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fJ? We need a thermometer'!

To measure the temperature of a field: Stick a thermometer into the field!

Unruh-DeWitt detector:

Hyp = Ax(m) ()@l (7), t(7)]

Captures the core features of the L-M interaction
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Can we talk about temperature of detectors perturbatively?

Detailed Balance? Excitation-Deexcitation ratio:
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Can we talk about temperature of detectors perturbatively?

Detailed Balance? Excitation-Deexcitation ratio:

log (R(22, 0, 8))

P+(Q) X e_BQ Beor (£2, 0, B) = —

R(Q,O’) — 0

To what extent is this a good estimator?
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The KMS condition and equilibrium states

Thermality: Maximization of entropy at constant energy

Well defined for systems with finite (or countably infinite) degrees of freedom.
Warning:

The Gibbs distribution is not well defined, in general, for systems of
continuous variables, (e.g., quantum fields in free space)
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The KMS condition and equilibrium states

-(Scalar) field ¢(x)
Ingredients: { -Time evolution 0,
-Field state p

-Let x(7) = (¢(7),x(7)) be the curve generated by 9,

Pull-back of the Wightman function on the curve:

W(r,7") = <QA5(X(T))¢A5(X(7J)) > )

I

Stationarity Condition: W (7, 7") = W(r — ') = W(AT)




The KMS condition and equilibrium states

-(Scalar) field ¢(x)
Ingredients: { -Time evolution 0
-Field state p

A stationary Wightman function satisfies the KMS condition
With KMS parameter 3 if and only if

W(AT —i8) = W(—-ArT) (1)




The KMS condition and equilibrium states

Connection between equilibrium and correlations

Gibbs states are KMS
KMS states are passive
KMS is a necessary condition for thermodynamic equilibrium

The parameter 5 = 1/Ty,; is called the KMS (inverse) temperature

To all effects, KMS states are thermal states
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KMS Wightman functions

We can play a bit with the Wightman function...

One can Fourier transform the Wightman function:

W (w) = / A(AT)e “ATI (A7)

— OO

Fourier Trans. the KMS condition W (AT —if) = W(—AT)

Detailed balance condition: W (—w) = ¢’“W (w)




KMS Wightman functions

Detailed balance condition: W(—w) = e’“*W(w) (2)

The field commutator is prop. to the imaginary part of the Wightman:

[o(x(7)), d(x(7")] = C(An)L  C(AT) = 2iTm(W (A7)




KMS Wightman functions

~

Detailed balance condition: W(—w) = e’“*W(w) (2)

The field commutator is prop. to the imaginary part of the Wightman:
p(z(7)), p(z(7))] = C(Ar)1L C(A7) = 2iIm(W(A7))

In terms of Fourier transforms:

For a KMS state we can combine (2) and (3)




KMS Wightman functions

For a KMS state we can combine (2) and (3)

W(w, 8) = —C(w, B)P(w, B)

Where P(w, B) is a Planckian distribution of inverse temperature
equal to the KMS parameter.

B 1
ePw -1

P(w, B)




Probing a KMS state: Particle detectors

We couple an Unruh-DeWitt detector to the field:

Hy = AX(7/0)u(r)d(x(7))
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Quick aside: UDW detectors are physical

Hpy = x(1) /dgaz d(x — z4,t) - E(z,t).

Hypw = ex(t) / Px F(x — xq)i(t) p(x, t).

Almost same phenomenology (except for angular momentum exchange)

More details in A. Pozas and E. Martin-Martinez, Phys. Rev. D 94, 064074 (2016)

And also in Richard Lopp’s talk
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Probing a KMS state: Particle detectors

We couple an Unruh-DeWitt detector to the field:
Hy = Ax(7/0)u(T)p(x(7))

Where x(7) is a square integrable switching function of L2 norm 1

o 1S an interaction duration timescale

For an arbitrary field state, the excitation and de-excitation probabilities are:

P = X*|(e|u(0)|g)|*0 F (2, 0)
P~ = X*[(e|(0)|g)[*0 F (-9, o)

F(©,0)= [ ar'[ drx(r/o (o)W (s, 7)e 2
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Probing a KMS state: Particle detectors

In terms of Fourier transforms

F(Q,0) = 1 /OO dw|x(w )\ZW(Q—I—w/J)

2T ) _ oo

Assuming that X (&) decays fast enough:

F(Q,0) — W(Q)

o — 00

The response function when the interaction is on for long times is the
Fourier transform of the Wightman function.




Probing a KMS state: Particle detectors

Excitation-Deexcitation ratio:

PH(Q)  F(Q,0) W (Q)

R(Q,O') — P_(Q) — F(_Q’O') o'—>C>>O W(—Q)




Probing a KMS state: Particle detectors

Excitation-Deexcitation ratio:

- PHQ)  F(Q,0) W)
R(Q,U) — P_(Q) — f(_Q,g) & —5 00 W(—Q)

~

For a KMS state W (—1, 8) = ¢’ (Q, 5)

R(Q,0) — e P

o —r 00O

We can define the (inverse) EDR temperature as

log (R(Q, o, 5))

BEDR(Qaav 5) — O

Which coincides with the KMS temperature for long interaction times




Probing a KMS state: Particle detectors

Examples of KMS states:

Free field thermal state of temperature T with respect to inertial
observer time:

KMS 5 1

Vacuum state of a free field with respect to proper time of constantly
accelerated observer:

a

KMS 6— 27_‘_




Probing a KMS state: Particle detectors

Examples of KMS states:

Free field thermal state of temperature T with respect to inertial
observer time:

KMS 5 1

Vacuum state of a free field with respect to proper time of constantly
accelerated observer:

a

KMS 6— 27_‘_

Unruh effect!




The ‘Anti-Unruh’ effect

The transition probability of an accelerated detector can actually
decrease with acceleration [1]
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[1] W.G. Brenna, R. B. Mann, E. Martin-Martinez, Phys. Lett. B 757, 307 (2016)



The ‘Anti-Unruh’ effect

The transition probability of an accelerated detector can actually
decrease with acceleration [1]
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Is it a transient effect?

This is a cavity effect (or IR cutofff) that breaks KMS. Is that it?

Is the EDR independence of a good estimator for thermally?

[1] W.G. Brenna, R. B. Mann, E. Martin-Martinez, Phys. Lett. B 757, 307 (2016)



The "Anti-Unruh" effect

Weak Anti-Unruh: The transition probability decreases when the KMS
temperature increases

85.F(Q,U, 5) > ()

Strong Anti-Unruh: effective EDR temperature decreases as the KMS
temperature increases (while still being largely independent of Q):

6)6 6EDR < 0

L. J. Garay, E. Martin-Martinez, J. de Ramon Phys. Rev. D 94, 104048 (2016)



The "Anti-Unruh" effect

-Pullback of Commutator does not depend on the KMS parameter

E.g., Thermal states for inertial observers
Accelerated detectors coupled to massless fields in free space

-Pullback of Commutator depends on the KMS parameter

E.g., Accelerated detectors coupled to massive fields,
Accelerated detectors coupled to massless fields in cavities

L. J. Garay, E. Martin-Martinez, J. de Ramon Phys. Rev. D 94, 104048 (2016)



Commutator does not depend on [3

If the pull-back of the commutator does not depend on the KMS
parameter:

No Weak Anti-Unruh = No Strong Anti-Unruh

L. J. Garay, E. Martin-Martinez, J. de Ramon Phys. Rev. D 94, 104048 (2016)
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Commutator does not depend on [3

If the pull-back of the commutator does not depend on the KMS
parameter:

No Weak Anti-Unruh = No Strong Anti-Unruh
Is there weak Anti-Unruh? 93 F(§2,0,3) > 0

F(Q,0) = 1 /OO dw|x(w )|2W(Q—I—w/0)

2T ) _ oo

Necessary condition for weak Anti-Unruh:

- 95W (w) = 95(C(w, B)P(w, B)) = C(w)pP(w, B) <

L. J. Garay, E. Martin-Martinez, J. de Ramon Phys. Rev. D 94, 104048 (2016)



Commutator does not depend on [3

If the pull-back of the commutator does not depend on the KMS
parameter:

No Weak Anti-Unruh = No Strong Anti-Unruh

Is there weak Anti-Unruh? 93 F(§2,0,3) > 0

F(Q,0) = 1 /OO dw|x(w )|2W(Q—I—w/0)

o |
Necessary condition for weak Anti-Unruh:

- 0sW(w) = 95(C(w, B)P(w, B)) = C(w)DsP(w, B) <
Can be simplified to wC'(w) > 0

But sgn|[C(w)] = —sgn(w) The condition cannot be satisfied!

L. J. Garay, E. Martin-Martinez, J. de Ramon Phys. Rev. D 94, 104048 (2016)
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Commutator does not depend on [3

E.g., The trajectory does not depend on the KMS parameter

E.g., accelerated detector coupled to massless field vacuum

There is no Anti-Unruh phenomena (neither weak nor strong)

An inertial detector in a thermal bath will always click more often when
Exposed to higher temperatures.

An accelerated detector coupled to a massless field in free space will
click more often the larger its acceleration




Commutator depends on 3

If the trajectory depends on the KMS parameter, there is a chance the
pull-back of the commutator does too.

Accelerated detector in free space coupled to a massive field:

2
Where the KMS parameter 5 = g

Necessary conditions for Anti-Unruh are satisfied.




Weak Anti-Unruh

Accelerated detector in free space coupled to a massive field (1+1D):

X(T/O’) _ 7_‘_—1/46—7'2/(202)
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Weak Anti-Unruh

Accelerated detector in free space coupled to a massive field (1+1D):
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Weak Anti-Unruh

Accelerated detector in free space coupled to a massive field (1+1D):

8.7-"/8TKMS ( X 102)

Long time regimes o — oo for ANY switching function shape

Dominant scale for Anti-Unruh m 51




Weak Anti-Unruh

Long time regimes o — oo for ANY switching function shape

Presence of Anti-Unruh when gm <1

The response function in the limit of small 5m, where 5 , is kept
constant is not a monotonically increasing function of 3.

In fact, it becomes highly oscillatory as sm — 0

Thus, its derivative with respect to the KMS temperature will take
negative values.

The Anti-Unruh phenomena will appear therefore for sufficiently small
Bm regardless of the constant value of gand Q .




Strong Anti-Unruh

log (R(Q, o, ﬁ))
BEDR(Q,U, 5) = — O
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Strong Anti-Unruh
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Seems to satisfy “Detailed Balance”




Conclusions

Particle detectors can click less often when they accelerate!

Characteristic of accelerated trajectories

Related to the existence of an IR cutoff (covariant or not)
Does not come from transient behaviour!

Does not come from break down of Lorentz Invariance

It appears in cavities for massless fields (non-KMS).
A difference between Thermal vs Unruh response
Lessons from strong Anti-Unruh:

* The EDR temperature may depend very weekly on Q, yet not be a
good temperature estimator for finite times




