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a	view	from	foundations:	paradoxes	of	QM

Ingredients:
1. Classical	ideas/assumptions/results
2. Quantum	features/results
3. Combine	and	try	to	obtain	

probability	distributions	that	satisfy	
all	of	(1)	&	(2)

Outcome:
v Contradiction	
v Contradiction

(before	all	QM	results	are	used)	

Examples:
§ EPR:	Bell-CHSH;	KS,	wave-particle
§ BH	info	loss,	firewall



making	of	the	info	loss	paradox

Why	is	it	a	paradox?
GR:		deterministic					

Unruh,	 Phys.	Rev.	D	14,	870	(1976).
VH	and	DRT,	Phys.	Rev.	D		81,	044039	(2010)

GR:	horizon,	mass-area	relation
QFTc:	radiation

Additional	causality	issue:	
§ Collapse	(i.e.	event	horizon	crossing)
takes	an	infinite	amount	of	time
§ Radiation	(that	needs	a	horizon?)
evaporates	a	BH	in	finite	amount	of	time

Ingredients

[spherically-symmetric	collapse	on	a	asympto-
tically flat	background:	Hamiltonian	evolution]

QM►QFT:	unitary

Whose	paradox?



logic	of	the	analysis

§ quantum field theory on a curved background
§ semiclassical gravity
§ semiclassical stochastic gravity
§ effective field theories of matter-gravity systems
§ full theory of quantum gravity

Hierarchy of models 



logic	of	causality

Collapse	takes	infinite	Bob’s	 time
Collapse	takes	finite	Alice’s	time
Evaporation	takes	finite	Bob’s	time

QUANTUM	
EFFECTS

Overlap of
collapse and
radiation

Finite	
time	

collapse

§ Gerlach, PRD 14, 1479 (1976).
§ Alberghi, Casadio, Vacca, Venturi,

PRD 64, 104012 (2001).
§ Barcelo, Liberati, Sonego, Visser,

CQG 23, 5341 (2006)
§ Vachaspati, Stojkovic, Kraus,

PRD 76, 024005 (2007).

Bob:	infinite
Alice:	finite

Both:	none

paradox?



1. The classical spacetime structure is still meaningful and
is described by a metric gµν.

2. Classical concepts, such as trajectory, event horizon or
singularity can be used.

3. The collapse leads to a pre-Hawking radiation

4. The metric is modified by quantum effects. The resulting
curvature satisfies the semiclassical equation

logic	of	the	analysis:	four	assumptions

v Paranjape and	Padmanabhan,	
Phys.	Rev.	D	80,	044011	(2009)



Classical horizon obtains its physical status because of the
finite proper time crossing (co-moving/in-fallingAlice).
Quantum-affected horizon should be tested in the same way
Ø massive	shells,	etc

goals	&	tools

Self-consistency	of	the	semiclassical theory
Ø possibility	of	the	horizon	avoidance

(no	finite	proper	time	crossing)?



Summary

Mechanism	of	avoidance:	depends	on	what	is	the	evaporating	metric
A. Regularized	firewall
B. Deceleration

Massive	thin	shells	+		spherical	symmetry	+	arbitrary	shell	stress-energy
+	generic	metric	outside	+	D spacetimedimensions

The	Schwarzschild	radius	is	not	crossed.	
There	are	no	trapped	surfaces.	
The	shell	is	at	a	certain	sub-Planckian distance	from	the	would-be	horizon
that	depends	only	on	the	mass	and	evaporation	rate

Oppenheimer-Snyder	dust	ball	(can	interact	with	radiation)	
+	no	shell	crossing

The	Schwarzschild	radius	is	not	crossed.	



Rotating	thin	massive	shell	+Vaidya-Kerr	outside	(near	region)

The	Schwarzschild	radius	is	not	crossed.
The	shell	is	deformed	and	the	sub-Planckian distance	from	the	would-be	
horizon	depends	on	the	mass,	evaporation	rate	and	latitude.

Summary



OUTLINE	

qCoordinates,	shells	and	collapse
qHorizon	avoidance
qOpportunities	&	questions



PART	1	

Null	coordinates
Carter-Penrose	diagrams
Collapse	of	the	shells
Collapse	with	Eddington-Finkelstein

Coordinates,	classical	shells	&	collapse
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Past timelike infinity [0D]  
Future timilike infinity [0D]
Past null infinity [3D] 
Future null infinity [3D]
Spacelike infinity [0D]
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2 2 2 2 2( , ) ( , )ds f r t dt g r t dr r d= − + + Ω

q General	spherically-symmetric	spacetime

q Static,	vacuum:	Schwarzschild

1f C r= −

1g f=
2

2
g

GMC r
c

= =

◊ circumference:	2πr
◊ proper	time	interval	of	a	static	
observer:

◊ physical	time	at	infinity	(@Bob):	t
◊ coordinate	singularity	|	horizon:

trrg Δ−=Δ 1τ

grr =

SCHWARZSCHID
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◊ incoming	radial	photon:
travel	time	to														:	infinity

const)1log( =−−− rrrrt gg
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qRadial	photons

qRadial	massive	particles
◊ travel	time	to	horizon:	
infinite	Δt,	finite	Δτ

SCHWARZSCHID
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SCHWARZSCHID

,u v ,U V ,T R +max	extension

Black	hole: )(Past +−= IMB

Horizon	area 22 164 MrA g ππ ==



HAWKING

◊ Surface gravity: the force per unit mass as measured at infinity, to keep the
observer stationary just outside the horizon

Schwarzschild: Mrg 4121 ==κ
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v Black	body	temperature
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THIN	SHELL

q Description
Surface	metric,	extrinsic	curvature

q Characterization
Singular	 stress-energy	tensor

q Dynamics
Minkowski inside,	Schwarzschild	outside

q Solution
Travel	time	to	horizon:	
infinite	Δt,	finite	Δτ
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THIN	SHELL

Surface	in	space(time):

spacetime
surface

0⋅ =n e ab a bg h g e eµ ν
µν µν→ =

basis



abg hµν → abg h gµν µν+ −Σ Σ
→ ←

;
b

a a bn K eµ µε= −

 ;  ;  |
a a

b b b a abA A e A e A K nµ µ ν µ µ
ν ε= ≡ −

;:ab a b baK n e e Kα β
α β= ≡

THIN	SHELL

q 1st junction	condition

q Extrinsic	curvature

q 2nd junction	condition

[ ] :ab ab abK K K+ −= −
1
2 8R Rg T µν

µν µν π− =

Extrinsic	curvature



THIN	SHELL

Collapsing
shell

Minkowski inside,	
Schwarzschild	outside

q Model:
spherical	symmetry,	
thin	dust	shell

Horizon	crossing:
finite	proper	time



THIN	SHELL
(+)	Schwarzschild		|	Eddington-Finkelstein	
▼

2 2 2 2ds dt dr r d− − − −= − + + Ω(-)		Minkowski ►

1f C r= −

( ), ( )T Rτ τ ( ), ( )U Rτ τ

( )( , ) ( ), ( )F R T f r R t Tτ τ= = =

Tracing	the	shell

Surface	coordinates: ( , , )ay τ θ ϕ=

Making	the	shell										
Surface	stress-energy	tensor

τe

2e

(+)

(-)



THIN	SHELL

Junction	conditions,	etc

Simplifications	+	substitutions

R R R− += =

+

( )Rτ ( )gR rτ = < ∞

THIN	SHELL	EQUATION

Horizon	crossing



PART	2	
HORIZON	AVOIDANCE
Logic
Exterior	metric
Examples	&	plots
General	case:	firewall	or	deceleration?



THIN	SHELL

q Logic:	assumptions	1-4	hold

q Question:	what	happens	to	the	shell?

( )* *( )gR rτ τ= < ∞
Is	it	still	true?

q Problem:	no	agreed	outside	metric	
for	evaporating	collapsing	shell

q Solution:	use	spherical	symmetry	[+..]



SPHERICAL	SYMMETRY

EF	coordinates	outside

2 2 2( , ) 2ds f r u du dudr r d+ = − − + Ω

1 ( )f C u r= − 0dC du <
outgoing
Vaidya

Standard	coordinates	outside
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child

( ) ( , ( ))g gr u C u r u≡ ( )( ), ( )U Rτ τ
shell’s	trajectory

( )( ), ( )T Rτ τ
shell’s	trajectory

: gx R r= −
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1 ( )F C U R= −
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THIN SHELL

THIN	SHELL	EQUATION

The	gap	to	monitor:

Asymptotics :

Acceleration
of	the
collapse



Once the	gap	is	smaller		than	ε* it	starts	increasing!

* : 2
dCC
du

ε =

THIN SHELL

Tame	firewall
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THIN	SHELL

THIN	SHELL	EQUATION
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Switch	to	coordinate	time
+	approximate	equations

THIN	SHELL
qualitative:
Dragan, arXiv:1610.07839 (2010).



SPHERICAL	SYMMETRY

Assumptions:
(i)   0 ≤ C < ∞ with C(u, r) > 0 for u < uE < ∞,

and ∂C/∂u < 0 as	long	as		C > 0    
(ii)		h(u, r)	is	continuous					
(iii)	the	metric	has	only	one	coordinate	singularity,	

namely	an	(infinite	red-shift)	surface	f(u, r) = 0           

)( , ( )g gr C u r u≡

Consequences:

( , ) 1w u r ≤ etc



SPHERICAL	SYMMETRY

A	slight	change	of	the	formulas,	
the	same	conclusions

( , ): h U RE e=



Positivity	of	the	shell’s	surface	density	+	freedom	of	initial	conditions:	

E F>

Asymptotics:	

Collapse	accelerates	=	there	is	a	firewall																		only	if				( )0R <&&

SPHERICAL	SYMMETRY

( , )h U RE e=

2

2
metric

 mass rate[ ] RR
x

∝ ×±
&&&



ROTATING	SHELL

Warning:	may	be	inconsistent	 if	extended	all	the	way	to	infinity
Needs	a	consistent	treatment	of	the	angular	momentum

The	best	coordinates	to	work	are	Janis-Newman
( , , , )u r θ φ%

The	functions	are	the	same	as	in	Boyer-Lindquist

Retarded	EF	coordinate		 New	azimuthal	coordinate



ROTATING	SHELL



qPhysics	(and	shape)	can	depend	on	longitude,	so	parametrize	
by	the	initial	θ0

q There	are	symmetries,	but	all	the	components	of	four	velocity	
may	be	non-zero

0 0 0 0 0 0
( , , , )T R Tµ

θ θ θ θ θ θ= Θ Ω& & & &v

ROTATING	SHELL

Assymptotics:	assuming	that														are	finite	,Θ Ω&

f is	a	horribly-looking
function



ROTATING	SHELL



PART	3	

Known
Known	unknowns
Context
Unknown	unknowns

Opportunities	&	questions



q Thin	massive	shell:
collapse	&	evaporation	without	horizon

Generic	spherical-symmetric	metric
Arbitrary	dimension	D>3+1	
Works	for	a	shell	collapsing	on	a	core
Possibility	of	a	firewall	or	deceleration

q Thin	massive	rotating	dust	shell:
collapse	&	evaporation	without	horizon

q Dust	ball	(Oppenheimer-Snyder):
collapse	&	evaporation	without	horizon

Generic	spherical-symmetric	metric												

KNOWN

†Ashtekar and Bojowald, Class. Quant. Grav 22, 3349 (2005).
Stephens, ’t Hooft, and Whiting, Class. Quant. Grav. 11, 621 (1994)

Kerr-Vaidya	



KNOWN	UNKNOWNS	&	CONJECTURES

q Is	the	horizon	avoidance	generic?
qWhich	stress-energy	tensor	to	use?
q Can	we	have	the	exceptional	metric?
q Trapped	surfaces?
qWhat	happens	at	the	next	level	[semiclassical stochastic	gravity]?



q Absence	of	the	event	horizon	is	consistent	with	arguments	that
quantum	effects	destroy	it.

†Brustein, Fortschr. Phys. 62, 255 (2014)

CONTEXT

q Observability?	May	be…
The	first	reaction:no,	just	the	standard	classical	GR	
But

Cardoso, Franzin, and Pani,
Phys. Rev. Let. 116, 171101 (2016)

q No	info	loss	in	the	semiclassical theory:	it	is	consistent
The	paradox	goes	the	way	of	the	paradoxes	of	QM



UNKNOWN	UNKNOWNS

q Bekenstein-Hawking	black	hole	entropy	is	SBH = A/4.	
If event horizons do not correspond to asymptotically reachable
states of collapsing matter, what are the thermodynamic properties
of the resulting ultra-compact objects?

q How	quantum	correlations	get	distributed	between	the		
tripartite	system	of	gravity/early	modes/late	modes?
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