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Detecting temperature

We need a thermometer!

HI = ��(⌧)µ(⌧)�[x(⌧), t(⌧)]

Captures the core features of the L-M interaction

To measure the temperature of a field: Stick a thermometer into the field!

Unruh-DeWitt detector:
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Detecting temperature

Can we talk about temperature of detectors perturbatively?

To what extent is this a good estimator?

Detailed Balance? Excitation-Deexcitation ratio:

R(⌦,�) =
P+(⌦)

P�(⌦)
/ e��⌦

Thermalization is a non-perturbative process

�edr(⌦,�,�) = �
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Thermality: Maximization of entropy at constant energy 

Well defined for systems with finite (or countably infinite) degrees of freedom. 



The KMS condition and equilibrium states

Thermality: Maximization of entropy at constant energy 

Well defined for systems with finite (or countably infinite) degrees of freedom. 

The Gibbs distribution is not well defined, in general, for systems of 
continuous variables, (e.g., quantum fields in free space)

Warning: 
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The KMS condition and equilibrium states

Ingredients:

Pull-back of the Wightman function on the curve:

-Let                                 be the curve generated by        @⌧x(⌧) =
�
t(⌧),x(⌧)

�

-(Scalar) field �̂(x)

-Time evolution @⌧

-Field state ⇢̂

W (⌧, ⌧ 0) :=
D
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�
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The KMS condition and equilibrium states

Ingredients:

Pull-back of the Wightman function on the curve:
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-Field state ⇢̂
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Stationarity Condition: W (⌧, ⌧ 0) = W (⌧ � ⌧ 0) = W (�⌧)
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The KMS condition and equilibrium states

Ingredients:

Pull-back of the Wightman function on the curve:

-Let                                 be the curve generated by        @⌧x(⌧) =
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t(⌧),x(⌧)
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-(Scalar) field �̂(x)

-Time evolution @⌧

-Field state ⇢̂

W (⌧, ⌧ 0) :=
D
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x(⌧)
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x(⌧ 0)

�E

⇢̂

Stationarity Condition: W (⌧, ⌧ 0) = W (⌧ � ⌧ 0) = W (�⌧)

A stationary Wightman function satisfies the KMS condition
With KMS parameter      if and only if 

W (�⌧ � i�) = W (��⌧)

�
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The KMS condition and equilibrium states

A stationary Wightman function satisfies the KMS condition
With KMS parameter      if and only if 

W (�⌧ � i�) = W (��⌧)

�

A state of the field    is KMS with respect to the time evolution 
generated by      (with KMS parameter   ) if (1) is satisfied     

⇢̂
@⌧

(1)

�

Ingredients:
-(Scalar) field �̂(x)

-Time evolution @⌧

-Field state ⇢̂
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The KMS condition and equilibrium states

Connection between equilibrium and correlations

Gibbs states are KMS

KMS states are passive

KMS is a necessary condition for thermodynamic equilibrium

The parameter                     is called the KMS (inverse) temperature� = 1/Tkms

To all effects, KMS states are thermal states
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KMS Wightman functions

Fourier Trans. the KMS condition W (�⌧ � i�) = W (��⌧)

W̃ (�!) = e�!W̃ (!)Detailed balance condition:

W̃ (!) =

Z 1

�1
d(�⌧)e�i!�⌧W (�⌧)

One can Fourier transform the Wightman function:

We can play a bit with the Wightman function…



KMS Wightman functions

W̃ (�!) = e�!W̃ (!)Detailed balance condition:

The field commutator is prop. to the  imaginary part of the Wightman:

[�̂(x(⌧)), �̂(x(⌧ 0))] = C(�⌧)11 C(�⌧) = 2i Im
�
W (�⌧)

�

(2)



KMS Wightman functions

W̃ (�!) = e�!W̃ (!)Detailed balance condition:

The field commutator is prop. to the  imaginary part of the Wightman:

[�̂(x(⌧)), �̂(x(⌧ 0))] = C(�⌧)11 C(�⌧) = 2i Im
�
W (�⌧)

�

In terms of Fourier transforms:

C̃(!) = W̃ (!)� W̃ (�!)

For a KMS state we can combine (2) and (3)

(2)

(3)



KMS Wightman functions

W̃ (!,�) = �C̃(!,�)P(!,�)

Where                is a Planckian distribution of inverse temperature 
equal to the KMS parameter.

P(!,�) =
1

e�! � 1

P(!,�)

For a KMS state we can combine (2) and (3)

W̃ (�!) = e�!W̃ (!) (2)

C̃(!) = W̃ (!)� W̃ (�!) (3)



Probing a KMS state: Particle detectors

HI = ��(⌧/�)µ(⌧)�̂(x(⌧))

We couple an Unruh-DeWitt detector to the field:



Quick aside: UDW detectors are physical
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[28]). The monopole moment in the interaction picture
is given by

µ̂(t) = �̂+ei⌦t + �̂�e�i⌦t, (2)

where ⌦ is the gap between the two detector states. This
monopole moment of the detector is then coupled to a
scalar field �̂ at the position where the detector is, de-
noted by x

d

. The specific form of the interaction Hamil-
tonian is

H
udw

= e�(t)µ̂(t) �̂(x
d

, t), (3)

where e is the coupling constant and �(t) is a switching
function that controls the time dependence of the interac-
tion strength. This model of interaction is known as the
Unruh-DeWitt particle detector model [24], which has
been extensively used in fundamental studies in quan-
tum field theory [35].

It has been discussed that under the assumption of
interactions without exchange of angular momentum the
Unruh-DeWitt Hamiltonian captures the main features
of the light-matter interaction [27, 28].

Oftentimes, the Unruh-DeWitt particle detector model
is upgraded with a detector spatial smearing. The smear-
ing of particle detectors may respond to the need to reg-
ularize divergences of the pointlike model [33] or, as for
example in quantum optics, to improve on the accuracy
of the models of light-matter interaction considering that
the atoms are not really pointlike objects, and instead
they are localized in the full extension of their atomic
wave functions [28, 32]. Furthermore, as discussed in [33]
spatial smearings are sometimes introduced implicitly in
some form of soft UV regularization (see, e.g., [36]).

To take into account corrections coming from the finite
size of atoms, we can introduce an ad hoc spatial profile
or smearing function, typically strongly supported on a
finite spatial region, that controls how much each point
of the detector in that region interacts with the field,
leading to

H
udw

= e�(t)

Z

d3xF (x� x

d

)µ̂(t) �̂(x, t). (4)

One could argue that to include the atomic orbital
wave function geometry, it is natural to think that the
spatial support of the atom could be associated with the
spatial probability profile of the atomic wave functions
[28]. In previous works in entanglement harvesting, dif-
ferent spatial smearings of strong support on a compact
region have been studied [18]. Nevertheless, this is a fea-
ture that has to be added ad hoc to the spatial smearing
profile in (3), since the atomic wave function association
with the smearing function does not naturally arise in
this simplified model.

B. Derivative coupling

In the same fashion that the minimal coupling Hamil-
tonian p ·A is simplified into the Unruh-DeWitt Hamil-

tonian in (3), the dipole coupling Hamiltonian d·E could
be again simplified to a scalar coupling when the inter-
actions involve no exchange of angular momentum. In-
tuitively, given that the electric field is defined from the
electromagnetic vector potential as E = �@

t

A (in the
Coulomb gauge), an interaction Hamiltonian that cou-
ples the atomic monopole moment to the time derivative
of a scalar field should capture some of the features of the
dipole coupling. Concretely, we can think of the following
Hamiltonian:

H
udwd = e�(t)

Z

d3xF (x� x

d

)µ̂(t) @
t

�̂(x, t). (5)

This model has also been employed in the analysis of
entanglement harvesting [37]. Additionally, it has been
particularly useful in (1+1)-dimensional analyses, where
the use of a derivative coupling alleviates IR divergences
in the behavior of the Unruh-DeWitt model [33, 34, 38].
We see in (5) that, as in the case of Unruh-DeWitt de-
tectors, a spatial profile can also be introduced ad hoc

in this case to account for the finite size of the atomic
probes [39].

C. Dipole coupling of an atom to the
electromagnetic field

Let us now consider a model for the complete interac-
tion of an atom with a vector electromagnetic field. We
begin with the local dipole coupling between an electric
dipole and an electric field,

d̂ · Ê = ex̂ · Ê, (6)

e being the dipole’s charge, x̂ its position operator, and
Ê the electric field operator.
This coupling is extensively used in quantum optics

to describe the light-matter interaction [40]. It is well
known that the leading-order contribution to atomic
transitions is of a dipole nature and is governed by a
term of the form (6). The intensity of higher multipole
transitions is strongly suppressed and only becomes rele-
vant for transitions forbidden by the dipole selection rules
(see for instance Ref. [41]).
Indeed, the dipole coupling is only an approximation

for the full electromagnetic interaction of an atomic elec-
tron with the electromagnetic field. However, it is dis-
cussed in [40, 42] that for realistically small atoms, an
approximate gauge transformation yields the dipole cou-
pling out of the full atomic-field coupling [atomic electron
minimally coupled to the electromagnetic field vector po-
tential Eq. (1)]. This approximation may break when the
initial state of the field and the atoms is not excited and
only for interaction times that are comparable or smaller
than the length scale of the atoms [43]. However, for in-
teraction times much larger than the light crossing time
of the atomic radius the dipole coupling should yield a
good approximation even for ground state dynamics. The

4

coupling (6) is extensively used in atomic physics and
quantum optics to successfully reproduce experiments
[44, 45] and in theoretical proposals [36, 40, 46, 47].

The dipole coupling is also convenient since the atom
couples explicitly to a gauge-invariant field observable,
and because, when the approximation holds, the gauge
choice made for the field degrees of freedom corresponds
to the choice made in the conventional textbook solutions
of the Schrödinger equation for an electron trapped in
a Coulomb potential. That is, A = 0 in the absence
of currents (for further discussion see [40, 42] and the
multipolar gauge in e.g. [48]). Moreover, the fact that
the commutator of E satisfies microcausality (vanishes
for spacelike separated events) means that the results of
[49] for a scalar field can be quickly reproduced here for
the electromagnetic interaction and thus the interaction
between two atoms through the field as given in (6) is
fully causal. This kind of coupling has also been used
in other contexts outside quantum optics, as for instance
to analyze the Unruh e↵ect with an electromagnetic field
[36], or in quantum friction [47].

Let us, for simplicity and for the sake of comparison
with the scalar models presented above, assume that only
two levels of the atomic structure are relevant in our
setup. In that case, the dipole operator enables tran-
sitions between the atomic ground state and one single
relevant excited state. When we restrict it to only two
levels, the operator x̂ · Ê in the interaction picture reads

x̂ · Ê = he|x̂ · Ê|giei⌦t|eihg|+ hg|x̂ · Ê|eie�i⌦t|gihe|. (7)

Inserting resolutions of the identity in the posi-
tion eigenbasis and noting that  

g

(x) = hx|gi and
 
e

(x) = hx|ei are the position representation of the
ground and excited level wave functions, respectively, the
operator (6) can be recast as

x̂ · Ê(x, t) =

Z

d3x
h

F (x) · Ê(x, t)ei⌦t|eihg|

+F

⇤(x) · Ê(x, t)e�i⌦t|gihe|
i

, (8)

where Ê(x, t) is an operator which acts on the field
Hilbert space, and the spatial smearing vector F (x) is
defined as

F (x) =  ⇤
e

(x)x 
g

(x). (9)

Note that in this case, the specific form of the spatial
smearing arises naturally from the coupling, and does
not have to be inserted ad hoc.

By direct comparison with Eq. (6), the position-space
representation of the dipole moment in the interaction
picture can be written as

d̂(x, t) = e
⇥

F (x)ei⌦t�̂+ + F

⇤(x)e�i⌦t�̂�⇤ , (10)

where we have adopted the usual notation for the SU(2)
ladder operators �̂+ = |eihg| and �̂� = |gihe|. With this

expression for the dipole moment, the Hamiltonian for
the dipole interaction reads

H
em

= �(t)

Z

d3x d̂(x� x

d

, t) · Ê(x, t). (11)

We are going to use (11) as the model of light-matter
interaction with which we will analyze entanglement har-
vesting. In doing so, we will be able to qualitatively and
quantitatively compare the results with previous models
that neglected the vector nature of the field.

III. SETUP

A. Full system dynamics

Let us consider two hydrogenlike atoms (A and B) that
interact locally with the electromagnetic vacuum via the
dipole coupling Hamiltonian (11),

H
em

=
X

⌫

�
⌫

(t)

Z

d3x d̂

⌫

(x� x

⌫

, t) · Ê(x, t) (12)

in the interaction picture, where ⌫ = A,B labels each of
the two atoms. Each atom ⌫ is located in position x

⌫

.
We recall that the dipole moment operator is given by
(10), that is

d̂

⌫

(x, t) = e
⌫

⇥

F

⌫

(x)ei⌦⌫t�̂+
⌫

+ F

⇤
⌫

(x)e�i⌦⌫t�̂�
⌫

⇤

, (13)

and

F

⌫

(x) =  ⇤
e

⌫

(x)x 
g

⌫

(x). (14)

In addition to the study of the electromagnetic cou-
pling, we will compare the analysis with the other scalar
approximations used in past studies of entanglement har-
vesting, and discussed in the previous section. This way
we can draw a fair comparison of the three interaction
models (Unruh-DeWitt, derivative scalar coupling and
dipole electromagnetic coupling). Again in the interac-
tion picture, the scalar-field interaction Hamiltonians for
two detectors coupled to the field are

H
udw

=
X

⌫

e
⌫

�
⌫

(t)

Z

d3xF
⌫

(x� x

⌫

)µ̂
⌫

(t)�̂(x, t) (15)

for the Unruh-DeWitt coupling and

H
udwd =

X

⌫

e
⌫

�
⌫

(t)

Z

d3xF
⌫

(x� x

⌫

)µ̂
⌫

(t)@
t

�̂(x, t)

(16)
for the derivative coupling.
In the three cases in Eqs. (12), (15) and (16) we can

express the fields in terms of plane-wave mode expansions
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levels, the operator x̂ · Ê in the interaction picture reads

x̂ · Ê = he|x̂ · Ê|giei⌦t|eihg|+ hg|x̂ · Ê|eie�i⌦t|gihe|. (7)
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models (Unruh-DeWitt, derivative scalar coupling and
dipole electromagnetic coupling). Again in the interac-
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a Coulomb potential. That is, A = 0 in the absence
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the commutator of E satisfies microcausality (vanishes
for spacelike separated events) means that the results of
[49] for a scalar field can be quickly reproduced here for
the electromagnetic interaction and thus the interaction
between two atoms through the field as given in (6) is
fully causal. This kind of coupling has also been used
in other contexts outside quantum optics, as for instance
to analyze the Unruh e↵ect with an electromagnetic field
[36], or in quantum friction [47].

Let us, for simplicity and for the sake of comparison
with the scalar models presented above, assume that only
two levels of the atomic structure are relevant in our
setup. In that case, the dipole operator enables tran-
sitions between the atomic ground state and one single
relevant excited state. When we restrict it to only two
levels, the operator x̂ · Ê in the interaction picture reads
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, t) · Ê(x, t). (11)

We are going to use (11) as the model of light-matter
interaction with which we will analyze entanglement har-
vesting. In doing so, we will be able to qualitatively and
quantitatively compare the results with previous models
that neglected the vector nature of the field.
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In addition to the study of the electromagnetic cou-
pling, we will compare the analysis with the other scalar
approximations used in past studies of entanglement har-
vesting, and discussed in the previous section. This way
we can draw a fair comparison of the three interaction
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[28]). The monopole moment in the interaction picture
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This model has also been employed in the analysis of
entanglement harvesting [37]. Additionally, it has been
particularly useful in (1+1)-dimensional analyses, where
the use of a derivative coupling alleviates IR divergences
in the behavior of the Unruh-DeWitt model [33, 34, 38].
We see in (5) that, as in the case of Unruh-DeWitt de-
tectors, a spatial profile can also be introduced ad hoc

in this case to account for the finite size of the atomic
probes [39].

C. Dipole coupling of an atom to the
electromagnetic field

Let us now consider a model for the complete interac-
tion of an atom with a vector electromagnetic field. We
begin with the local dipole coupling between an electric
dipole and an electric field,

d̂ · Ê = ex̂ · Ê, (6)

e being the dipole’s charge, x̂ its position operator, and
Ê the electric field operator.
This coupling is extensively used in quantum optics

to describe the light-matter interaction [40]. It is well
known that the leading-order contribution to atomic
transitions is of a dipole nature and is governed by a
term of the form (6). The intensity of higher multipole
transitions is strongly suppressed and only becomes rele-
vant for transitions forbidden by the dipole selection rules
(see for instance Ref. [41]).
Indeed, the dipole coupling is only an approximation

for the full electromagnetic interaction of an atomic elec-
tron with the electromagnetic field. However, it is dis-
cussed in [40, 42] that for realistically small atoms, an
approximate gauge transformation yields the dipole cou-
pling out of the full atomic-field coupling [atomic electron
minimally coupled to the electromagnetic field vector po-
tential Eq. (1)]. This approximation may break when the
initial state of the field and the atoms is not excited and
only for interaction times that are comparable or smaller
than the length scale of the atoms [43]. However, for in-
teraction times much larger than the light crossing time
of the atomic radius the dipole coupling should yield a
good approximation even for ground state dynamics. The
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coupling (6) is extensively used in atomic physics and
quantum optics to successfully reproduce experiments
[44, 45] and in theoretical proposals [36, 40, 46, 47].

The dipole coupling is also convenient since the atom
couples explicitly to a gauge-invariant field observable,
and because, when the approximation holds, the gauge
choice made for the field degrees of freedom corresponds
to the choice made in the conventional textbook solutions
of the Schrödinger equation for an electron trapped in
a Coulomb potential. That is, A = 0 in the absence
of currents (for further discussion see [40, 42] and the
multipolar gauge in e.g. [48]). Moreover, the fact that
the commutator of E satisfies microcausality (vanishes
for spacelike separated events) means that the results of
[49] for a scalar field can be quickly reproduced here for
the electromagnetic interaction and thus the interaction
between two atoms through the field as given in (6) is
fully causal. This kind of coupling has also been used
in other contexts outside quantum optics, as for instance
to analyze the Unruh e↵ect with an electromagnetic field
[36], or in quantum friction [47].

Let us, for simplicity and for the sake of comparison
with the scalar models presented above, assume that only
two levels of the atomic structure are relevant in our
setup. In that case, the dipole operator enables tran-
sitions between the atomic ground state and one single
relevant excited state. When we restrict it to only two
levels, the operator x̂ · Ê in the interaction picture reads

x̂ · Ê = he|x̂ · Ê|giei⌦t|eihg|+ hg|x̂ · Ê|eie�i⌦t|gihe|. (7)

Inserting resolutions of the identity in the posi-
tion eigenbasis and noting that  
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(x) = hx|ei are the position representation of the
ground and excited level wave functions, respectively, the
operator (6) can be recast as
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where Ê(x, t) is an operator which acts on the field
Hilbert space, and the spatial smearing vector F (x) is
defined as

F (x) =  ⇤
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(x). (9)

Note that in this case, the specific form of the spatial
smearing arises naturally from the coupling, and does
not have to be inserted ad hoc.

By direct comparison with Eq. (6), the position-space
representation of the dipole moment in the interaction
picture can be written as

d̂(x, t) = e
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F (x)ei⌦t�̂+ + F
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where we have adopted the usual notation for the SU(2)
ladder operators �̂+ = |eihg| and �̂� = |gihe|. With this

expression for the dipole moment, the Hamiltonian for
the dipole interaction reads
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We are going to use (11) as the model of light-matter
interaction with which we will analyze entanglement har-
vesting. In doing so, we will be able to qualitatively and
quantitatively compare the results with previous models
that neglected the vector nature of the field.

III. SETUP

A. Full system dynamics

Let us consider two hydrogenlike atoms (A and B) that
interact locally with the electromagnetic vacuum via the
dipole coupling Hamiltonian (11),
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We recall that the dipole moment operator is given by
(10), that is
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In addition to the study of the electromagnetic cou-
pling, we will compare the analysis with the other scalar
approximations used in past studies of entanglement har-
vesting, and discussed in the previous section. This way
we can draw a fair comparison of the three interaction
models (Unruh-DeWitt, derivative scalar coupling and
dipole electromagnetic coupling). Again in the interac-
tion picture, the scalar-field interaction Hamiltonians for
two detectors coupled to the field are
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choice made for the field degrees of freedom corresponds
to the choice made in the conventional textbook solutions
of the Schrödinger equation for an electron trapped in
a Coulomb potential. That is, A = 0 in the absence
of currents (for further discussion see [40, 42] and the
multipolar gauge in e.g. [48]). Moreover, the fact that
the commutator of E satisfies microcausality (vanishes
for spacelike separated events) means that the results of
[49] for a scalar field can be quickly reproduced here for
the electromagnetic interaction and thus the interaction
between two atoms through the field as given in (6) is
fully causal. This kind of coupling has also been used
in other contexts outside quantum optics, as for instance
to analyze the Unruh e↵ect with an electromagnetic field
[36], or in quantum friction [47].

Let us, for simplicity and for the sake of comparison
with the scalar models presented above, assume that only
two levels of the atomic structure are relevant in our
setup. In that case, the dipole operator enables tran-
sitions between the atomic ground state and one single
relevant excited state. When we restrict it to only two
levels, the operator x̂ · Ê in the interaction picture reads
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x̂ · Ê(x, t) =

Z

d3x
h
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where Ê(x, t) is an operator which acts on the field
Hilbert space, and the spatial smearing vector F (x) is
defined as

F (x) =  ⇤
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Note that in this case, the specific form of the spatial
smearing arises naturally from the coupling, and does
not have to be inserted ad hoc.

By direct comparison with Eq. (6), the position-space
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picture can be written as
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interaction with which we will analyze entanglement har-
vesting. In doing so, we will be able to qualitatively and
quantitatively compare the results with previous models
that neglected the vector nature of the field.
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pling, we will compare the analysis with the other scalar
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vesting, and discussed in the previous section. This way
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between two atoms through the field as given in (6) is
fully causal. This kind of coupling has also been used
in other contexts outside quantum optics, as for instance
to analyze the Unruh e↵ect with an electromagnetic field
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F (x) · Ê(x, t)ei⌦t|eihg|

+F
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[28]). The monopole moment in the interaction picture
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d
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function that controls the time dependence of the interac-
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of the models of light-matter interaction considering that
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This model has also been employed in the analysis of
entanglement harvesting [37]. Additionally, it has been
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in this case to account for the finite size of the atomic
probes [39].

C. Dipole coupling of an atom to the
electromagnetic field

Let us now consider a model for the complete interac-
tion of an atom with a vector electromagnetic field. We
begin with the local dipole coupling between an electric
dipole and an electric field,

d̂ · Ê = ex̂ · Ê, (6)

e being the dipole’s charge, x̂ its position operator, and
Ê the electric field operator.
This coupling is extensively used in quantum optics

to describe the light-matter interaction [40]. It is well
known that the leading-order contribution to atomic
transitions is of a dipole nature and is governed by a
term of the form (6). The intensity of higher multipole
transitions is strongly suppressed and only becomes rele-
vant for transitions forbidden by the dipole selection rules
(see for instance Ref. [41]).
Indeed, the dipole coupling is only an approximation

for the full electromagnetic interaction of an atomic elec-
tron with the electromagnetic field. However, it is dis-
cussed in [40, 42] that for realistically small atoms, an
approximate gauge transformation yields the dipole cou-
pling out of the full atomic-field coupling [atomic electron
minimally coupled to the electromagnetic field vector po-
tential Eq. (1)]. This approximation may break when the
initial state of the field and the atoms is not excited and
only for interaction times that are comparable or smaller
than the length scale of the atoms [43]. However, for in-
teraction times much larger than the light crossing time
of the atomic radius the dipole coupling should yield a
good approximation even for ground state dynamics. The
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coupling (6) is extensively used in atomic physics and
quantum optics to successfully reproduce experiments
[44, 45] and in theoretical proposals [36, 40, 46, 47].

The dipole coupling is also convenient since the atom
couples explicitly to a gauge-invariant field observable,
and because, when the approximation holds, the gauge
choice made for the field degrees of freedom corresponds
to the choice made in the conventional textbook solutions
of the Schrödinger equation for an electron trapped in
a Coulomb potential. That is, A = 0 in the absence
of currents (for further discussion see [40, 42] and the
multipolar gauge in e.g. [48]). Moreover, the fact that
the commutator of E satisfies microcausality (vanishes
for spacelike separated events) means that the results of
[49] for a scalar field can be quickly reproduced here for
the electromagnetic interaction and thus the interaction
between two atoms through the field as given in (6) is
fully causal. This kind of coupling has also been used
in other contexts outside quantum optics, as for instance
to analyze the Unruh e↵ect with an electromagnetic field
[36], or in quantum friction [47].

Let us, for simplicity and for the sake of comparison
with the scalar models presented above, assume that only
two levels of the atomic structure are relevant in our
setup. In that case, the dipole operator enables tran-
sitions between the atomic ground state and one single
relevant excited state. When we restrict it to only two
levels, the operator x̂ · Ê in the interaction picture reads

x̂ · Ê = he|x̂ · Ê|giei⌦t|eihg|+ hg|x̂ · Ê|eie�i⌦t|gihe|. (7)

Inserting resolutions of the identity in the posi-
tion eigenbasis and noting that  
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(x) = hx|ei are the position representation of the
ground and excited level wave functions, respectively, the
operator (6) can be recast as
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where Ê(x, t) is an operator which acts on the field
Hilbert space, and the spatial smearing vector F (x) is
defined as

F (x) =  ⇤
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(x)x 
g

(x). (9)

Note that in this case, the specific form of the spatial
smearing arises naturally from the coupling, and does
not have to be inserted ad hoc.

By direct comparison with Eq. (6), the position-space
representation of the dipole moment in the interaction
picture can be written as
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⇤(x)e�i⌦t�̂�⇤ , (10)

where we have adopted the usual notation for the SU(2)
ladder operators �̂+ = |eihg| and �̂� = |gihe|. With this

expression for the dipole moment, the Hamiltonian for
the dipole interaction reads

H
em

= �(t)

Z

d3x d̂(x� x

d

, t) · Ê(x, t). (11)

We are going to use (11) as the model of light-matter
interaction with which we will analyze entanglement har-
vesting. In doing so, we will be able to qualitatively and
quantitatively compare the results with previous models
that neglected the vector nature of the field.

III. SETUP

A. Full system dynamics

Let us consider two hydrogenlike atoms (A and B) that
interact locally with the electromagnetic vacuum via the
dipole coupling Hamiltonian (11),
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in the interaction picture, where ⌫ = A,B labels each of
the two atoms. Each atom ⌫ is located in position x

⌫

.
We recall that the dipole moment operator is given by
(10), that is
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In addition to the study of the electromagnetic cou-
pling, we will compare the analysis with the other scalar
approximations used in past studies of entanglement har-
vesting, and discussed in the previous section. This way
we can draw a fair comparison of the three interaction
models (Unruh-DeWitt, derivative scalar coupling and
dipole electromagnetic coupling). Again in the interac-
tion picture, the scalar-field interaction Hamiltonians for
two detectors coupled to the field are

H
udw
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for the derivative coupling.
In the three cases in Eqs. (12), (15) and (16) we can

express the fields in terms of plane-wave mode expansions
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relevant excited state. When we restrict it to only two
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where Ê(x, t) is an operator which acts on the field
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defined as
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Note that in this case, the specific form of the spatial
smearing arises naturally from the coupling, and does
not have to be inserted ad hoc.
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picture can be written as
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interaction with which we will analyze entanglement har-
vesting. In doing so, we will be able to qualitatively and
quantitatively compare the results with previous models
that neglected the vector nature of the field.
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dipole coupling Hamiltonian (11),
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In addition to the study of the electromagnetic cou-
pling, we will compare the analysis with the other scalar
approximations used in past studies of entanglement har-
vesting, and discussed in the previous section. This way
we can draw a fair comparison of the three interaction
models (Unruh-DeWitt, derivative scalar coupling and
dipole electromagnetic coupling). Again in the interac-
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between two atoms through the field as given in (6) is
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to analyze the Unruh e↵ect with an electromagnetic field
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setup. In that case, the dipole operator enables tran-
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where Ê(x, t) is an operator which acts on the field
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Note that in this case, the specific form of the spatial
smearing arises naturally from the coupling, and does
not have to be inserted ad hoc.

By direct comparison with Eq. (6), the position-space
representation of the dipole moment in the interaction
picture can be written as
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interaction with which we will analyze entanglement har-
vesting. In doing so, we will be able to qualitatively and
quantitatively compare the results with previous models
that neglected the vector nature of the field.
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H
em

=
X

⌫

�
⌫

(t)

Z

d3x d̂

⌫

(x� x

⌫
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coupling (6) is extensively used in atomic physics and
quantum optics to successfully reproduce experiments
[44, 45] and in theoretical proposals [36, 40, 46, 47].

The dipole coupling is also convenient since the atom
couples explicitly to a gauge-invariant field observable,
and because, when the approximation holds, the gauge
choice made for the field degrees of freedom corresponds
to the choice made in the conventional textbook solutions
of the Schrödinger equation for an electron trapped in
a Coulomb potential. That is, A = 0 in the absence
of currents (for further discussion see [40, 42] and the
multipolar gauge in e.g. [48]). Moreover, the fact that
the commutator of E satisfies microcausality (vanishes
for spacelike separated events) means that the results of
[49] for a scalar field can be quickly reproduced here for
the electromagnetic interaction and thus the interaction
between two atoms through the field as given in (6) is
fully causal. This kind of coupling has also been used
in other contexts outside quantum optics, as for instance
to analyze the Unruh e↵ect with an electromagnetic field
[36], or in quantum friction [47].

Let us, for simplicity and for the sake of comparison
with the scalar models presented above, assume that only
two levels of the atomic structure are relevant in our
setup. In that case, the dipole operator enables tran-
sitions between the atomic ground state and one single
relevant excited state. When we restrict it to only two
levels, the operator x̂ · Ê in the interaction picture reads

x̂ · Ê = he|x̂ · Ê|giei⌦t|eihg|+ hg|x̂ · Ê|eie�i⌦t|gihe|. (7)

Inserting resolutions of the identity in the posi-
tion eigenbasis and noting that  

g

(x) = hx|gi and
 
e

(x) = hx|ei are the position representation of the
ground and excited level wave functions, respectively, the
operator (6) can be recast as
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where Ê(x, t) is an operator which acts on the field
Hilbert space, and the spatial smearing vector F (x) is
defined as

F (x) =  ⇤
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(x)x 
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(x). (9)

Note that in this case, the specific form of the spatial
smearing arises naturally from the coupling, and does
not have to be inserted ad hoc.

By direct comparison with Eq. (6), the position-space
representation of the dipole moment in the interaction
picture can be written as

d̂(x, t) = e
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F (x)ei⌦t�̂+ + F

⇤(x)e�i⌦t�̂�⇤ , (10)

where we have adopted the usual notation for the SU(2)
ladder operators �̂+ = |eihg| and �̂� = |gihe|. With this

expression for the dipole moment, the Hamiltonian for
the dipole interaction reads
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, t) · Ê(x, t). (11)

We are going to use (11) as the model of light-matter
interaction with which we will analyze entanglement har-
vesting. In doing so, we will be able to qualitatively and
quantitatively compare the results with previous models
that neglected the vector nature of the field.

III. SETUP

A. Full system dynamics

Let us consider two hydrogenlike atoms (A and B) that
interact locally with the electromagnetic vacuum via the
dipole coupling Hamiltonian (11),
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In addition to the study of the electromagnetic cou-
pling, we will compare the analysis with the other scalar
approximations used in past studies of entanglement har-
vesting, and discussed in the previous section. This way
we can draw a fair comparison of the three interaction
models (Unruh-DeWitt, derivative scalar coupling and
dipole electromagnetic coupling). Again in the interac-
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[28]). The monopole moment in the interaction picture
is given by

µ̂(t) = �̂+ei⌦t + �̂�e�i⌦t, (2)

where ⌦ is the gap between the two detector states. This
monopole moment of the detector is then coupled to a
scalar field �̂ at the position where the detector is, de-
noted by x

d

. The specific form of the interaction Hamil-
tonian is

H
udw

= e�(t)µ̂(t) �̂(x
d

, t), (3)

where e is the coupling constant and �(t) is a switching
function that controls the time dependence of the interac-
tion strength. This model of interaction is known as the
Unruh-DeWitt particle detector model [24], which has
been extensively used in fundamental studies in quan-
tum field theory [35].

It has been discussed that under the assumption of
interactions without exchange of angular momentum the
Unruh-DeWitt Hamiltonian captures the main features
of the light-matter interaction [27, 28].

Oftentimes, the Unruh-DeWitt particle detector model
is upgraded with a detector spatial smearing. The smear-
ing of particle detectors may respond to the need to reg-
ularize divergences of the pointlike model [33] or, as for
example in quantum optics, to improve on the accuracy
of the models of light-matter interaction considering that
the atoms are not really pointlike objects, and instead
they are localized in the full extension of their atomic
wave functions [28, 32]. Furthermore, as discussed in [33]
spatial smearings are sometimes introduced implicitly in
some form of soft UV regularization (see, e.g., [36]).

To take into account corrections coming from the finite
size of atoms, we can introduce an ad hoc spatial profile
or smearing function, typically strongly supported on a
finite spatial region, that controls how much each point
of the detector in that region interacts with the field,
leading to

H
udw

= e�(t)

Z

d3xF (x� x

d

)µ̂(t) �̂(x, t). (4)

One could argue that to include the atomic orbital
wave function geometry, it is natural to think that the
spatial support of the atom could be associated with the
spatial probability profile of the atomic wave functions
[28]. In previous works in entanglement harvesting, dif-
ferent spatial smearings of strong support on a compact
region have been studied [18]. Nevertheless, this is a fea-
ture that has to be added ad hoc to the spatial smearing
profile in (3), since the atomic wave function association
with the smearing function does not naturally arise in
this simplified model.

B. Derivative coupling

In the same fashion that the minimal coupling Hamil-
tonian p ·A is simplified into the Unruh-DeWitt Hamil-

tonian in (3), the dipole coupling Hamiltonian d·E could
be again simplified to a scalar coupling when the inter-
actions involve no exchange of angular momentum. In-
tuitively, given that the electric field is defined from the
electromagnetic vector potential as E = �@

t

A (in the
Coulomb gauge), an interaction Hamiltonian that cou-
ples the atomic monopole moment to the time derivative
of a scalar field should capture some of the features of the
dipole coupling. Concretely, we can think of the following
Hamiltonian:

H
udwd = e�(t)

Z

d3xF (x� x

d

)µ̂(t) @
t

�̂(x, t). (5)

This model has also been employed in the analysis of
entanglement harvesting [37]. Additionally, it has been
particularly useful in (1+1)-dimensional analyses, where
the use of a derivative coupling alleviates IR divergences
in the behavior of the Unruh-DeWitt model [33, 34, 38].
We see in (5) that, as in the case of Unruh-DeWitt de-
tectors, a spatial profile can also be introduced ad hoc

in this case to account for the finite size of the atomic
probes [39].

C. Dipole coupling of an atom to the
electromagnetic field

Let us now consider a model for the complete interac-
tion of an atom with a vector electromagnetic field. We
begin with the local dipole coupling between an electric
dipole and an electric field,

d̂ · Ê = ex̂ · Ê, (6)

e being the dipole’s charge, x̂ its position operator, and
Ê the electric field operator.
This coupling is extensively used in quantum optics

to describe the light-matter interaction [40]. It is well
known that the leading-order contribution to atomic
transitions is of a dipole nature and is governed by a
term of the form (6). The intensity of higher multipole
transitions is strongly suppressed and only becomes rele-
vant for transitions forbidden by the dipole selection rules
(see for instance Ref. [41]).
Indeed, the dipole coupling is only an approximation

for the full electromagnetic interaction of an atomic elec-
tron with the electromagnetic field. However, it is dis-
cussed in [40, 42] that for realistically small atoms, an
approximate gauge transformation yields the dipole cou-
pling out of the full atomic-field coupling [atomic electron
minimally coupled to the electromagnetic field vector po-
tential Eq. (1)]. This approximation may break when the
initial state of the field and the atoms is not excited and
only for interaction times that are comparable or smaller
than the length scale of the atoms [43]. However, for in-
teraction times much larger than the light crossing time
of the atomic radius the dipole coupling should yield a
good approximation even for ground state dynamics. The
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coupling (6) is extensively used in atomic physics and
quantum optics to successfully reproduce experiments
[44, 45] and in theoretical proposals [36, 40, 46, 47].

The dipole coupling is also convenient since the atom
couples explicitly to a gauge-invariant field observable,
and because, when the approximation holds, the gauge
choice made for the field degrees of freedom corresponds
to the choice made in the conventional textbook solutions
of the Schrödinger equation for an electron trapped in
a Coulomb potential. That is, A = 0 in the absence
of currents (for further discussion see [40, 42] and the
multipolar gauge in e.g. [48]). Moreover, the fact that
the commutator of E satisfies microcausality (vanishes
for spacelike separated events) means that the results of
[49] for a scalar field can be quickly reproduced here for
the electromagnetic interaction and thus the interaction
between two atoms through the field as given in (6) is
fully causal. This kind of coupling has also been used
in other contexts outside quantum optics, as for instance
to analyze the Unruh e↵ect with an electromagnetic field
[36], or in quantum friction [47].

Let us, for simplicity and for the sake of comparison
with the scalar models presented above, assume that only
two levels of the atomic structure are relevant in our
setup. In that case, the dipole operator enables tran-
sitions between the atomic ground state and one single
relevant excited state. When we restrict it to only two
levels, the operator x̂ · Ê in the interaction picture reads

x̂ · Ê = he|x̂ · Ê|giei⌦t|eihg|+ hg|x̂ · Ê|eie�i⌦t|gihe|. (7)

Inserting resolutions of the identity in the posi-
tion eigenbasis and noting that  

g

(x) = hx|gi and
 
e

(x) = hx|ei are the position representation of the
ground and excited level wave functions, respectively, the
operator (6) can be recast as

x̂ · Ê(x, t) =
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where Ê(x, t) is an operator which acts on the field
Hilbert space, and the spatial smearing vector F (x) is
defined as

F (x) =  ⇤
e

(x)x 
g

(x). (9)

Note that in this case, the specific form of the spatial
smearing arises naturally from the coupling, and does
not have to be inserted ad hoc.

By direct comparison with Eq. (6), the position-space
representation of the dipole moment in the interaction
picture can be written as

d̂(x, t) = e
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F (x)ei⌦t�̂+ + F

⇤(x)e�i⌦t�̂�⇤ , (10)

where we have adopted the usual notation for the SU(2)
ladder operators �̂+ = |eihg| and �̂� = |gihe|. With this

expression for the dipole moment, the Hamiltonian for
the dipole interaction reads
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, t) · Ê(x, t). (11)

We are going to use (11) as the model of light-matter
interaction with which we will analyze entanglement har-
vesting. In doing so, we will be able to qualitatively and
quantitatively compare the results with previous models
that neglected the vector nature of the field.

III. SETUP

A. Full system dynamics

Let us consider two hydrogenlike atoms (A and B) that
interact locally with the electromagnetic vacuum via the
dipole coupling Hamiltonian (11),
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in the interaction picture, where ⌫ = A,B labels each of
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.
We recall that the dipole moment operator is given by
(10), that is
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and
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In addition to the study of the electromagnetic cou-
pling, we will compare the analysis with the other scalar
approximations used in past studies of entanglement har-
vesting, and discussed in the previous section. This way
we can draw a fair comparison of the three interaction
models (Unruh-DeWitt, derivative scalar coupling and
dipole electromagnetic coupling). Again in the interac-
tion picture, the scalar-field interaction Hamiltonians for
two detectors coupled to the field are
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for the derivative coupling.
In the three cases in Eqs. (12), (15) and (16) we can

express the fields in terms of plane-wave mode expansions
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The dipole coupling is also convenient since the atom
couples explicitly to a gauge-invariant field observable,
and because, when the approximation holds, the gauge
choice made for the field degrees of freedom corresponds
to the choice made in the conventional textbook solutions
of the Schrödinger equation for an electron trapped in
a Coulomb potential. That is, A = 0 in the absence
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levels, the operator x̂ · Ê in the interaction picture reads
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F (x) · Ê(x, t)ei⌦t|eihg|

+F
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Inserting resolutions of the identity in the posi-
tion eigenbasis and noting that  

g

(x) = hx|gi and
 
e

(x) = hx|ei are the position representation of the
ground and excited level wave functions, respectively, the
operator (6) can be recast as
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F (x) · Ê(x, t)ei⌦t|eihg|

+F
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a Coulomb potential. That is, A = 0 in the absence
of currents (for further discussion see [40, 42] and the
multipolar gauge in e.g. [48]). Moreover, the fact that
the commutator of E satisfies microcausality (vanishes
for spacelike separated events) means that the results of
[49] for a scalar field can be quickly reproduced here for
the electromagnetic interaction and thus the interaction
between two atoms through the field as given in (6) is
fully causal. This kind of coupling has also been used
in other contexts outside quantum optics, as for instance
to analyze the Unruh e↵ect with an electromagnetic field
[36], or in quantum friction [47].

Let us, for simplicity and for the sake of comparison
with the scalar models presented above, assume that only
two levels of the atomic structure are relevant in our
setup. In that case, the dipole operator enables tran-
sitions between the atomic ground state and one single
relevant excited state. When we restrict it to only two
levels, the operator x̂ · Ê in the interaction picture reads

x̂ · Ê = he|x̂ · Ê|giei⌦t|eihg|+ hg|x̂ · Ê|eie�i⌦t|gihe|. (7)

Inserting resolutions of the identity in the posi-
tion eigenbasis and noting that  

g

(x) = hx|gi and
 
e

(x) = hx|ei are the position representation of the
ground and excited level wave functions, respectively, the
operator (6) can be recast as

x̂ · Ê(x, t) =

Z

d3x
h

F (x) · Ê(x, t)ei⌦t|eihg|

+F

⇤(x) · Ê(x, t)e�i⌦t|gihe|
i

, (8)

where Ê(x, t) is an operator which acts on the field
Hilbert space, and the spatial smearing vector F (x) is
defined as

F (x) =  ⇤
e

(x)x 
g

(x). (9)

Note that in this case, the specific form of the spatial
smearing arises naturally from the coupling, and does
not have to be inserted ad hoc.

By direct comparison with Eq. (6), the position-space
representation of the dipole moment in the interaction
picture can be written as

d̂(x, t) = e
⇥

F (x)ei⌦t�̂+ + F

⇤(x)e�i⌦t�̂�⇤ , (10)

where we have adopted the usual notation for the SU(2)
ladder operators �̂+ = |eihg| and �̂� = |gihe|. With this

expression for the dipole moment, the Hamiltonian for
the dipole interaction reads

H
em

= �(t)

Z

d3x d̂(x� x

d

, t) · Ê(x, t). (11)

We are going to use (11) as the model of light-matter
interaction with which we will analyze entanglement har-
vesting. In doing so, we will be able to qualitatively and
quantitatively compare the results with previous models
that neglected the vector nature of the field.

III. SETUP

A. Full system dynamics

Let us consider two hydrogenlike atoms (A and B) that
interact locally with the electromagnetic vacuum via the
dipole coupling Hamiltonian (11),

H
em

=
X

⌫

�
⌫

(t)

Z

d3x d̂

⌫

(x� x

⌫

, t) · Ê(x, t) (12)

in the interaction picture, where ⌫ = A,B labels each of
the two atoms. Each atom ⌫ is located in position x

⌫

.
We recall that the dipole moment operator is given by
(10), that is

d̂

⌫

(x, t) = e
⌫

⇥

F

⌫

(x)ei⌦⌫t�̂+
⌫

+ F

⇤
⌫

(x)e�i⌦⌫t�̂�
⌫

⇤

, (13)

and

F

⌫

(x) =  ⇤
e

⌫

(x)x 
g

⌫

(x). (14)

In addition to the study of the electromagnetic cou-
pling, we will compare the analysis with the other scalar
approximations used in past studies of entanglement har-
vesting, and discussed in the previous section. This way
we can draw a fair comparison of the three interaction
models (Unruh-DeWitt, derivative scalar coupling and
dipole electromagnetic coupling). Again in the interac-
tion picture, the scalar-field interaction Hamiltonians for
two detectors coupled to the field are

H
udw

=
X

⌫

e
⌫

�
⌫

(t)

Z

d3xF
⌫

(x� x

⌫

)µ̂
⌫

(t)�̂(x, t) (15)

for the Unruh-DeWitt coupling and

H
udwd =

X

⌫

e
⌫

�
⌫

(t)

Z

d3xF
⌫

(x� x

⌫

)µ̂
⌫

(t)@
t

�̂(x, t)

(16)
for the derivative coupling.
In the three cases in Eqs. (12), (15) and (16) we can

express the fields in terms of plane-wave mode expansions
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[28]). The monopole moment in the interaction picture
is given by

µ̂(t) = �̂+ei⌦t + �̂�e�i⌦t, (2)

where ⌦ is the gap between the two detector states. This
monopole moment of the detector is then coupled to a
scalar field �̂ at the position where the detector is, de-
noted by x

d

. The specific form of the interaction Hamil-
tonian is

H
udw

= e�(t)µ̂(t) �̂(x
d

, t), (3)

where e is the coupling constant and �(t) is a switching
function that controls the time dependence of the interac-
tion strength. This model of interaction is known as the
Unruh-DeWitt particle detector model [24], which has
been extensively used in fundamental studies in quan-
tum field theory [35].

It has been discussed that under the assumption of
interactions without exchange of angular momentum the
Unruh-DeWitt Hamiltonian captures the main features
of the light-matter interaction [27, 28].

Oftentimes, the Unruh-DeWitt particle detector model
is upgraded with a detector spatial smearing. The smear-
ing of particle detectors may respond to the need to reg-
ularize divergences of the pointlike model [33] or, as for
example in quantum optics, to improve on the accuracy
of the models of light-matter interaction considering that
the atoms are not really pointlike objects, and instead
they are localized in the full extension of their atomic
wave functions [28, 32]. Furthermore, as discussed in [33]
spatial smearings are sometimes introduced implicitly in
some form of soft UV regularization (see, e.g., [36]).

To take into account corrections coming from the finite
size of atoms, we can introduce an ad hoc spatial profile
or smearing function, typically strongly supported on a
finite spatial region, that controls how much each point
of the detector in that region interacts with the field,
leading to

H
udw

= e�(t)

Z

d3xF (x� x

d

)µ̂(t) �̂(x, t). (4)

One could argue that to include the atomic orbital
wave function geometry, it is natural to think that the
spatial support of the atom could be associated with the
spatial probability profile of the atomic wave functions
[28]. In previous works in entanglement harvesting, dif-
ferent spatial smearings of strong support on a compact
region have been studied [18]. Nevertheless, this is a fea-
ture that has to be added ad hoc to the spatial smearing
profile in (3), since the atomic wave function association
with the smearing function does not naturally arise in
this simplified model.

B. Derivative coupling

In the same fashion that the minimal coupling Hamil-
tonian p ·A is simplified into the Unruh-DeWitt Hamil-

tonian in (3), the dipole coupling Hamiltonian d·E could
be again simplified to a scalar coupling when the inter-
actions involve no exchange of angular momentum. In-
tuitively, given that the electric field is defined from the
electromagnetic vector potential as E = �@

t

A (in the
Coulomb gauge), an interaction Hamiltonian that cou-
ples the atomic monopole moment to the time derivative
of a scalar field should capture some of the features of the
dipole coupling. Concretely, we can think of the following
Hamiltonian:

H
udwd = e�(t)

Z

d3xF (x� x

d

)µ̂(t) @
t

�̂(x, t). (5)

This model has also been employed in the analysis of
entanglement harvesting [37]. Additionally, it has been
particularly useful in (1+1)-dimensional analyses, where
the use of a derivative coupling alleviates IR divergences
in the behavior of the Unruh-DeWitt model [33, 34, 38].
We see in (5) that, as in the case of Unruh-DeWitt de-
tectors, a spatial profile can also be introduced ad hoc

in this case to account for the finite size of the atomic
probes [39].

C. Dipole coupling of an atom to the
electromagnetic field

Let us now consider a model for the complete interac-
tion of an atom with a vector electromagnetic field. We
begin with the local dipole coupling between an electric
dipole and an electric field,

d̂ · Ê = ex̂ · Ê, (6)

e being the dipole’s charge, x̂ its position operator, and
Ê the electric field operator.
This coupling is extensively used in quantum optics

to describe the light-matter interaction [40]. It is well
known that the leading-order contribution to atomic
transitions is of a dipole nature and is governed by a
term of the form (6). The intensity of higher multipole
transitions is strongly suppressed and only becomes rele-
vant for transitions forbidden by the dipole selection rules
(see for instance Ref. [41]).
Indeed, the dipole coupling is only an approximation

for the full electromagnetic interaction of an atomic elec-
tron with the electromagnetic field. However, it is dis-
cussed in [40, 42] that for realistically small atoms, an
approximate gauge transformation yields the dipole cou-
pling out of the full atomic-field coupling [atomic electron
minimally coupled to the electromagnetic field vector po-
tential Eq. (1)]. This approximation may break when the
initial state of the field and the atoms is not excited and
only for interaction times that are comparable or smaller
than the length scale of the atoms [43]. However, for in-
teraction times much larger than the light crossing time
of the atomic radius the dipole coupling should yield a
good approximation even for ground state dynamics. The

More details in A. Pozas and E. Martín-Martínez, Phys. Rev. D 94, 064074 (2016) 

Almost same phenomenology (except for angular momentum exchange)

And also in Richard Lopp’s talk
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Probing a KMS state: Particle detectors

HI = ��(⌧/�)µ(⌧)�̂(x(⌧))

We couple an Unruh-DeWitt detector to the field:

Where         is a  square integrable switching function of L2 norm 1�(⌘)

    is an interaction duration timescale�

P+ = �2|he|µ(0)|gi|2�F(⌦,�)

F(⌦,�)=
1

�

Z 1

�1
d⌧ 0

Z 1

�1
d⌧�(⌧/�)�(⌧ 0/�)W (⌧, ⌧ 0)e�i⌦(⌧�⌧ 0)

P� = �2|he|µ(0)|gi|2�F(�⌦,�)

For an arbitrary field state, the excitation and de-excitation probabilities are:
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Probing a KMS state: Particle detectors

In terms of Fourier transforms

F(⌦,�) =
1

2⇡

Z 1

�1
d!̄|�̃(!̄)|2W̃ (⌦+ !̄/�)

Assuming that          decays fast enough: �̃(!̄)

F(⌦,�) �!
�!1

W̃ (⌦)

The response function when the interaction is on for long times is the 
Fourier transform of the Wightman function.
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Excitation-Deexcitation ratio:

R(⌦,�) =
P+(⌦)

P�(⌦)
=

F(⌦,�)

F(�⌦,�)
�!
�!1

W̃ (⌦)
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Probing a KMS state: Particle detectors

Excitation-Deexcitation ratio:

For a KMS state 

We can define the (inverse) EDR temperature as

R(⌦,�) =
P+(⌦)

P�(⌦)
=

F(⌦,�)

F(�⌦,�)
�!
�!1

W̃ (⌦)

W̃ (�⌦)

W̃ (�⌦,�) = e�⌦W̃ (⌦,�)

R(⌦,�) �!
�!1

e��⌦

�edr(⌦,�,�) = �
log

�
R(⌦,�,�)

�

⌦

Which coincides with the KMS temperature for long interaction times
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Free field thermal state of temperature  T with respect to inertial 
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Examples of KMS states:

Free field thermal state of temperature  T with respect to inertial 
observer time:

Vacuum state of a free field with respect to proper time of constantly 
accelerated observer:

Tkms = ��1 =
a

2⇡

Tkms = ��1 = T

Unruh effect!



The ‘Anti-Unruh’ effect
The transition probability  of  an  accelerated  detector  can  actually
decrease with acceleration [1]

4

function of ⌦ within this parameter range. This way we
can study the dependence of the KMS temperature on
the detector’s acceleration to identify the regions where
the Unruh e↵ect is present. Concretely, we examine the
KMS temperature for di↵erent values of �, a, and ⌦.

The derivative of the KMS temperature with respect
to the acceleration is shown as a density plot in Fig. 4;
the location where the derivative is zero as a dashed line.
We see that for increasing interaction time (increasing
�) as well as increasing detector gap ⌦, the negatively
sloped region disappears, in line with our expectations
that for long times the slope should approach the usual
value of 1/2⇡. This indicates that turning the detector
on for an infinite amount of time yields the Unruh e↵ect.
We also see that the Unruh e↵ect is recovered for large
accelerations.

From Fig. 4 (top), we see that the temperature change
with acceleration increases in magnitude as acceleration
increases. Finally, (bottom) we also see that as accelera-
tion increases, the region where the temperature’s deriva-
tive is negative shrinks, indicating that we recover the
Unruh e↵ect for large accelerations.

Figure 4. Top) Density plot of the @T/@a versus detector gap
⌦ (on the horizontal axis) and � (on the vertical axis) for a =
1.0. Bottom) density plot of the @T/@a versus acceleration
(on the horizontal axis) and � (on the vertical axis) for ⌦ =
1.2. In both plots L = 200.

V. (1+1)D CONTINUUM CASE.

The e↵ect reported in this letter is not exclusive of
cavity setups with periodic boundary conditions. We can
examine the e↵ect in the continuum just by replacing the
expression (7) by its continuum analogue: We obtain

P =

Z 1

�1

dk

4⇡|k|
����
Z

d⌧ei[⌦⌧� sk
a |k|(e�ska⌧�1)]� ⌧2

2�2

����
2

,

(11)
where s

k

= sgn(k). We can expand this expression as

P =

Z 1

�1

dk

4⇡|k|
Z

dt

Z
dt0ei⌦(t�t

0)e�
t2+t02
2�2 ⇥ (12)

e
�i

sk
a |k|

h
(e�skat�1)�

⇣
e

�skat0�1
⌘i

,

a quantity well known to be IR divergent. Introducing
an IR cuto↵ ⇤ for regularization, we obtain

P = �
Z �⇤

�1

dk

4⇡k

Z
dt

Z
dt0ei⌦(t�t

0)e�
t2+t02
2�2

⇥ e
�i ka

h
(eat�1)�

⇣
e

at0�1
⌘i

+

Z 1

⇤

dk

4⇡k

Z
dt

Z
dt0ei⌦(t�t

0)e�
t2+t02
2�2

⇥ e
�i ka

h
(e�at�1)�

⇣
e

�at0�1
⌘i

(13)

which in turn becomes

P =

Z 1

�1
dt

Z 1

�1
dt0ei⌦(t�t

0)e�
t2+t02
2�2

1

4⇡
(14)

⇥

�inc

⇣ i⇤
a
(e�at � e�at

0
)
⌘
+ �inc

⇣
� i⇤

a
(eat � eat

0
)
⌘�

upon performing the k integral. The analytic continu-
ation of the incomplete gamma function �inc is defined
as

�inc(z) =

Z 1

z

dk

k
e�k (15)

We can therefore evaluate the expression for the prob-
ability of transition for di↵erent values of the parameters
characterizing the detectors. The results are depicted in
Fig. 5. We see that as detector acceleration increases,
the detector can register either more detection events
or fewer, depending on the regime of parameter space,
demonstrating that this phenomenon is also present in
the continuum.
Rather than any kind of boundary conditions, the key

ingredient responsible for the cooling of an accelerated
detector is the finite time coupling, both for the cavity
and the continuum. Further investigation is required in
the latter case to determine if this is a consequence of the
existence of an IR cuto↵ or the reduced dimensionality
of spacetime.

[1] W.G. Brenna, R. B. Mann, E. Martin-Martinez, Phys. Lett. B 757, 307 (2016) 
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The e↵ect reported in this letter is not exclusive of
cavity setups with periodic boundary conditions. We can
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We can therefore evaluate the expression for the prob-
ability of transition for di↵erent values of the parameters
characterizing the detectors. The results are depicted in
Fig. 5. We see that as detector acceleration increases,
the detector can register either more detection events
or fewer, depending on the regime of parameter space,
demonstrating that this phenomenon is also present in
the continuum.
Rather than any kind of boundary conditions, the key

ingredient responsible for the cooling of an accelerated
detector is the finite time coupling, both for the cavity
and the continuum. Further investigation is required in
the latter case to determine if this is a consequence of the
existence of an IR cuto↵ or the reduced dimensionality
of spacetime.
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⌦

[1] W.G. Brenna, R. B. Mann, E. Martin-Martinez, Phys. Lett. B 757, 307 (2016) 

This is a cavity effect (or IR cutofff) that breaks KMS. Is that it?
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Figure 1. Transition rate (in units of 2⇡��2) as a function of
acceleration for T = 1,⌦ = 2, L = 20. Notice the decreasing
transition rate with acceleration for low accelerations.
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Figure 2. Plot of the transition probability (in units of �2)
as a function of acceleration. We set L = 200,� = 0.4 and
we vary �⌦ and L⌦ considering both ⌦ = 0.1 (dashed) and
⌦ = 2 (solid). For the latter the excitation probability grows
with acceleration, whereas for the former it decreases with
acceleration.

the Unruh e↵ect), to a regime where this probability de-
creases with acceleration.

What we have shown so far is that there are regimes for
which an accelerated detector in a cavity (for finite times)
counts fewer particles as its acceleration grows. It is not
a sudden switching e↵ect, since it is also present when
the switching function is a smooth Gaussian. Could this
be due to insu�cient interaction time for equilibration?

To assess this, we will investigate whether or not the
detector satisfies the KMS condition [12, 13] in this
regime. We will find that even though this phenomenon
of excitation suppression with increasing acceleration
seems to require short times, these times are not so short
as to take the system out of the detailed-balance KMS
condition. We can therefore use the KMS temperature as
a temperature estimator and study how this temperature
depends on acceleration for short timescales.

IV. PERTURBATIVE ANALYSIS OF
THERMALITY: THE KMS CONDITION.

Perturbatively, it is commonplace to use the detailed-
balance condition obeyed by KMS states [19] to evalu-
ate the thermal response of a particle detector. In the
context of particle detectors, the KMS condition can be
thought of as the postulation that the imbalance between
the excitation and de-excitation probabilities of a ground-
state and excited detector comes from the equilibrium
with a thermal background. To demonstrate thermality,
we would need to show a linear dependence of of the loga-
rithm of the KMS ratio as a function of the gap ⌦, where
we define the KMS ratio as P(⌦)

P(�⌦) , which for KMS states
satisfies

P(⌦)

P(�⌦)
= e�⌦/T . (10)
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Figure 3. A plot of the logarithm of the KMS ratio versus ⌦
for L = 200, a = 1. Di↵erent lines in the series correspond to
di↵erent values of the Gaussian width, �. The relationship is
linear even for shorter interaction timescales.

This computation was performed in a manner similar
to the previous section, though here the use of proba-
bility rather than transition rate meant more computing
resources were required. The P(⌦) was evaluated from
equation (8), where the integral was numerically evalu-
ated over the range [�10�, 10�] so that the error part due
to the finite integration is suppressed by 10�43, well be-
low our numerical precision. In addition, the number of
modes was increased well beyond the point at which the
value for the probability converged within the precision
of the temperature.
For given values of (�, L) we computed this KMS ra-

tio for di↵ering values of ⌦; the temperature was then
straightforwardly obtained from equation (10). A linear
slope in the plots of the KMS ratio vs ⌦ corresponds
to a system that obeys the KMS condition. Our results
are shown in Fig. 3. We see that the KMS condition
is obeyed by the detector for the ranges of parameters
considered in the figure.
Consequently we can define a meaningful KMS tem-

perature as the slope of the plot of the KMS ratio as a



The "Anti-Unruh" effect

Weak Anti-Unruh: The transition probability decreases when the KMS 
temperature increases

Strong Anti-Unruh: effective EDR temperature decreases as the KMS 
temperature increases (while still being largely independent of Ω):

@�F(⌦,�,�) > 0

@��edr < 0

L. J. Garay, E. Martin-Martinez, J. de Ramon Phys. Rev. D 94, 104048 (2016) 



The "Anti-Unruh" effect

-Pullback of Commutator does not depend on the KMS parameter

-Pullback of Commutator depends on the KMS parameter

E.g., Thermal states for inertial observers
  Accelerated detectors coupled to massless fields in free space

E.g., Accelerated detectors coupled to massive fields,
      Accelerated detectors coupled to massless fields in cavities

L. J. Garay, E. Martin-Martinez, J. de Ramon Phys. Rev. D 94, 104048 (2016) 



Commutator does not depend on β

If the pull-back of the commutator does not depend on the KMS 
parameter:

No Weak Anti-Unruh ) No Strong Anti-Unruh

L. J. Garay, E. Martin-Martinez, J. de Ramon Phys. Rev. D 94, 104048 (2016) 



Commutator does not depend on β

If the pull-back of the commutator does not depend on the KMS 
parameter:

Is there weak Anti-Unruh?

No Weak Anti-Unruh ) No Strong Anti-Unruh

@�F(⌦,�,�) > 0

L. J. Garay, E. Martin-Martinez, J. de Ramon Phys. Rev. D 94, 104048 (2016) 



Commutator does not depend on β

If the pull-back of the commutator does not depend on the KMS 
parameter:

Is there weak Anti-Unruh?

No Weak Anti-Unruh ) No Strong Anti-Unruh

F(⌦,�) =
1

2⇡

Z 1

�1
d!̄|�̃(!̄)|2W̃ (⌦+ !̄/�)

@�F(⌦,�,�) > 0

L. J. Garay, E. Martin-Martinez, J. de Ramon Phys. Rev. D 94, 104048 (2016) 

�



Commutator does not depend on β

If the pull-back of the commutator does not depend on the KMS 
parameter:

Is there weak Anti-Unruh?

No Weak Anti-Unruh ) No Strong Anti-Unruh

Necessary condition for weak Anti-Unruh:

F(⌦,�) =
1

2⇡

Z 1

�1
d!̄|�̃(!̄)|2W̃ (⌦+ !̄/�)

@�F(⌦,�,�) > 0

@�W̃ (!) = @�
�
C̃(!,�)P(!,�)

�
= C̃(!)@�P(!,�) < 0

L. J. Garay, E. Martin-Martinez, J. de Ramon Phys. Rev. D 94, 104048 (2016) 

�



Can be simplified to

Commutator does not depend on β

If the pull-back of the commutator does not depend on the KMS 
parameter:

Is there weak Anti-Unruh?

No Weak Anti-Unruh ) No Strong Anti-Unruh

Necessary condition for weak Anti-Unruh:

F(⌦,�) =
1

2⇡

Z 1

�1
d!̄|�̃(!̄)|2W̃ (⌦+ !̄/�)

@�F(⌦,�,�) > 0

@�W̃ (!) = @�
�
C̃(!,�)P(!,�)

�
= C̃(!)@�P(!,�) < 0

!C̃(!) > 0

sgn[C̃(!)] = �sgn(!)But The condition cannot be satisfied!
L. J. Garay, E. Martin-Martinez, J. de Ramon Phys. Rev. D 94, 104048 (2016) 

�



Commutator does not depend on β

E.g., The trajectory does not depend on the KMS parameter

There is no Anti-Unruh phenomena (neither weak nor strong)

E.g., accelerated detector coupled to massless field vacuum



Commutator does not depend on β

E.g., The trajectory does not depend on the KMS parameter

There is no Anti-Unruh phenomena (neither weak nor strong)

An inertial detector in a thermal bath will always click more often when
Exposed to higher temperatures.

An accelerated detector coupled to a massless field in free space will 
click more often the larger its acceleration

E.g., accelerated detector coupled to massless field vacuum



Where the KMS parameter

Commutator depends on β

If the trajectory depends on the KMS parameter, there is a chance the 
pull-back of the commutator does too.

Accelerated detector in free space coupled to a massive field:

W̃d(!,�) =
�e�

�!
2

2⇡2

Z
dd�1k

(2⇡)d�1

����Ki �!
2⇡

✓
�

2⇡

p
m2 + k2

◆����
2

� =
2⇡

a

Necessary conditions for Anti-Unruh are satisfied.
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while for d = 1 the expression (43) reduces to

W̃
1

(!,�) =
�e�

�!
2

2⇡2

����Ki

�!
2⇡

✓
�m

2⇡

◆����
2

. (45)

In these cases the necessary condition (38) for weak
Anti-Unruh can be fulfilled. In fact it is easy to check ex-
plicitly that this condition can actually be satisfied both
in the 1 + 1D and 3+ 1D cases. Let us first focus on the
1+1D case.

In the massive 1+1D case we can see (along the same
lines as in the massless 1+1D case with an IR cuto↵
studied in [? ]) that the accelerated detector experi-
ences the weak Anti-Unruh e↵ect: That is, the detec-
tor’s response function can decrease as the KMS temper-
ature Tkms = 1/� increases, as illustrated in Fig. 1a for

a Gaussian switching �(⌧/�) = ⇡�1/4e�⌧2/(2�2
), and in

Fig. 1b for any square integrable switching �(⌧/�) in the
infinitely adiabatic limit � ! 1.

Remarkably, this voids one of the major possible crit-
icisms that could have been raised against the relevance
of the Anti-Unruh phenomena reported in [? ]. Namely,
it could have been argued that in [? ], the introduction of
a hard IR cuto↵, which, rigorously speaking, yields non-
stationary Wightman functions, was the responsible for
the appearance of transients that give rise to the Anti-
Unruh e↵ect. However, we see that we do not require a
breakdown of the KMS condition to see the Anti-Unruh
e↵ect. Specifically, an accelerated detector coupled to
a massive field vacuum will experience the weak Anti-
Unruh e↵ect in spite of the fact that the KMS condition
is satisfied in this case. In other words, we can have
a detector that, when switched on for finite times, can
decrease its transition rate as the KMS temperature in-
creases.

More so, this weak Anti-Unruh behaviour also shows
up even in the limit of detectors adiabatically switched
on for an infinite amount of time. Indeed, in this limit,
we know that the expression of the response function
is particularly simple, as shown in (18). We show in
Fig. 1b that the weak Anti-Unruh e↵ect is present in
the strict limit � ! 1, independently of the particular
form of the switching function � (even including non-
adiabatic switchings for which the transition rate is well
defined). Therefore the weak Anti-Unruh e↵ect cannot
be associated to transient behaviour.

The strong Anti-Unruh behaviour, on the other hand,
is confined to short interaction times and small accelera-
tions (i.e. KMS temperatures), as shown in Fig. 2. In the
figure we see that in the regime of small KMS tempera-
tures, the EDR temperature decreases as the KMS tem-
perature increases. We also see that for larger KMS tem-
peratures, the EDR temperature approaches the KMS
temperature, as it should be from (20). Finally, this fig-
ure also shows that the EDR temperature depends very
weakly on the gap frequency ⌦, despite the detector not
being in equilibrium with the field. This behaviour is en-
tirely the same as that found in [? ]. There, a hard-IR

●

●

●

●
●

● ● ● ● ● ● ● ●

■
■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

▲ ▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▼

▼

▼
▼

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

� �� �� �� �� ��

-��

-��

-��

-��

�

��

��

Tkms

@
F/

@
T
k
m
s(
⇥1

04
)

a

FIG. 1. Weak Anti-Unruh e↵ect : Derivative of the response

function with respect to the KMS temperature Tkms = 1/�
for 1+1D, m = 1. The di↵erent lines correspond to values

of ⌦ = 15 (inverted purple triangles), ⌦ = 10 (red triangles),

⌦ = 5 (green rhombi), ⌦ = 2 (orange squares), ⌦ = 0.5 (blue

circles). The two plots represent the short and the long time

regimes. Namely Top. � = 1 with a Gaussian switching

�(⌧/�) = ⇡�1/4e�⌧2/(2�2)
, and Bottom. � ! 1, indepen-

dently of the switching (this can be analytically evaluated

through (18)). We see that for a broad range of the param-

eters this derivative is negative (i.e., the response function

decreases as the KMS temperature increases), even for adia-

batic (eternal) switching.

cuto↵ (either removing the zero mode in a periodic cav-
ity, or imposing a cuto↵ ⇤ in the continuum case) causes
the Wightman function not to satisfy the KMS condi-
tion but �edr as defined in (29) behaves as a function of
acceleration exactly in the same way described above.

In particular, we have proven that this is a genuine
e↵ect of the acceleration of the detector, even when KMS
is satisfied, and that it would not be seen by an inertial
detector interacting for a finite timescale with a thermal
bath regardless of the number of spacetime dimensions
and the presence of cuto↵s.

We have also discussed that in 3+1D (for accelerated
detectors and massive fields) the necessary condition for
weak Anti-Unruh is satisfied. However, it is not su�cient
and it is still unclear whether the system will exhibit the
Anti-Unruh e↵ect.

Accelerated detector in free space coupled to a massive field (1+1D):

Short time regimes  

�(⌧/�) = ⇡�1/4e�⌧2/(2�2)

0.1⌦�1 . � . 10⌦�1



Weak Anti-Unruh

Long time regimes               for ANY switching function shape� ! 1

Accelerated detector in free space coupled to a massive field (1+1D):



Weak Anti-Unruh

Long time regimes               for ANY switching function shape� ! 1

�m . 1Dominant scale for Anti-Unruh

Accelerated detector in free space coupled to a massive field (1+1D):



Weak Anti-Unruh

Long time regimes               for ANY switching function shape� ! 1

�m . 1Presence of Anti-Unruh when

The response function in the limit of small      , where       , is kept 
constant is not a monotonically increasing function of β. 

In fact, it becomes highly oscillatory as  

Thus, its derivative with respect to the KMS temperature will take 
negative values.

 The Anti-Unruh phenomena will appear therefore for sufficiently small       
.     regardless of the constant value of    and      .

�m ! 0

�⌦�m

�m � ⌦
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FIG. 2. Strong Anti-Unruh e↵ect : Figure a) shows the EDR

temperature Tkms = 1/� as a function of the KMS tempera-

ture for 1+1D, m = 1, � = 0.04, and ⌦ = 1. For large KMS

temperatures, Tedr ' Tkms, while for small ones the EDR tem-

perature actually decreases, as seen in the zoomed Fig. b).
Figure c) displays (for m = 1, � = 0.04, and Tkms = 8) the

apparent linearity of ⌦/Tedr with ⌦ and hence the almost in-

dependence of the EDR temperature with ⌦. Figure d) shows
(for the same parameters as Fig. c)) that this dependence is

actually present although it is extremely weak.

IV. PARAMETER SPACE DEPENDENCE OF
THE ANTI-UNRUH PHENOMENA

In this section we analyze in more detail in what region
of the parameter space we can find Anti-Unruh phenom-
ena.

One legitimate question that one may ask is whether
this e↵ect may be related with the fact that even though
the response of a static detector in a thermal bath and
the response of an accelerated detector coupled to the
field vacuum are statistically identical, the two responses
come from fundamentally di↵erent physical e↵ects.

In the inertial thermal case, the main contribution to
the detector’s excitation rate for su�ciently long times
comes from rotating-wave contributions (those involving
processes where the detector gets excited by emitting a
field quantum [? ]). However, in the Unruh e↵ect, the
contribution of the rotating-wave and counter-rotating
wave terms (the detector gets excited by emitting a pho-
ton [? ]) are comparable. This is the fundamental di↵er-
ence in the two processes and this is ultimately the reason
why the two scenarios are di↵erent despite the fact that
in both cases the detectors display a thermal response.

One manifestation of this intrinsic di↵erence is the fact
that the Unruh e↵ect can excite a detector for masses
below the detector’s energy gap, while a thermal bath
cannot. The Anti-Unruh e↵ect is another remarkable
manifestation of this di↵erence.

In the light of this, the question could be asked whether
the relationship between the detector gap scale and the
mass of the field is what rules the appearance of the

Anti-Unruh phenomena.
To answer this question, let us first consider the re-

sponse function of an accelerated detector coupled to a
massive field prepared in the vacuum state in the long
time limit (� ! 1). As we showed in (18), the response
function is given by the Wightman function evaluated
at ! = ⌦. Specifically, for the 1+1D case the response
function is given by (45) evaluated at ! = ⌦.
Let us consider two di↵erent asymptotic limits of this

equation, the large mass limit and the small mass limit.
Let us begin with the the large mass limit. Using the

leading order of the asypmtotic expansion of the Bessel
function for large values of its argument

K
i

�⌦
2⇡

✓
�m

2⇡

◆
⇠ ⇡p

�m
e�

�⌦
2⇡ , (46)

which is valid under the condition

✓
�⌦

2⇡

◆
2

+
1

4
⌧ �m

2⇡
, (47)

we get the following response function in the limit � ! 1
[? ]:

F(⌦,�) ⇡ e��(⌦/2+m/⇡)

4⇡m
. (48)

The response function (48) is a monotonically increas-
ing fucntion of the temperature, thus does not exhibit
any kind of Anti-Unruh phenomena. This allows us to
reach to the conclusion that in the asymptotic limit of
field mass much larger than the detector gap for constant
KMS temperature, there cannot be any Anti-Unruh phe-
nomena.
On the other hand, as shown in [? ], the asymptotic

behaviour of the response function in the limit of small
mass is given by

F(⌦,�)⇠ 1

⌦(e�⌦ � 1)


1+cos

✓
�⌦

⇡
log

�m

4⇡
+�


�⌦

2⇡

�◆�
,

(49)
with �(z) = 2Arg�(iz), in the regime where

✓
�⌦

2⇡

◆
2

+ 1 �
✓
�m

2⇡

◆
4

(50)

is satisfied.
In the light of (49), we see that the response function in

the limit of small �m, where �⌦, is kept constant is not
a monotonically increasing function of �. In fact, (49)
becomes highly oscillarory as �m goes to zero and, as
such, its derivative with respect to the KMS temperature
will take negative values. The Anti-Unruh phenomena
will appear therefore for su�ciently small �m regardless
of the constant value of � and ⌦.
The conclusion that we extract is that although there

may be some relationship between the Anti-Unruh phe-
nomena and the ratio between ⌦ and m, the existence of
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FIG. 2. Strong Anti-Unruh e↵ect : Figure a) shows the EDR

temperature Tkms = 1/� as a function of the KMS tempera-

ture for 1+1D, m = 1, � = 0.04, and ⌦ = 1. For large KMS

temperatures, Tedr ' Tkms, while for small ones the EDR tem-

perature actually decreases, as seen in the zoomed Fig. b).
Figure c) displays (for m = 1, � = 0.04, and Tkms = 8) the

apparent linearity of ⌦/Tedr with ⌦ and hence the almost in-

dependence of the EDR temperature with ⌦. Figure d) shows
(for the same parameters as Fig. c)) that this dependence is

actually present although it is extremely weak.

IV. PARAMETER SPACE DEPENDENCE OF
THE ANTI-UNRUH PHENOMENA

In this section we analyze in more detail in what region
of the parameter space we can find Anti-Unruh phenom-
ena.

One legitimate question that one may ask is whether
this e↵ect may be related with the fact that even though
the response of a static detector in a thermal bath and
the response of an accelerated detector coupled to the
field vacuum are statistically identical, the two responses
come from fundamentally di↵erent physical e↵ects.

In the inertial thermal case, the main contribution to
the detector’s excitation rate for su�ciently long times
comes from rotating-wave contributions (those involving
processes where the detector gets excited by emitting a
field quantum [? ]). However, in the Unruh e↵ect, the
contribution of the rotating-wave and counter-rotating
wave terms (the detector gets excited by emitting a pho-
ton [? ]) are comparable. This is the fundamental di↵er-
ence in the two processes and this is ultimately the reason
why the two scenarios are di↵erent despite the fact that
in both cases the detectors display a thermal response.

One manifestation of this intrinsic di↵erence is the fact
that the Unruh e↵ect can excite a detector for masses
below the detector’s energy gap, while a thermal bath
cannot. The Anti-Unruh e↵ect is another remarkable
manifestation of this di↵erence.

In the light of this, the question could be asked whether
the relationship between the detector gap scale and the
mass of the field is what rules the appearance of the

Anti-Unruh phenomena.
To answer this question, let us first consider the re-

sponse function of an accelerated detector coupled to a
massive field prepared in the vacuum state in the long
time limit (� ! 1). As we showed in (18), the response
function is given by the Wightman function evaluated
at ! = ⌦. Specifically, for the 1+1D case the response
function is given by (45) evaluated at ! = ⌦.
Let us consider two di↵erent asymptotic limits of this

equation, the large mass limit and the small mass limit.
Let us begin with the the large mass limit. Using the

leading order of the asypmtotic expansion of the Bessel
function for large values of its argument

K
i

�⌦
2⇡
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�m

2⇡
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�⌦
2⇡ , (46)

which is valid under the condition
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2⇡
, (47)

we get the following response function in the limit � ! 1
[? ]:

F(⌦,�) ⇡ e��(⌦/2+m/⇡)

4⇡m
. (48)

The response function (48) is a monotonically increas-
ing fucntion of the temperature, thus does not exhibit
any kind of Anti-Unruh phenomena. This allows us to
reach to the conclusion that in the asymptotic limit of
field mass much larger than the detector gap for constant
KMS temperature, there cannot be any Anti-Unruh phe-
nomena.
On the other hand, as shown in [? ], the asymptotic

behaviour of the response function in the limit of small
mass is given by

F(⌦,�)⇠ 1

⌦(e�⌦ � 1)


1+cos

✓
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log
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(49)
with �(z) = 2Arg�(iz), in the regime where
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(50)

is satisfied.
In the light of (49), we see that the response function in

the limit of small �m, where �⌦, is kept constant is not
a monotonically increasing function of �. In fact, (49)
becomes highly oscillarory as �m goes to zero and, as
such, its derivative with respect to the KMS temperature
will take negative values. The Anti-Unruh phenomena
will appear therefore for su�ciently small �m regardless
of the constant value of � and ⌦.
The conclusion that we extract is that although there

may be some relationship between the Anti-Unruh phe-
nomena and the ratio between ⌦ and m, the existence of

Short time regime (interaction time below Heisenberg time)

�edr(⌦,�,�) = �
log

�
R(⌦,�,�)

�

⌦

m = ⌦

� ⇡ 10�1⌦�1
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FIG. 2. Strong Anti-Unruh e↵ect : Figure a) shows the EDR

temperature Tkms = 1/� as a function of the KMS tempera-

ture for 1+1D, m = 1, � = 0.04, and ⌦ = 1. For large KMS

temperatures, Tedr ' Tkms, while for small ones the EDR tem-

perature actually decreases, as seen in the zoomed Fig. b).
Figure c) displays (for m = 1, � = 0.04, and Tkms = 8) the

apparent linearity of ⌦/Tedr with ⌦ and hence the almost in-

dependence of the EDR temperature with ⌦. Figure d) shows
(for the same parameters as Fig. c)) that this dependence is

actually present although it is extremely weak.

IV. PARAMETER SPACE DEPENDENCE OF
THE ANTI-UNRUH PHENOMENA

In this section we analyze in more detail in what region
of the parameter space we can find Anti-Unruh phenom-
ena.

One legitimate question that one may ask is whether
this e↵ect may be related with the fact that even though
the response of a static detector in a thermal bath and
the response of an accelerated detector coupled to the
field vacuum are statistically identical, the two responses
come from fundamentally di↵erent physical e↵ects.

In the inertial thermal case, the main contribution to
the detector’s excitation rate for su�ciently long times
comes from rotating-wave contributions (those involving
processes where the detector gets excited by emitting a
field quantum [? ]). However, in the Unruh e↵ect, the
contribution of the rotating-wave and counter-rotating
wave terms (the detector gets excited by emitting a pho-
ton [? ]) are comparable. This is the fundamental di↵er-
ence in the two processes and this is ultimately the reason
why the two scenarios are di↵erent despite the fact that
in both cases the detectors display a thermal response.

One manifestation of this intrinsic di↵erence is the fact
that the Unruh e↵ect can excite a detector for masses
below the detector’s energy gap, while a thermal bath
cannot. The Anti-Unruh e↵ect is another remarkable
manifestation of this di↵erence.

In the light of this, the question could be asked whether
the relationship between the detector gap scale and the
mass of the field is what rules the appearance of the

Anti-Unruh phenomena.
To answer this question, let us first consider the re-

sponse function of an accelerated detector coupled to a
massive field prepared in the vacuum state in the long
time limit (� ! 1). As we showed in (18), the response
function is given by the Wightman function evaluated
at ! = ⌦. Specifically, for the 1+1D case the response
function is given by (45) evaluated at ! = ⌦.
Let us consider two di↵erent asymptotic limits of this

equation, the large mass limit and the small mass limit.
Let us begin with the the large mass limit. Using the

leading order of the asypmtotic expansion of the Bessel
function for large values of its argument
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we get the following response function in the limit � ! 1
[? ]:

F(⌦,�) ⇡ e��(⌦/2+m/⇡)

4⇡m
. (48)

The response function (48) is a monotonically increas-
ing fucntion of the temperature, thus does not exhibit
any kind of Anti-Unruh phenomena. This allows us to
reach to the conclusion that in the asymptotic limit of
field mass much larger than the detector gap for constant
KMS temperature, there cannot be any Anti-Unruh phe-
nomena.
On the other hand, as shown in [? ], the asymptotic

behaviour of the response function in the limit of small
mass is given by
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is satisfied.
In the light of (49), we see that the response function in

the limit of small �m, where �⌦, is kept constant is not
a monotonically increasing function of �. In fact, (49)
becomes highly oscillarory as �m goes to zero and, as
such, its derivative with respect to the KMS temperature
will take negative values. The Anti-Unruh phenomena
will appear therefore for su�ciently small �m regardless
of the constant value of � and ⌦.
The conclusion that we extract is that although there

may be some relationship between the Anti-Unruh phe-
nomena and the ratio between ⌦ and m, the existence of
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FIG. 2. Strong Anti-Unruh e↵ect : Figure a) shows the EDR

temperature Tkms = 1/� as a function of the KMS tempera-

ture for 1+1D, m = 1, � = 0.04, and ⌦ = 1. For large KMS

temperatures, Tedr ' Tkms, while for small ones the EDR tem-

perature actually decreases, as seen in the zoomed Fig. b).
Figure c) displays (for m = 1, � = 0.04, and Tkms = 8) the

apparent linearity of ⌦/Tedr with ⌦ and hence the almost in-

dependence of the EDR temperature with ⌦. Figure d) shows
(for the same parameters as Fig. c)) that this dependence is

actually present although it is extremely weak.

IV. PARAMETER SPACE DEPENDENCE OF
THE ANTI-UNRUH PHENOMENA

In this section we analyze in more detail in what region
of the parameter space we can find Anti-Unruh phenom-
ena.

One legitimate question that one may ask is whether
this e↵ect may be related with the fact that even though
the response of a static detector in a thermal bath and
the response of an accelerated detector coupled to the
field vacuum are statistically identical, the two responses
come from fundamentally di↵erent physical e↵ects.

In the inertial thermal case, the main contribution to
the detector’s excitation rate for su�ciently long times
comes from rotating-wave contributions (those involving
processes where the detector gets excited by emitting a
field quantum [? ]). However, in the Unruh e↵ect, the
contribution of the rotating-wave and counter-rotating
wave terms (the detector gets excited by emitting a pho-
ton [? ]) are comparable. This is the fundamental di↵er-
ence in the two processes and this is ultimately the reason
why the two scenarios are di↵erent despite the fact that
in both cases the detectors display a thermal response.

One manifestation of this intrinsic di↵erence is the fact
that the Unruh e↵ect can excite a detector for masses
below the detector’s energy gap, while a thermal bath
cannot. The Anti-Unruh e↵ect is another remarkable
manifestation of this di↵erence.

In the light of this, the question could be asked whether
the relationship between the detector gap scale and the
mass of the field is what rules the appearance of the

Anti-Unruh phenomena.
To answer this question, let us first consider the re-

sponse function of an accelerated detector coupled to a
massive field prepared in the vacuum state in the long
time limit (� ! 1). As we showed in (18), the response
function is given by the Wightman function evaluated
at ! = ⌦. Specifically, for the 1+1D case the response
function is given by (45) evaluated at ! = ⌦.
Let us consider two di↵erent asymptotic limits of this

equation, the large mass limit and the small mass limit.
Let us begin with the the large mass limit. Using the

leading order of the asypmtotic expansion of the Bessel
function for large values of its argument
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will appear therefore for su�ciently small �m regardless
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Conclusions

• Characteristic of accelerated trajectories
• Related to the existence of an IR cutoff (covariant or not)
• Does not come from transient behaviour!
• Does not come from break down of Lorentz Invariance

Particle detectors can click less often when they accelerate!

A difference between Thermal vs Unruh response

• It appears in cavities for massless fields (non-KMS).

Lessons from strong Anti-Unruh:

• The EDR temperature may depend very weekly on    , yet not be a 
good temperature estimator for finite times

⌦


