U_{[L][N]}(Q) T_{[N]}(Q) U_{[N][K]}^{\dagger}(Q), \\
& T_{[L]}(Q)=-\frac{2 n^{3 / 2}}{m Q^{3 n-5}} e^{i \delta_{[L]}(Q)} \sin \delta_{[L]}(Q), \text { "phase shift" } \delta_{[L]}(Q)
\end{aligned}
$$

$$
|\alpha\rangle_{\text {in }}=|\alpha\rangle_{0}+\int d \beta \frac{|\beta\rangle_{0} T_{\beta \alpha}}{E_{\alpha}-E_{\beta}+i \varepsilon}, \quad \frac{T_{\beta \alpha}={ }_{0}\langle\beta| V|\alpha\rangle_{\text {in }}}{\text { off-shell }}, \quad \frac{{ }_{0}\langle\beta| T|\alpha\rangle_{0}}{\text { on-shell }}=2 \pi \delta\left(E_{\alpha}-E_{\beta}\right) \underline{T_{\alpha \beta}} \text { off-shell } .
$$

$$
\left.\left(H_{0}+V\right)\left|\alpha \alpha_{\text {in }}=E_{\alpha}\right| \alpha\right\rangle_{\text {in }}, \quad \text { full }
$$

$$
H_{0}|\alpha\rangle_{0}=E_{\alpha}|\alpha\rangle_{0} \text {. free }
$$

NBS wave functions

$\Psi_{\alpha}^{n}([\boldsymbol{x}])={ }_{\text {in }}\langle 0| \varphi^{n}([\boldsymbol{x}], 0)|\alpha\rangle_{\text {in }}$,
n -scalar fields with different flavors

$$
\varphi^{n}([\boldsymbol{x}], t)=T\left\{\prod_{i=1}^{n} \varphi_{i}\left(\boldsymbol{x}_{i}, t\right)\right\}
$$

$$
\Psi_{\alpha}^{n}([\boldsymbol{x}])=\frac{1}{Z_{\alpha}}{ }_{0}\langle 0| \varphi^{n}([\boldsymbol{x}], 0)|\alpha\rangle_{0}+\int d \beta \frac{1}{Z_{\beta}} \frac{{ }_{0}\langle 0| \varphi^{n}([\boldsymbol{x}], 0)|\beta\rangle_{0} T_{\beta \alpha}}{E_{\alpha}-E_{\beta}+i \varepsilon}
$$

$$
{ }_{0}\langle 0| \varphi^{n}([\boldsymbol{x}], 0)\left|[\boldsymbol{k}]_{n}\right\rangle_{0}=\left(\frac{1}{\sqrt{(2 \pi)^{3}}}\right)^{n} \prod_{i=1}^{n} \frac{1}{\sqrt{2 E_{k_{i}}}} e^{i \boldsymbol{k}_{i} \boldsymbol{x}_{i}}
$$

D-dimensional hyper-coordinates

$$
\Psi^{n}\left(\boldsymbol{R}, \boldsymbol{Q}_{A}\right)=C\left[e^{i \boldsymbol{Q}_{A} \cdot R}+\frac{2 m}{2 \pi n^{3 / 2}} \int d^{D} Q \frac{e^{i \boldsymbol{Q} \cdot R}}{Q_{A}^{2}-Q^{2}+i \varepsilon} T\left(\boldsymbol{Q}, \boldsymbol{Q}_{A}\right)\right]
$$

Expansion in terms of hyper-spherical harmonic function

$$
\begin{aligned}
& e^{i \boldsymbol{Q} \cdot \boldsymbol{R}}=(D-2)!!\frac{2 \pi^{D / 2}}{\Gamma(D / 2)} \sum_{[L]} i^{L} \frac{j_{L}^{D}(Q R)}{\text { hyper-spherical Bessel function }} Y_{[L]}\left(\Omega_{\boldsymbol{R}}\right) \overline{Y_{[L]}\left(\Omega_{\boldsymbol{Q}}\right)} \\
& \Psi^{n}\left(\boldsymbol{R}, \boldsymbol{Q}_{A}\right)=\sum_{[L],[K]} \Psi_{[L],[K]}^{n}\left(R, Q_{A}\right) Y_{[L]}\left(\Omega_{\boldsymbol{R}}\right) \overline{Y_{[K]}\left(\Omega_{\boldsymbol{Q}_{A}}\right)}
\end{aligned}
$$

Asymptotic behavior of NBS wave functions

$$
\begin{aligned}
\Psi_{[L],[K]}^{n}\left(R, Q_{A}\right) & \simeq C i^{L} \frac{(2 \pi)^{D / 2}}{\left(Q_{A} R\right)^{\frac{D-1}{2}}} \sum_{[N]} U_{[L][N]}\left(Q_{A}\right) e^{i \delta_{[N]}\left(Q_{A}\right)} U_{[N][K]}^{\dagger}\left(Q_{A}\right) \\
& \times \sqrt{\frac{2}{\pi}} \frac{\sin \left(Q_{A} R-\Delta_{L}+\delta_{[N]}\left(Q_{A}\right)\right)}{\Delta_{L}=\frac{2 L_{D}-1}{4} \pi}
\end{aligned}
$$

Energy-independent potential above inelastic thresholds

Let us consider $\quad N N \rightarrow N N, N N \pi$
energy $W \in \Delta_{1}$
$\uparrow \quad W_{\mathrm{th}}^{2}=2 m_{N}+2 m_{\pi}$

$$
\Delta_{1}=\left[W_{\mathrm{th}}^{1}, W_{\mathrm{th}}^{2}\right)
$$

2 operators

$$
W_{\mathrm{th}}^{1}=2 m_{N}+m_{\pi}
$$

$$
\begin{array}{r}
N(x) N(y) \\
N(x) N(y) \pi(z)
\end{array}
$$

$$
\Delta_{0}=\left[W_{\mathrm{th}}^{0}, W_{\mathrm{th}}^{1}\right)
$$

$$
W_{\mathrm{th}}^{0}=2 m_{N}
$$

$$
Z_{N} \varphi_{W, c_{0}}^{00}\left(\boldsymbol{x}_{0}\right)=\langle 0| T\left\{N(\boldsymbol{x}, 0) N\left(\boldsymbol{x}+\boldsymbol{x}_{0}, 0\right)\right\}\left|N N, W, c_{0}\right\rangle_{\mathrm{in}}
$$

$$
Z_{N} Z_{\pi}^{1 / 2} \varphi_{W, c_{0}}^{10}\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{1}\right)=\langle 0| T\left\{N(\boldsymbol{x}, 0) N\left(\boldsymbol{x}+\boldsymbol{x}_{0}, 0\right) \pi\left(\boldsymbol{x}+\boldsymbol{x}_{1}, 0\right)\right\}\left|N N, W, c_{0}\right\rangle_{\mathrm{in}}
$$

$$
Z_{N} \varphi_{W, c_{1}}^{01}\left(\boldsymbol{x}_{0}\right)=\langle 0| T\left\{N(\boldsymbol{x}, 0) N\left(\boldsymbol{x}+\boldsymbol{x}_{0}, 0\right)\right\}\left|N N+\pi, W, c_{1}\right\rangle_{\mathrm{in}}
$$

$$
Z_{N} Z_{\pi}^{1 / 2} \varphi_{W, c_{1}}^{11}\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{1}\right)=\langle 0| T\left\{N(\boldsymbol{x}, 0) N\left(\boldsymbol{x}+\boldsymbol{x}_{0}, 0\right) \pi\left(\boldsymbol{x}+\boldsymbol{x}_{1}, 0\right)\right\}\left|N N+\pi, W, c_{1}\right\rangle_{\mathrm{in}}
$$

$\varphi_{W, c_{j}}^{i j}\left([\mathbf{x}]_{i}\right) \quad i(j):$ number of π 's in the operator(state)

$$
[\boldsymbol{x}]_{0}=\boldsymbol{x}_{0} \quad[\boldsymbol{x}]_{1}=\boldsymbol{x}_{0}, \boldsymbol{x}_{1}
$$

coupled channel equation

$$
\left(E_{W}^{k}-H_{0}^{k}\right) \varphi_{W, c_{i}}^{k i}=\sum_{l=0,1} \int \prod_{n=0}^{l} d^{3} y_{n} \frac{U^{k l}\left([\boldsymbol{x}]_{k},[\boldsymbol{y}]_{l}\right)}{\text { non-local potential matrix }} \varphi_{W, c_{i}}^{l i}\left([\boldsymbol{y}]_{l}\right), \quad k, i \in(0,1)
$$

We can prove an existence of non-local potential matrix using non-relativistic approximation.
$E_{W}^{n}=\frac{\boldsymbol{p}_{1}^{2}}{2 m_{N}}+\frac{\boldsymbol{p}_{2}^{2}}{2 m_{N}}+\sum_{i=1}^{n} \frac{\boldsymbol{k}_{i}^{2}}{2 m_{\pi}}, \quad W=\sqrt{m_{N}^{2}+\boldsymbol{p}_{1}^{2}}+\sqrt{m_{N}^{2}+\boldsymbol{p}_{2}^{2}}+\sum_{i=1}^{n} \sqrt{m_{\pi}^{2}+\boldsymbol{k}_{i}^{2}}$,
kinetic energy
non-relativistic approx. for $\mathrm{n}=1$
total energy

$$
\boldsymbol{p}_{1}+\boldsymbol{p}_{2}+\sum_{i=1}^{n} \boldsymbol{k}_{i}=0
$$

The construction of U can easily be generalized to and to $\Lambda \Lambda \rightarrow \Lambda \Lambda, N \Xi, \Sigma \Sigma$

Non-local potential U describes all QCD processes.

QFT(QCD) at given energy

$$
W_{\text {total }}
$$

$$
\Delta, \rho, \cdots
$$

deuteron, H, \ldots

Quantum mechanics with energyindependent non-local coupled channel potentials for stable particles

$$
N, \bar{N}, \pi, \cdots
$$

$$
N \pi, \pi \pi, \cdots
$$

$$
N N, \Lambda \Lambda, \cdots
$$

$$
D, H, \cdots
$$

H－dibaryon with the flavor SU（3）breaking

SU（3）limit

Real world $\quad m_{u}=m_{d} \neq m_{s}$ $\Sigma \Sigma$

H？
－モローロー

Diagonal elements coupled channel 3x3 potentials

Bound H-dibaryon

Esb2 : m $\pi=570 \mathrm{MeV}$

Resonance H

Esb3: mл= 411 MeV

Resonance H

This suggests H-dibaryon becomes resonance at physical point.

Three nucleon force (TNF)

Doi et al. (HAL QCD), PTP 127 (2012) 723

$$
(1,2) \text { pair } \quad{ }^{1} S_{0},{ }^{3} S_{1},{ }^{3} D_{1} \quad \text { S-wave only }
$$

$\operatorname{Triton}\left(I=1 / 2, J^{P}=1 / 2^{+}\right)$

Linear setup

scalar/isoscalar TNF is observed at short distance.
further study is needed to confirm this result.

6. CONCLUSION

- the potential method (HAL QCD method) is new but very useful to investigate not only the nuclear force but also general baryonic interactions in (lattice) QCD.
- some understanding of repulsive cores
- the method can be easily applied also to meson-baryon and meson-meson interactions.

Our strategy

Nuclear Physics
with these potentials

Neutron stars
Supernova explosion

