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プレゼンター
プレゼンテーションのノート
Title slide: Read

In its simplest form, the Unruh effect states that the power spectrum for a scalar plane wave mode in an inertial (Minkowski) spacetime is thermal at negative frequencies when observed from the frame of a uniformly accelerated observer.  In this talk  I present a 2-parameter class of coordinates which smoothly transforms between inertial and uniform accelerated trajectories in Minkowski spacetime, and (i) compute the Bogolyubov coefficients (BC) for these non-uniformly accelerated motions and (ii) discuss the non-Planckian aspects of the negative frequency BCs for these trajectories. 



Stretching spacetime According to general relativity, the sun’s

Jr— mass makes an imprint on the fabric of spacetime that keeps the planets
Ill fL i Ty I inorbit. A neutron star leaves a greater mark. But a black hole is so
| 'y ;'l 1”' dense that it creates a pit deep enough to prevent light from escaping.
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Classical information transmission capacity of quantum black holes;
Adami & Ver Steeg, Class. Q. Grav. 31 (2014) 075015; arXiv:gr-qc/0407090v8

Classical information is not lost in black hole dynamics; re-emitted in stimulated emission
Hawking radiation is spontaneous emission

Analogy to SPDC (spontaneous parametric down conversion)

Hawking radiation is a two-mode squeezed state; observed state is thermal

Depleted BH ‘pump’ model (PDC) (Alsing: CQG 32, 075010, (2015); arXiv:1408.4491)
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Quantized the BH "pump’ source
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One Shot Decoupling Model (Bradler & Adami: arXiv:1505.0284( /
2

Alsing & Fanto: CQG 33, 015005 (2016), arXiv:1507.00429) ,

2 4 & i 10 12

Suggested by Alsing: CQG:2015 Future Work; closer analogy to SPDC

Page Information Curves redux

Summary and Conclusion


プレゼンター
プレゼンテーションのノート
Outline: Read
In the past, work presented at this conference has concentrate on the effects  on entanglement of the Unruh temperature  for a uniformly (i.e. constant) accelerated observer in flat Minkowski spacetime.

Here I will derive the Unruh temperature for arbitrarily accelerated observers. I will use a set of instantaneous co-moving (Fermi-Walker) coordinates that generalize form of the uniformly accelerated Rindler metric, replacing a0 → a(t) .

I will investigate two ways of deriving the Unruh temperature: (i) a WKB-like tunneling method that emphasizes the role of particles “crossing” the horizon and (ii) by the introduction of a specific set of inertial-to-Rindler (I2R) coordinates in which the observer has a finite asymptotic velocity less than c. 

Issues of the role of non-uniform acceleration on entanglement will not be address in this talk (they will in a future talk). Here I concentrate on the preliminary kinematics of determining the Unruh temperature for non-uniformly accelerated motion – a topic of interest in its own right.


Pasta or Barbecue? since the 1970s, physicists have had trouble coming up with a proposal that describes the fate
of something, or someone, falling into a black hole that doesn't violate well-tested theories. Until 2012, complementarity
(left side of image) seemed to do the job. It said that an astronaut falling into a black hole won't notice anything special as he
crosses the event horizon. Yet someone outside will never see his friend reach the horizon. Information is preserved for both
observers. But complementarity breaks another rule of guantum mechanics (see “Problematic entanglements,” below right).
Some argue that walls of radiation along event horizons incinerate incoming matter (right side of image).

Complementarity

An astronaut falling into a black hole crosses the event horizon
without incident, satisfying a prediction of general relativity.
The astronaut continues floating along until, approaching the
black hole's center, he is spaghettified.

Event horizon
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Firewall

Awall of radiation incinerates the unlucky astronaut and blocks
entry into the black hole. Information is preserved in this scenario
(you can theoretically piece together the astronaut from his
ashes), but general relativity is violated.

Firewall

Problematic entanglements
of Hawking radiation have to be entangled (quan-

to be correct, particles inside the black hole have to
be entangled with particles outside the black hole

For information to be preserved, outgoing particles

tum linked) to each other. But for general relativity

Unfortunately, these two entanglements can’t coexist.
Breaking one of the entanglements creates a firewall.

Problem Solution: Firewall
A .?1
g xe
Event .~ ";‘é
horizon Firewall =7 \
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Simple Derivation of Unruh Effect:
3 TS Zero vs. constant acceleration
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プレゼンター
プレゼンテーションのノート
The trajectory of (a) the inertial observer with coordinates (T,Z) at Z=constant, and (b) the Rindler uniformly accelerated observer at ζ’ = 0. 

(Image produced by author)


N/ tion of

Simple Derivation of Unruh Effect:

Frequency Transformations in SR: a = 0 (constant velocity)
Alsing & Milonni, Am.J.Phys. 72 1524 (2004); T. Padmanabhan, “Gravitation: Foundations & Frontiers,” Cambridge (2010).

Lorentz Transformation

ct = ct’ coshr + 2’ sinhr, z = ct' sinhr + 2’ coshr,

For k = w/c, the phase of a plane wave pio(t2)

transforms as

db=k-z2=krtuwt=k(zxct)=ke" () =K (¥ £t

Transformed frequency/phase

@I:Qb, w":we:ﬁ”



プレゼンター
プレゼンテーションのノート
For an observer moving with constant velocity with respect to a stationary observer, the Lorentz Transformation (LT) leads to an constant exponential (in the rapidity r) Doppler frequency shift.




(Royalty-free clip art image obtained from http://office.microsoft.com/en-us/images/images-clip-art-photos-sounds-animations-FX102588427.aspx?CTT=1)


Simple Derivation of Unruh Effect:
Zero vs. constant acceleration
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プレゼンター
プレゼンテーションのノート
The trajectory of (a) the inertial observer with coordinates (T,Z) at Z=constant, and (b) the Rindler uniformly accelerated observer at ζ’ = 0. 

(Image produced by author)


Simple Derivation of Unruh Effect:
Bosons

T-At 1 T+AT

Rindler Transformation

ct = (sinh(at/c) 2 = (cosh(at/c),
On orbit of accelerated (Rindler) observer ¢ = (¢?/a)
e’ = g=krtwl=k(z+cl) =kCe T =w(c/a)e T

Time dependent Doppler shifted frequency/phase

(1) = wetre, (1) = w(c/a)ee



プレゼンター
プレゼンテーションのノート
For an observer moving with constant acceleration with respect to a stationary (inertial) observer, a Lorentz Transformation (LT) to the instantaneous co-moving frame
leads to an time-varying exponential (in the rapidity aτ/c) Doppler frequency shift.





(Royalty-free clip art image obtained from http://office.microsoft.com/en-us/images/images-clip-art-photos-sounds-animations-FX102588427.aspx?CTT=1)



Simple Derivation of Unruh Effect:
Bosons

Noise Spectrum seen by (Rindler) accelerated observer: spin 0

‘/ dTeaSET i(we/a)e ‘”/C

Sz) _ ‘/ dq_ﬁé;&l'r io(T

Changing variables to y = ¢*/¢, we have

o0 o o [ o s=iQc/a=iQ/(a/c)
dr eV pilwe/a)e® _ ; 4 dyy (if2c/a—1) yilwe/a)y b —ia)C/a, et
s-1,-b —sinb Ve '
.[ dyy 1 "= F(S) _ CF ifde (wc)—éﬂc/a P—:erc/?o:
Reb>0, Res>0 o a a ’

where [' is the gamma function. Then, since
iQc\ |7
(%)
a

o0 9
S(Q) = ‘[ dr T gilwe/ @)/

™

" (Qc/a) sinh(rQc/a)’

we have

2re 1
SE(L {ZQ?TQr:fU . 1

The Planck factor

1 _ 1 7 _hajc
m N ehQ/kTUnruh _1 = Unruh — 272_
Asing & Milonnl is indicative of a Bose Einstein (BE) distribution. .

Am.J.Phys. 72 1524 (2004)


プレゼンター
プレゼンテーションのノート
We know ask how the exponentially shifted inertial plane wave exp(iφ(τ)) (as perceived by the accelerated observer) decomposes into positive and negative frequency modes exp(-iΩτ)  and exp(iΩτ) by the accelerated observer.

The power spectrum at negative frequencies (which is a  Γ function integral) exhibits a thermal-like spectrum indicated by the Planck factor – reminiscent of a Bose Einstein distribution of thermally emitted particles.

Thus the Minkowski vacuum of the stationary inertial observer, appears as a thermal vacuum to the uniformly accelerated observer.


Simple Derivation of Unruh Effect:
Fermions

Noise Spectrum seen by (Rindler) accelerated observer: spin 1/2

A Dirac spin 1/2 particle is a spinor wave function

T,br;- — U, c'é(kziwt) — ?J.’:{};\Cé(’b(t’z)

To boost into the instantaneous rest frame of the accelerated
observer, we must transform not only the phase of the plane
wave, but also the spinor

/ o a0a3 .. A  ;
77&():({’: 2’) — Ur}f(T) — (GG-T/2')’ 7 ) 3 Up euf)('r) = *S()zli? uﬂ GMJ(T)
oxf

g ei9(7)
- .lli -

= [cosh(ar/2) I + sinh(ar/2) (7”73)}0”3

1 0 0 o
0 _ 3 _ z
7_(0 —1)’ 7‘(—@ 0)’

For u = [1,0,1,0]7 , we have 5(7)u = /2 4, (eigenstate)

where

29 1
e o

= s (Fermi-Dirac)
wa e=melo 4]

(N
- Q7 _ar/2% i(we/a)esT/e
S(2) = ‘/ dre™t oo7/2¢ gilwe/a)e
— 00

Where we have used
T

iQcla — iQc/a+1/2 = |T(iQ¢c/a+1/2)]* =
: I ja— Kc/a+1/ [F(#2c/a+1/2)] cosh(m§2c/a)
Alsing & Milonni, Am.J.Phys. 72 1524 (2004) 10



プレゼンター
プレゼンテーションのノート
The Bose-Einstein distribution (with the crucial – sign in the denominator) of the previous slide came about because we considered a scalar plane wave appropriate for a boson (spin 0) particle.

We can repeat this analysis for a fermion (spin 1/2 ) particle. The new feature is that we must ALSO Lorentz transform the spinor part of the wave function, in addition to the plane wave, in order to get into the instantaneous rest frame of the accelerated observer. This introduces an additional factor of exp(aτ/2c), which transforms the Γ function integral in just the right way, to produce a + sign in the denominator. The resulting spectrum is then a Fermi-Dirac spectrum, appropriate for spin ½ fermions.  


Flat Minkowski Spacetime: Modes

Metric and Wave Equation:

ds? =di? —d22, | = (82 — %4 = 0.

Solutions:

1 s ,
w >0, f = ——— e'lkz—wt) k= w?
dmw

Inner Product:

(b1,60) = =i [ (610,65~ 046 dz
X

(fuos fia) = 0k —ka), (finfi) = —6(ki — ko). (fius fi) =0

Definition of Positive and Negative Frequency Modes:

Pos freq: O fr = —iwfr, Neg freq: o fi=iwf;

Field Decomposition in terms of Minkowski modes:

f dk (ax fr +a fL) [&'kl ! 'ﬁ;g] = 0(ky — k), [&kliﬁkﬂ] — [&L&L] =0




The Unruh Effect: Modes

= ¢const.

Hinder coordinates:

+1 . +1
t = —e€" sinh(at), 2=—¢€" cosh(ar),| (I:2>0, 2> |t
{1 a

, II:2<0, |z > |t]),

Metric and Wave Equation:

ds? = ¢ (dr2 —d¢?), | = e 2 (2 — )b =0,




The Unruh Effect: Modes (cont.) "

[ = L = const.

Solutions: )
1 Tk —iwT o —— 1 =comst.
g“} _ mea (—1 I
¥ 0 IT :
/0 — { L e
ke - A o
Nk 11
Inner Product:
) (1 2 (2 - (1) (2)
(g1, 90) =0kt — ko), (g1).9)) =0(ki — ko), (gp)gy)) =0
Positive and Negative Frequency Modes:
2 Pos freq modes: O- QE} = —iwg;{:l}: 5E—TJ' gf} = —iwg}?],
2 Neg freq modes: {Q;}”*: Qf}*}

Field Decomposition in terms of Rindler modes:
o= [ (B0 o+ B o 4 o )

p(i) 7(d p(i) p(J p(i)7 1(J
B2, B2 = 6,560k — k), (B2, 2] = B 6] =0

Sean Carroll, Spacetime and Geometry, Chap 9, (2004)



The Unruh Effect: The Minkowski Vacuum State

in terms of Rindler Modes

Minkowski Vacuum

x_ .
Z tanhr |n); @ [n)y;, tanhr=e ™, Q= i
a/c

1
0) 3 =
coshr —

Density matrix for observer Rob in region I: — a Thermal State

a0

ﬁ[“ _ T'}"II[ |U\}U {U” _ (1 B E—:E'.'rﬂ) Z E—:Z?rﬂn |ﬂ:}j{ﬁ-|
n=0

Mean number of particles measured in region I: a Bose-Einstein distribution

. o : -*-_I_"'- .ﬁ-l:I;l L 1 - ]—
{ﬁ-l’:' = Trf[bfbf P ] 2 _ — ehw/kTy _ 1

Unruh Temperature




Analogy between non-degenerate parametric down conversion and the Unruh-Hawking effect

| 0>5;:=D IEI ‘ O>f::=0 -:__,1] 9

iq‘% ot
als) o oall)
Alice measures P P
- al(0)a,(0).4f(0)a,(0)
N N4
a.(0) @, signal X | | 4 (L)
o _ 0 Rob measures
S %S T T )
o , : L a; d;
{T[{U} 2 idler > ﬂ:'{‘[) 2
Act like _R_W-H modes
z=0 z=_ if Rob only measures

A detector at z=L measures 72_(L) and n,(L).

the signal mode

If Rob measures only the signal modes, 1.e. Rindler Wedge I (RW-I)modes,

the idler modes act like Rindler Wedge II (RW-II) modes, to which he has no access,

and must trace over. Here Rob chooses to ignore the 1dler modes and canalways recover
them 1n principle. This 1s not the case in the Unruh-Hawking effectwhere Rob, constrained
to RW-L, 1s causally disconnected from RW-IL, and 1s forced to trace overthe latter, since he

can never, even in principle, acquire information from that region.

Again, Rob sees "out” particles in the "in” vacuum

s:2=() {ﬂ| X i;2=0 {U

5

EIT(L Wi )E"'J‘E{L*‘-’L} |U:}$::={J |0:}i::=ﬂ - 5111112 r



A Brief Survey of the Hawking Effect

Schwarzschild Metric

T

e ( . QGM) e ( | 2GM

T

1
) dr? — r* dQO?

Linearize about horizon r =r, = 2GM

ds® ~ k’p*dt* — dp®

~ KZeZKZ (dt2 . dZZ)’

1
4,2
p(z)=¢e"

02,

k=GM/r? =1/(4GM) = constant surface gravity of Black Hole

Radial Wave Equation ¢ = f(t,7)/r Yi.(6, &)

Ff Of
a2 or?

L V() f =0

where r. =r+r; In(r/rs—1), and V(r,) — 0 as r, — —oc (r — ry).

::h(a/c):>h(xlc):
27Ky 27Ky

TU

T,

GM c*

S
surface gravity

2 4GM '

_2GM

S C2

Schwarzschild radius



The Hawking Effect: Modes

simgularity

future
event horizon

collapzing /

srar

Lightcone coordinates:

u=1t—r,, =1+ 1y

Incoming and Outgoing Solutions

fu.'{t; -r*) = a E—fw'! Eig_,"r‘* n .[) E_jwt E'_j‘.""‘?‘*
H-E_Mu 4+ bE—imv
fiut + fi,n



Classical information transmission
capacity of quantum black holes

Class. Quantum Grav. 31 (2014) 075015 C Adami and G Ver Steeg

(@)

Singularity

Figure 1. (a) Penrose diagram of the spacetime of a black hole, with accretion of
arbitrarily labeled particles 1.2.3, from past null infimty (.# 7). Once the particles
cross the event horizon into region II, they are indistinguishable (leading to a loss of
information) unless they leave a signature outside (in region [) via stimulated emission

(labeled 1°, 2, 3"). (b) Modes a. b, ¢ and A are concentrated in a region of null infinity
indicated by the letter (note that a and b actually overlap on .# ~).
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: H
Channel (Holevo) Capacity L\

| > L
x=1— E(] —3)323’”(m+ D(m+2)logm+ 1)+ (1 —2)° Zz’”(m+ 1) log(m+1),

m=0

1.0 7 —tanh? 1 = g 2%/(10 Stimulated emission from late-time modes
X Ay =e g el = aa, — ﬁbT_k + vy,
0.8
0,2 . ﬂQ + ]/2 — 1
0.6 H = Z igk(a,'(bik —agb_y) + ig’}((a};ck — akcl).
k=—no
@ Singularity
replacing z with ¢ = z/(1 +2)
r=0 \
04 |
0.2
0.0 L
0.0 0.2 0.4 0.6 0.8 1.0
Class. Quantum Grav. 31 (2014) 075015 C Adami and G Ver Steeg
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Black Hole Information Problem

Evolution of @ ® ® ®- & ]

black hole theories 1916 1974-1976 Late 1990s 2004 2012 2014

Black holes have given Einstein’s general Hawking shows Complementa- Hawking accepts Polchinski et al Solutions put
physicists headaches theory of relativity that black holes rity, proposed Susskind and Juan say complemen- forth include
since Stephen Hawking lays a framework evaporate by physicist Maldacena's asser- tarity violates fuzzy event
proposed his eponymous  for existence of over time. That Leonard Susskind, tion that black holes rules of quantum horizons, a
radiation. A time line black holes, with means informa- temporarily preserve informa- entanglement. new take on
of proposals to pre- massive gravity. tion inside disap- solves the prob- tion. General relativ- Implication: a complemen-
vent black holes from Information stays pears. Physicists lem of informa- ity and quantum wall of fire at the tarity and
destroying information: safely locked inside. are baffled. tion loss. mechanics are safe. event horizon. wormholes.

duction to the recent paper by Lloyd and Preskill [7, 11] which we quote The crux of the
puzzle is this: if a pure quantum state collapses to form a BH, the geometry of the evaporating
BH contains spacelike surfaces crossed by both the collapsing body inside the event horizon
and nearly all of the emitted Hawking radiation outside the event horizon. If this process is
unitary, then the guantum information encoded in the collapsing matter must also be encoded
(perhaps in a highly scrambled form) in the outgoing radiation; hence the infalling guantum
state is cloned in the radiation, violating the linearity of quantum mechanics.

In the majority of these approaches the Hawking radiation is canonically taken to be of the
form ) \/E |1)ine[17)exe Wwhere Hilbert space of the BH is taken to be of the tensor product
form H = He @ Hiy for the interior (int) and exterior (ext) of the BH. The action of
evaporation is to move some subsystem from the BH interior to the exterior [15]
Hine = Hpp @ H, via|n)iy — (U |n)py.,)|where U denotes the unitary process that might be
thought of as ‘selecting’ the subsystem to‘eject.” Here |n);, is the initial state of the BH

20
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\ / _
\\/ BH as PDC with depleted pump

.
> P.M. Alsing, Classical & Quant. Grav. 32, 075010 (2015); arXiv:1408.4491

The trilinear Hamiltonian I,  ;

s7 =r(ay ai a%t + a;; s ;)

&

ji© 00000
HHEEE S
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LII( 1la IH 1(} 111 1f|’l Hofy ahm f N an incipier chlf! Phys. Rev. D, 14, 1479 (1976)
A. Saini and D. Stojkovic, Badmn on from a collapsing object is manifestly covariant, arxiv:1503.01487v3; T. Vachaspati, D.

Y IS
Q.’ Stojkovic and L.M. Krauss, Observation of ineipient black holes and the information loss problem, arxiv:gr-qc/0609024v3

G.L. Alberghi. R. Casadio. G.P. Vacca and G. Venturi. Gravitational collapse of a radiating shell, arxiv:er-qc/0102014v2.

collapsing thin shell of matter
scalar boson field coupled to this classical gravitation field

, 2
H=1/2r&(7) (™ + a?)
quantized harmonic oscillator with a
(exponentially) time varying frequency

well known to generate single mode squeezed states

If two bosons were coupled to the field,
or a single, complex boson field

H = 1/27"5(7‘) ((ﬂs ajg + Qs @5)

The next logical step, to incorporate the quantum statistics of
the pump In quantum optics, such semi-classical models

are familiar Jr i ;
H,p:s,i:r( —I—G,CLCL)

22



BH as PDC with depleted pump

The trilinear Hamiltonian H, _;

H, ;=r(a,al al T+aT a;)

n)L = [npo — n)plnso +n)sinyz,  |0)in = 10)L = [ny0)p|nso)s[0)7,

H,.:=r(J" ag+ 1% al) SUR) g gl
z A(si) _ f ot
H,; r(aT K@) 4 ap KELSE)), SUQ.1) Ky =asa

calt) = p(nfe e

> in I '?_+"'TI"> out — Z f:{j Cn |'TI.-> L
dey, (t

i it r/npo — o/ (n+ 1)(265 +n) epeq(t)
(

+ 7 \/ﬂ-p[] —n+1)Vn2k +n—1) cp_1(t). cu(0) =060, 25 =mng+ 1.

see Heisenberg approach: P. Nation and M. Blencowe: New J. Phys. 12 095013 (2010), arXiv: 1004.0522



B. Early times: the non-depleted pump regime [N, Ny, N

For early times the condition n,g > n, n holds, and the simplest approximation is to approx-

imate the terms \/npo — n and /npo —n + 1 by /my0 which leads

cdey(t
i d’E ) = /n(n+ns)cnet1(t) +V(n+ 1D (n+ 1+ ng) cni(t).
with solution
npo npo
[t (T))out = Z cn(T) [N = Z cn(T) [npo — n)plnso + n)s|ny;
n=>0 n=>0
~ |np0>p %Y Z cn(7) [nso + n)s|n); = |np0>p ® |Tf’t< (T)>s,€=
n=0
< (=i tanhT)" nso + n B
wlr) = (cosh )nso+l n ’ TE VTt

24



BH as PDC with depleted pump

; tanh?" 7 N +n n<« +n
2 0 — nso+1_n 0 2 ‘
pelr,7) = e ()" = (cosh? 7)mso+1 ( 5 n ) = (- ( S no ) 7T tanh™ 7. (39)

One has %, p<(n,7) = 1 upon noting the identity [9, 19] 317, 27 ("0"") = (1 — z)~(msotl),

T
The average number of particles in region I is given by nyy + n<(7) where (taking n,o — 00)
o0

ne(r) = Z np(n,7) = (nyon +1) i = (ny + 1) sinh? 7, (40)
n=0

which allows one to write Eq.(39) as

ns0 —|_ n _ 7’_2’2(7-) | (41)
n (R (T) + nso + 1)n+nso+1

p<(n,7) = (ngo + 1)"" (

which reduces to the standard thermal probability distribution pipermar(n, 7) = 2" /(7 + 1)"”“rl with

Nihermal = sinh? 7 wehn ne = 0.

25



BH as PDC with depleted pump

C. Late times: the depleted pump regime|n, =n,,n

n = ny sin” 6,

/3 I'(1+n/2)

= _ 0, = sin~ ' (n/ny0),
g(n) = 2fF(1/2-+?@/2)’ gn—1)g(n) =n, (n/1p0)

Qo 1
dn 2y/n(ngp —n)

G(n)=g(np—n)gn)g2r+n—1)

Cn(t) = vV G(n)c,(t), cn(t) = (—1)" ¢, (1)

dC,, (¢

T + G(n) (

n—l—l(t,) - On,—l(t,)) =0, t'=rt.

PHYSICAL REVIEW A VOLUME 1, NUMBER 2 FEBRUARY 1970  ppvorcAl REVIEW A VOLUME 2, NUMBER 2 AUGUST 1970

Quantum-Mechanical Amplification and Frequency Conversion

with a Trilinear Hamiltonian Coherent Spontaneous Emission™
Daniel F, Walls™T faciof
Physics Department, Havvavd Univevsity, Cambridge, Massachusetis 02138 Rodolfo Bonifacio
and and
Richard Barakat
Division of Engineeving and Applied Physics, Havvard University, Cambridge, Massachusetts 02138 Giuliano Preparatai
(Received 23 June 1969) 336
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Channel (Holevo) Capacity Xs.5(2)

X9(2,0) = max § [pp(0) @ p?(0) + (1 = p) p(0) @ p9(0)] = H [pp (0)p(0) + (1= p) 5 (1) P (1)]
p
~p (S[p“‘l(o)] + S[p“"{UJl) —(1-p) (S[p(”(l)ﬁ + S[p‘*"(l)]) . = (H ()] + H [1)5;‘?(0)]) —(1-p) (H ()] + H [;UE;TJ(U)])
x[0¢31(2): _
short—time (blue), long—time (red) X[0¢»](2): combined
X(2) x(z)
1-0: X?;(Z)

7

0.8

04
0.2+ 0zl
1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | z i . . . | . . . | . L . | . . . | . . . | z
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Figure 17. Probability distributions ps(n,7) and p,(n, 7) in the computational basis
(Fock states)from numerical integration of Eq.(124). Initial distributions: (gray-solid)
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3 One Shot Decoupling Model

« Justification for use of trilinear Hamiltonian for BH evaporation/particle
production

— Semi-classical Hamiltonian for a collapsing spherical shell
« One Shot Decoupling Model of Bradler and Adami, arXiv:1505.02840

— Simplified version of Master Equation suggested by Alsing: CQG 32, 075010,
(2015); arXiv:1408.4491

« Analytic formulation by Alsing and Fanto, CQG 33, 015005 (2016),
arXiv:1507.00429

— Extension of models by Alsing and by Nation and Blencowe
— Page Information Curves

« Summary and Conclusion
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プレゼンター
プレゼンテーションのノート
Outline: Read
In the past, work presented at this conference has concentrate on the effects  on entanglement of the Unruh temperature  for a uniformly (i.e. constant) accelerated observer in flat Minkowski spacetime.

Here I will derive the Unruh temperature for arbitrarily accelerated observers. I will use a set of instantaneous co-moving (Fermi-Walker) coordinates that generalize form of the uniformly accelerated Rindler metric, replacing a0 → a(t) .

I will investigate two ways of deriving the Unruh temperature: (i) a WKB-like tunneling method that emphasizes the role of particles “crossing” the horizon and (ii) by the introduction of a specific set of inertial-to-Rindler (I2R) coordinates in which the observer has a finite asymptotic velocity less than c. 

Issues of the role of non-uniform acceleration on entanglement will not be address in this talk (they will in a future talk). Here I concentrate on the preliminary kinematics of determining the Unruh temperature for non-uniformly accelerated motion – a topic of interest in its own right.


Justification for Model

The information paradox: A pedagogical introduction
Samir D. Mathur arXiv:0909.1038v2 [hep-th] 25 Jan 2011
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Figure 1: (a) Spacelike slices in an evolution; the intrinsic geometry of the slice distorts in the Figure 2: A schematic set of coordinates for the Schwarzschild hole. Spacelike slices are f =

region between the right and left sides (b) Particle pairs are created in the region of distortion const outside the horizon and r = const inside. Infalling matter is very far from the place where
pairs are ereated (~ 1077 light years) when we measure distances along the slice. Curvature
length scale is ~ 3 ki all over the region of evolution covered by the slices S;.

Figure 4: The creation of Hawking pairs. The new quanta c¢,11,b,11 are not created by

C, G C3 by b, b .
interaction with either the matter [')ar (represented by the black square) or with the earlier
A~ A iy t t th either tl tt p ted by the black sq th tl l
i \'S\ ~ /‘J P created pairs. Rather the creation is by a Schwinger process which moves [10); further away
oy

from the place of pair creation, and also moves the earlier created ¢, b quanta away from the

place of pair creation. The new pairs are created in a state which to leading order is entangled
between the new b, ¢ quanta but not entangled with anything else. Small corrections to this
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[ |
Y
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leading order state does not change this entanglement significantly, so the entanglement keeps
growing all through the radiation process, unlike the case of radiation from normal hot bodies.
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Outline: Read
In the past, work presented at this conference has concentrate on the effects  on entanglement of the Unruh temperature  for a uniformly (i.e. constant) accelerated observer in flat Minkowski spacetime.

Here I will derive the Unruh temperature for arbitrarily accelerated observers. I will use a set of instantaneous co-moving (Fermi-Walker) coordinates that generalize form of the uniformly accelerated Rindler metric, replacing a0 → a(t) .

I will investigate two ways of deriving the Unruh temperature: (i) a WKB-like tunneling method that emphasizes the role of particles “crossing” the horizon and (ii) by the introduction of a specific set of inertial-to-Rindler (I2R) coordinates in which the observer has a finite asymptotic velocity less than c. 

Issues of the role of non-uniform acceleration on entanglement will not be address in this talk (they will in a future talk). Here I concentrate on the preliminary kinematics of determining the Unruh temperature for non-uniformly accelerated motion – a topic of interest in its own right.
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